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Summary. We find finite tight frames when the lengths of the frame elements are
predetermined. In particular, we derive a “fundamental inequality” which completely
characterizes those sequences which arise as the lengths of a tight frame’s elements.
Furthermore, using concepts from classical physics, we show that this characteriza-
tion has an intuitive physical interpretation.

1 Introduction

Let HN be a finite N -dimensional Hilbert space. A finite sequence {fm}M
m=1

of vectors is A-tight for HN if there exists A ≥ 0 such that,

A‖f‖2 =
M∑

m=1

|〈f, fm〉|2,

for all f ∈ HN . An A-tight frame is an A-tight sequence for which A > 0. By
polarization, {fm}M

m=1 is A-tight for HN if and only if,

Af =
M∑

m=1

〈f, fm〉fm,

for all f ∈ HN . Clearly, any orthonormal basis is a 1-tight frame. However,
the converse is false. For example, the vertices of a tetrahedron, appropriately
centered and scaled, form a 1-tight frame of four elements for R

3. Moreover,
while the elements of an orthonormal basis are of unit length a priori, there are
no explicit assumptions made about the lengths of a tight frame’s elements.
This raises the question,
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Given positive integers M and N , for what sequences of nonnegative
numbers {am}M

m=1 do there exist tight frames {fm}M
m=1 for HN , such

that ‖fm‖ = am for all m?

The answer to this question is the subject of this chapter. To be more precise,
we first derive a necessary condition upon the lengths.

Proposition 1. If {fm}M
m=1 is A-tight for HN then,

max
m=1,...,M

‖fm‖2 ≤ A =
1
N

M∑
m=1

‖fm‖2. (1)

Proof. First note that for any m = 1, . . . , M ,

‖fm‖4 = |〈fm, fm〉|2 ≤
M∑

m′=1

|〈fm, fm′〉|2 = A‖fm‖2.

Thus, ‖fm‖2 ≤ A for all m = 1, . . . ,M , yielding the inequality in (1). For the
equality, let {en}N

n=1 be an orthonormal basis for HN . By Parseval’s identity,

1
N

M∑
m=1

‖fm‖2 =
1
N

M∑
m=1

N∑
n=1

|〈fm, en〉|2 =
1
N

N∑
n=1

A‖en‖2 = A. ��

Thus, the lengths {am}M
m=1 of a tight frame of M elements for an N -

dimensional space must satisfy the fundamental inequality,

max
m=1,...,M

a2
m ≤ 1

N

M∑
m=1

a2
m. (2)

Remarkably, this easily-found necessary condition will prove sufficient as
well. That is, we shall show that for any sequence {am}M

m=1 which satisfies
(2), and for any N -dimensional Hilbert space HN , there exists a tight frame
{fm}M

m=1 for HN for which ‖fm‖ = am for all m.
Furthermore, when given a sequence {am}M

m=1 which violates (2), we shall
determine those sequences {fm}M

m=1 of norms {am}M
m=1 which are as close as

possible to being tight frames, in a natural, intuitive sense.
Of course, this problem does not exist in a vacuum. Frames have been a

subject of interest for some time, both in theory and in applications. In recent
years, several inquiries have been made into some of the deeper issues of finite
tight frames.

The theory of frames was first introduced by Duffin and Schaeffer [10]
in the 1950’s, furthering the study of nonharmonic Fourier series and the
time-frequency decompositions of Gabor [13]. Decades later, the subject was
reinvigorated following a publication of Daubechies, Grossman and Meyer [9].
Frames have subsequently become a state-of-the-art signal processing tool.
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Frames provide redundant vector space decompositions, which are very
attractive from the applied perspective. In particular, frame decompositions
are resilient against noise and quantization, and provide numerically stable
reconstruction algorithms [6, 8, 15]. Translation-invariant frames in �2(Z), be-
ing equivalent to perfect reconstruction oversampled filter banks, have been
studied extensively [4, 7, 18, 19]. Frame decompositions may also reveal hid-
den signal characteristics, and have therefore been used to solve problems of
detection [1, 3, 21]. Frames have also been used to design unitary space-time
constellations for multiple-antenna wireless systems [16].

Specific types of finite tight frames have been studied to solve problems in
communications [14, 17, 20, 24]. In addition, many techniques of construct-
ing finite tight frames have been discovered, several of which involve group
theory [5, 22]. Researchers have also been interested in tight frames whose el-
ements are restricted to spheres and ellipsoids [2, 11], as well as the manifold
structures of spaces of all such frames [12].

Much of our work is inspired by Benedetto and Fickus’s characterization
of unit-norm tight frames [2]. Subsequent to the completion of our work, we
learned that some of our results were independently obtained by Anantharam
and Viswanath [23] in the context of wireless communications. At the conclu-
sion of this chapter, we compare and contrast the two approaches.

In the following section, we motivate our main results by introducing a
physical interpretation of frame theory, extending the frame-equivalent no-
tions of force and potential energy first introduced by Benedetto and Fickus.
Section 3 contains several results concerning the minimization of this general-
ized frame potential, highlighting the connection between optimal energy and
tightness. Finally, in Section 4, we characterize the lengths of a tight frame’s
elements in terms of the fundamental inequality, and discuss this characteri-
zation from the physical perspective.

2 The Physical Theory

Given any nonnegative sequence {am}M
m=1 which satisfies the fundamental

inequality (2), our goal is to construct a tight frame {fm}M
m=1 for HN such

that ‖fm‖ = am for all m. We begin by briefly discussing the special case of
this problem when am = 1 for all m.

A unit-norm tight frame (UNTF) is a tight frame whose frame elements
are normalized. In the past few years, several independent proofs have been
found which show that such frames always exist, that is, for any N -dimensional
Hilbert space HN , and any M ≥ N , there exists a tight frame of M ele-
ments {fm}M

m=1 for HN such that ‖fm‖ = 1 for all m. One proof involves
an explicit construction of such frames using orthogonal projections of finite
Fourier bases. However, the construction does not generalize to the case of
nonuniform lengths.
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Another proof is given by Benedetto and Fickus [2], who then referred to
unit-norm tight frames as normalized tight frames. Their approach was more
qualitative in nature, being inspired by the high level of symmetry in many
canonical examples of UNTFs. Specifically, they found a connection between
UNTFs and a classical means of equally distributing points on a sphere. Using
this perspective, Benedetto and Fickus characterized UNTFs as the minimiz-
ers of a potential energy function, thus guaranteeing their existence.

In this section, we show how Benedetto and Fickus’s notions of “frame
force” and “frame potential” may be extended to the nonuniform setting.
Inspired by the Coulomb force, consider the frame force FF(fm, fm′) ∈ R

N of
fm′ ∈ R

N upon fm ∈ R
N ,

FF(fm, fm′) = 2〈fm, fm′〉(fm − fm′). (3)

This is essentially the same definition that appears in [2], but without the re-
striction of fm and fm′ to the unit sphere. Compared to the forces of the natu-
ral world, the frame force is bizarre. For example, this force is not translation-
invariant. Also, the force between coincidental points is well-defined, being
zero. Most importantly, the frame force “encourages orthogonality” — the
force is repulsive when the angle between two vectors is acute, attractive
when this angle is obtuse, and zero when the vectors are perpendicular.

Now consider a physical system of M points {fm}M
m=1 whose movement

is restricted to concentric spheres about the origin of radii {am}M
m=1, respec-

tively, in which each point pushes against all the others, according to the
frame force. Dynamically, each point tries to force the others into perpendicu-
larity. At the same time, when M > N , it is impossible for {fm}M

m=1 ⊂ R
N to

consist of mutually orthogonal vectors. Nevertheless, given enough time and
even the smallest amount of friction, the points will eventually settle into an
equilibrium. The result is a sequence of vectors {fm}M

m=1, with ‖fm‖ = am

for all m, which are “as close to being mutually orthogonal as possible.”
Formally, equilibria are characterized as the local minimizers of the poten-

tial energy function. For a system of particles pushing against each other ac-
cording to the frame force, this energy function is known as the “frame poten-
tial.” To be precise, for a ≥ 0, let S(a) be the hypersphere {f ∈ R

N : ‖f‖ = a}.
Similarly, for any nonnegative sequence {am}M

m=1 let,

S({am}M
m=1) = S(a1) × · · · × S(aM ).

The frame potential is a function FP : S({am}M
m=1) → R, such that for any

{fm}, {gm} ∈ S({am}M
m=1), their difference in potentials represents the work

required to transform {gm} into {fm}, under the influence of the frame force.
The following result provides an explicit form of this potential.

Proposition 2. For any {fm} ∈ S({am}M
m=1),

FP({fm}) =
M∑

m=1

M∑
m′=1

|〈fm, fm′〉|2.
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Proof. Recall fm ∈ S(am) ⊂ R
N for all m. Thus, for any m,m′ = 1, . . . ,M ,

‖fm − fm′‖2 = a2
m − 2〈fm, fm′〉 + a2

m′ . (4)

Solving for 〈fm, fm′〉 in (4) and substituting this expression in (3), we see that
frame force may be written completely in terms of fm − fm′ ,

FF(fm, fm′) = (a2
m + a2

m′ − ‖fm − fm′‖2)(fm − fm′).

As this field is conservative, the potential energy is computed using an anti-
gradient. This is accomplished by first anti-differentiating the “scalar force,”

−
∫

(a2
m + a2

m′ − x2)x dx =
1
4
x2[x2 − 2(a2

m + a2
m′)],

and then evaluating at x = ‖fm − fm′‖,
1
4
‖fm − fm′‖2

[
‖fm − fm′‖2 − 2(a2

m + a2
m′)

]
= 〈fm, fm′〉2 − 1

4
(a2

m + a2
m′)2,

which is simplified using (4). This quantity represents the frame potential
energy at fm from the field generated by fm′ . The total energy is the sum of
these pairwise potentials,

M∑
m=1

∑
m′ �=m

[
〈fm, fm′〉2 − 1

4
(a2

m + a2
m′)2

]
.

As potential energy is defined in terms of differences, this function is only
unique up to additive constants. We choose to omit the terms (a2

m + a2
m′)2/4,

and include the diagonal terms |〈fm, fm〉|2 = a4
m, yielding the result. ��

In the following sections, we shall use this expression of the frame potential
FP : S({am}M

m=1) → R to characterize tight frames of lengths {am}M
m=1.

Specifically, we characterize such frames in terms of minimizers of FP, that
is, in terms of those “maximally orthogonal” sequences {fm} ∈ S({am}M

m=1)
which are in equilibrium with respect to the frame force.

Before continuing, we pause to consider another physical aspect of the
frame force (3), namely that the power of a frame force field generated by
fm′ will increase with ‖fm′‖. That is, points which are farther away from the
origin will apply a stronger push than those which are closer.

To determine the explicit dependence, consider the effective component of
the frame force FF(fm, fm′) which lies parallel to the surface of S(am) at fm.
In essence, the effective component is the only part of the frame force that a
point will actually experience, as the point is prohibited from moving in the
direction of the normal component. Formally, the effective component is,



6 P. G. Casazza, M. Fickus, J. Kovačević, M. T. Leon, and J. C. Tremain

EFF(fm, fm′) = FF(fm, fm′) − Projfm
FF(fm, fm′),

= FF(fm, fm′) − 〈FF(fm, fm′), fm〉
‖fm‖2

fm,

=
2|〈fm, fm′〉|2

a2
m

fm − 2〈fm, fm′〉fm′ ,

for fm �= 0. Clearly, ‖EFF(fm, fm′)‖ grows as a square of ‖fm′‖. We therefore
refer to a2

m as the power of fm. The fundamental inequality (2) may therefore
be interpreted as requiring a somewhat uniform distribution of power. Con-
versely, when the fundamental inequality is violated, then a single mass am′

is disproportionately large, and it is therefore conceivable that a state of equi-
librium is only achieved when the massive point fm′ has forced the remaining
points into perpendicularity. In the final section, we shall show that this is
indeed the case, and further elaborate upon these phenomena.

3 The Physical Interpretation of Frames

Above, we discussed how the frame force may be used to define an intuitive
notion of a “maximally orthogonal” sequence of vectors. We now go beyond
intuition, and establish a rigorous link between the physical theory and the
theory of frames. Our work makes repeated use of the canonical linear op-
erators of frame theory. In particular, given {fm}M

m=1 ⊂ HN , consider the
analysis operator F : HN → C

M ,

(Ff)(m) = 〈f, fm〉,

whose adjoint is the synthesis operator F ∗ : C
M → HN ,

F ∗g =
M∑

m=1

g(m)fm.

Their compositions are the frame operator F ∗F : HN → HN ,

F ∗Ff =
M∑

m=1

〈f, fm〉fm,

and the Gram matrix FF ∗ : C
M → C

M , whose (m,m′)th matrix entry is
〈fm′ , fm〉. We note that {fm}M

m=1 is A-tight for HN if and only if the corre-
sponding analysis operator satisfies ‖Ff‖2 = A‖f‖2 for all f ∈ HN , which is
in turn equivalent to the frame operator satisfying F ∗F = AI. In the follow-
ing result, we use this equivalence to characterize tight frames in terms of the
frame force.
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Proposition 3. {fm}M
m=1 is tight for R

N if and only if the effective force field
generated by {fm}M

m=1 vanishes everywhere, that is, if and only if,

M∑
m=1

EFF(f, fm) = 0,

for all f ∈ R
N .

Proof. Let F be the analysis operator of {fm}M
m=1. Then,

0 =
M∑

m=1

EFF(f, fm) =
M∑

m=1

[
2|〈f, fm〉|2

‖f‖2
f − 2〈f, fm〉fm

]
,

for all f ∈ R
N if and only if,

F ∗Ff =
M∑

m=1

〈f, fm〉fm =
M∑

m=1

|〈f, fm〉|2
‖f‖2

f =
‖Ff‖2

‖f‖2
f, (5)

for all f �= 0 ∈ R
N . Clearly (5) holds if {fm}M

m=1 is tight. For the converse,
note that if (5) holds, then every f �= 0 ∈ R

N is an eigenvector of F ∗F . Thus,
F ∗F = AI for some A ≥ 0. ��
In light of this result, it is natural to ask whether every real tight frame is in
equilibrium with respect to the frame force. Below, we answer this question in
the affirmative by showing that every tight frame for R

N is a global minimizer
of the frame potential.

Before continuing, note that one may “minimize the frame potential” in
a more general setting. That is, despite being derived in the context of real
Euclidean spaces, the formula for the frame potential makes sense in a gen-
eral Hilbert space. To be precise, given a possibly complex finite-dimensional
Hilbert space HN , consider the generalized frame potential,

FP : H
M
N → R, FP({fm}) =

M∑
m=1

M∑
m′=1

|〈fm, fm′〉|2.

Often, we shall restrict the domain of FP to the Cartesian product S({am}M
m=1)

of the M generalized spheres S(am) = {f ∈ HN : ‖f‖ = am}. In particu-
lar, the following results characterize tight frames of lengths {am}M

m=1 as the
global minimizers of this restricted potential. We begin by showing that the
frame potential of a sequence is equal to the square of the Hilbert-Schmidt
(Frobenius) norm of the corresponding frame operator.

Lemma 1. Let F be the analysis operator of {fm}M
m=1 ⊂ HN . Then,

FP({fm}M
m=1) = Tr((F ∗F )2).
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Proof. Let {en}N
n=1 be an orthonormal basis of HN . Then,

FP({fm}M
m=1) =

M∑
m=1

M∑
m′=1

〈fm′ , fm〉〈fm, fm′〉,

=
M∑

m=1

M∑
m′=1

〈
N∑

n=1

〈fm′ , en〉en, fm〉〈fm, fm′〉,

=
N∑

n=1

M∑
m=1

M∑
m′=1

〈〈en, fm〉fm, 〈en, fm′〉fm′〉,

=
N∑

n=1

〈F ∗Fen, F ∗Fen〉,

=
N∑

n=1

〈(F ∗F )2en, en〉 = Tr((F ∗F )2). ��

Proposition 4. For any N -dimensional Hilbert space HN and any nonnega-
tive sequence {am}M

m=1, the frame potential FP : S({am}M
m=1) → R satisfies,

1
N

[
M∑

m=1

a2
m

]2

≤ FP({fm}).

Furthermore, this lower bound is achieved if and only if {fm}M
m=1 is tight for

HN with ‖fm‖ = am for all m.

Proof. Let F be the analysis operator of {fm} ∈ S({am}M
m=1), and let {λn}N

n=1

be the eigenvalues of F ∗F , counting multiplicities. By Lemma 1,

FP({fm}) = Tr(F ∗F )2 =
N∑

n=1

λ2
n.

Meanwhile, the trace of the frame operator satisfies,

N∑
n=1

λn = Tr(F ∗F ) =
N∑

n=1

〈F ∗Fen, en〉 =
N∑

n=1

〈
M∑

m=1

〈en, fm〉fm, en〉,

=
M∑

m=1

N∑
n=1

|〈fm, en〉|2 =
M∑

m=1

‖fm‖2 =
M∑

m=1

a2
m,

where {en}N
n=1 is any orthonormal basis for HN . The lower bound is therefore

found by solving the constrained minimization problem,

min

{
N∑

n=1

λ2
n :

N∑
n=1

λn =
M∑

m=1

a2
m

}
.
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Using Lagrange multipliers, the minimum is found to occur precisely when,

λ1 = · · · = λN =
1
N

M∑
m=1

a2
m.

Thus, for any {fm} ∈ S({am}M
m=1),

FP({fm}) =
N∑

n=1

λ2
n ≥

N∑
n=1

[
1
N

M∑
m=1

a2
m

]2

=
1
N

[
M∑

m=1

a2
m

]2

.

Furthermore, this lower bound is achieved precisely when all the eigenvalues
of F ∗F are equal, that is, when F ∗F = AI for some A ≥ 0. ��
Note that the previous result does not imply that this lower bound on the
frame potential is optimal. Rather, this bound is only achieved when there
exists a tight frame {fm}M

m=1 for HN with ‖fm‖ = am for all m. We emphasize
that this result does not show that such frames actually exist. Indeed, such
frames cannot exist when the requisite lengths {am}M

m=1 violate the funda-
mental inequality.

These ambiguities will be resolved by the main results of the following
section. In particular, we show that there always exists a tight frame of lengths
{am}M

m=1, provided {am}M
m=1 satisfies the fundamental inequality, and, in the

case when the inequality is violated, we determine the true minimum value of
the frame potential.

We conclude this section by briefly discussing the minimization of the
frame potential in another context. Two sequences {fm}M

m=1, {gm}M
m=1 ⊂ HN

are dual frames if their analysis operators satisfy G∗F = I, that is, if,

f =
M∑

m=1

〈f, fm〉gm,

for all f ∈ HN . Any spanning set {fm}M
m=1 ⊂ HN has at least one dual frame,

namely the canonical dual {f̃m}M
m=1 ≡ {(F ∗F )−1fm}M

m=1 whose synthesis
operator (F ∗F )−1F is the pseudoinverse of F . Furthermore, when M > N ,
a sequence {fm}M

m=1 ⊂ HN may have an infinite number of dual frames.
Nevertheless, the canonical dual has been found to be the “optimal” dual in
certain applications [15]. The following result shows that the canonical dual
is also the optimal dual from the point of view of the frame potential.

Proposition 5. Let {fm}M
m=1 ⊂ HN be a spanning set. Then, the canonical

dual of {fm}M
m=1 is the unique dual of minimal frame potential.

Proof. Let F, F̃ and G denote the analysis operators of {fm}M
m=1, its canonical

dual, and any arbitrary dual frame, respectively. Note that,

G∗G = [F̃ + (G − F̃ )]
∗
[F̃ + (G − F̃ )] = F̃ ∗F̃ + (G − F̃ )

∗
(G − F̃ ),
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as the middle terms vanish,

(G − F̃ )
∗
F̃ = G∗F (F ∗F )−1 − (F ∗F )−1F ∗F (F ∗F )−1 = 0.

By Lemma 1, and the fact that (G − F̃ )
∗
(G − F̃ ) is positive semidefinite,

FP({gm}) = Tr (G∗G)2 = Tr[F̃ ∗F̃ + (G − F̃ )
∗
(G − F̃ )]2,

≥ Tr (F̃ ∗F̃ 2) = FP({f̃m}),
with equality if and only if G = F̃ . ��
Having found the dual of minimal energy, we next characterize those sequences
for which the sum of their energy and their dual’s energy is minimal.

Proposition 6. A spanning set {fm}M
m=1 ⊂ HN is a minimizer of,

FP({fm}M
m=1) + FP({f̃m}M

m=1),

if and only if {fm}M
m=1 is a 1-tight frame for HN .

Proof. Let {fm}M
m=1 ⊂ HN be a spanning set, and let {λn}N

n=1 be the eigen-
values of the corresponding frame operator F ∗F , counting multiplicities. As
the frame operator of the canonical dual is (F ∗F )−1, Lemma 1 gives,

FP({fm}) + FP({f̃m}) = Tr((F ∗F )2) + Tr((F ∗F )−2) =
N∑

n=1

(λ2
n + λ−2

n ). (6)

For any n, λ2
n + 1/λ2

n is minimized by letting λn = 1. Thus, (6) is bounded
below by 2N , and this lower bound is achieved if and only if F ∗F = I, that is,
if and only if {fm}M

m=1 ⊂ HN is a 1-tight frame for HN . By letting {fm}M
m=1

be the union of orthonormal bases with the required number of zero vectors,
we see that such frames exist. Thus, the lower bound is indeed a minimum. ��

4 The Fundamental Inequality

In the first section, we showed that if there exists a tight frame {fm}M
m=1 for

HN with ‖fm‖ = am for all m, then the fundamental inequality,

max
m=1,...,M

a2
m ≤ 1

N

M∑
m=1

a2
m,

is satisfied. Furthermore, in the previous section, we showed that if such frames
exist, then they are minimizers of the frame potential FP : S({am}M

m=1) → R.
In this section, we prove that the converse of the first result is true, and
demonstrate a partial converse of the second.

To begin, recall that the fundamental inequality may be interpreted as
requiring the powers {a2

m}M
m=1 of a tight frame {fm} ∈ S({am}M

m=1) to be
somewhat uniform in distribution. For a more precise definition of a “uniform
distribution” in this context, consider the following result.
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Lemma 2. For any sequence {cm}M
m=1 ⊂ R with c1 ≥ · · · ≥ cM ≥ 0, and for

any positive integer N , there is a unique index N0 with 1 ≤ N0 ≤ N , such
that the inequality,

(N − n)cn >

M∑
m=n+1

cm,

holds for 1 ≤ n < N0, while the opposite inequality,

(N − n)cn ≤
M∑

m=n+1

cm, (7)

holds for N0 ≤ n ≤ N .

Proof. We begin by pointing out an implicit assumption of this result, namely
that if M < N , any summation over an empty set of indices is regarded as
zero. Let I be the set of indices such that (7) holds. As N ∈ I, then I �= ∅.
Also, if n ∈ I, then n + 1 ∈ I, since,

[N− (n + 1)]cn+1 = −cn+1 + (N − n)cn+1 ≤ −cn+1 + (N − n)cn,

≤ −cn+1 +
N∑

m=n+1

cm =
N∑

m=n+2

cm.

N0 is therefore uniquely defined as the minimum index in I. ��
Thus, for a given positive integer N , the index N0 is the place in the sequence
{cm}M

m=1 where the terms cease to be larger than the “average” of the smaller
remaining terms. Of course, this is not a true average unless M = N . Never-
theless, one expects the index N0 to be small if the sequence {cm} is somewhat
evenly distributed, and large if {cm} varies greatly.

In the context of sequences {fm} ∈ S({am}M
m=1) ⊂ H

M
N , we apply Lemma

2 to the sequence obtained by rearranging the powers {a2
m}M

m=1 in decreasing
order. Let the irregularity of {am}M

m=1 be N0 − 1, where N0 is the unique
index obtained in this manner. The next result characterizes the fundamental
inequality in terms of the irregularity.

Lemma 3. For a postive integer N , a nonnegative sequence {am}M
m=1 satisfies

the fundamental inequality if and only if the irregularity of {am}M
m=1 is zero.

Proof. Without loss of generality, we assume {am}M
m=1 is arranged in decreas-

ing order. Thus, {am}M
m=1 satisfies the fundamental inequality if and only if,

(N − 1)a2
1 = −a2

1 + N max
m

a2
m ≤ −a2

1 +
N

N

M∑
m=1

a2
m =

M∑
m=2

a2
m,

that is, when the index obtained by applying Lemma 2 to {a2
m}M

m=1 is N0 = 1,
which is equivalent to an irregularity of N0 − 1 = 0. ��
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Thus, for an arbitrary nonnegative sequence {am}M
m=1, the irregularity serves

to measure the degree to which the fundamental inequality is violated, and
partitions the corresponding points {fm}M

m=1 into two camps, one strong and
the other weak. This idea plays a key role in the following result, in which we
completely characterize those sequences in equilibrium under the frame force.

Theorem 1. Let HN be any N -dimensional Hilbert space, and let {am}M
m=1

be a nonnegative decreasing sequence of irregularity N0 − 1. Then, any local
minimizer of the frame potential FP : S({am}M

m=1) → R is of the form,

{fm}M
m=1 = {fm}N0−1

m=1 ∪ {fm}M
m=N0

,

where {fm}N0−1
m=1 is an orthogonal sequence for whose orthogonal complement

the sequence {fm}M
m=N0

is tight. Moreover, {fm}M
m=N0

is a tight frame for this
complement when the number of nonzero elements of {am}M

m=1 is at least N .

Proof. Let F be the analysis operator of a local minimizer {fm} of the frame
potential FP : S({am}M

m=1) → R. Let {λj}J
j=1 be the nonnegative decreasing

sequence of the distinct eigenvalues of F ∗F , and let {Ej}J
j=1 be the corre-

sponding sequence of mutually orthogonal eigenspaces. Consider the sequence
of indexing sets,

{Ij}J
j=1, Ij ≡ {m : F ∗Ffm = λjfm} ≡ {m : fm ∈ Ej} ⊆ {1, . . . , M}.

The remainder of the argument is outlined in the form of seven claims:

1. Each fm is an eigenvector for F ∗F .
2. For any j = 1, . . . , J , {fm}m∈Ij

is λj-tight for Ej .
3. For any j < J , {fm}m∈Ij

is linearly independent.
4. For any j < J , (1/

√
λj){fm}m∈Ij

is an orthonormal basis for Ej .
5. (N − M + |IJ |)λJ =

∑
m∈IJ

a2
m.

6. {N0, . . . ,M} ⊆ IJ .
7. {N0, . . . ,M} = IJ .

Claim 1: Each fm is an eigenvector for F ∗F . The proof of this claim is es-
sentially the same as that of Theorem 7.3 in [2]. As such, we only provide a
brief sketch of the argument. For any m = 1, . . . ,M , consider the function
obtained by allowing the mth argument of the frame potential to vary, while
holding the others constant at the minimizer {fm},

FPm : HN → R, FPm(f) = a4
m +

∑
m′ �=m

|〈f, fm′〉|2 + FP({fm′}m′ �=m).

Clearly, fm is a local minimizer of the constrained function FPm : S(am) → R.
Thus, there exists c ∈ R for which the corresponding Lagrange equation,

∇FPm(f) = c∇‖f‖2,
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is satisfied at f = fm. An explicit derivation of these gradients then reveals
that F ∗Ffm = (1 + c/2)fm. Since m is arbitrary, the claim is demonstrated.

As a consequence of the first claim, the elements of the minimizer {fm}M
m=1

are partitioned according to the eigenvalues. To be precise, we have,

J⋃
j=1

Ij = {1, . . . , M}, Ij ∩ Ij′ = ∅ ∀j �= j′,

where, without loss of generality, we regard m ∈ IJ if fm = 0.

Claim 2: For any j = 1, . . . , J , {fm}m∈Ij
is λj-tight for Ej. Fix j = 1, . . . , J ,

and let Fj : Ej → C
|Ij | be the anaylsis operator of {fm}m∈Ij

. Note that as
the distinct eigenspaces of F ∗F are mutually orthogonal, then 〈f, fm〉 = 0 for
any f ∈ Ej and any m /∈ Ij . Thus, for any f ∈ Ej ,

λjf = F ∗Ff =
M∑

m=1

〈f, fm〉fm =
∑

m∈Ij

〈f, fm〉fm = F ∗
j Fjf,

and so F ∗
j Fj : Ej → Ej satisfies F ∗

j Fj = λjI, yielding the claim.

Claim 3: For any j < J , {fm}m∈Ij
is linearly independent. Assume to the

contrary that {fm}m∈Ij
is linearly dependent for some j = 1, . . . , J − 1. We

find a sequence of parametrized curves {gm}M
m=1 : (−1, 1) → S({am}M

m=1),
such that {gm(0)}M

m=1 = {fm}M
m=1, and for which,

FP({gm(t)}M
m=1) < FP({fm}M

m=1),

for all 0 �= t ∈ (−1, 1), contradicting the global assumption that {fm}M
m=1 is

a local minimizer of the frame potential. To begin, fix h ∈ EJ with ‖h‖ = 1.
Since {fm}m∈Ij

is linearly dependent, there exists a nonzero sequence of com-
plex scalars {zm}m∈Ij

such that |zm| ≤ 1/2 for all m ∈ Ij , and for which,∑
m∈Ij

zmamfm = 0.

For any t ∈ (−1, 1), consider {gm(t)}M
m=1 ⊂ HN given by,

gm(t) =
{√

1 − t2|zm|2fm + tzmamh, m ∈ Ij ,
fm, m /∈ Ij .

Clearly, {gm(0)}M
m=1 = {fm}M

m=1. We now derive a Taylor approximation of
FP({gm(·)}M

m=1) : (−1, 1) → R around t = 0. By the product rule,
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d
dt

FP({gm(t)}) = 4Re
M∑

m=1

M∑
m′=1

〈g′m, gm′〉〈gm′ , gm〉,

d2

dt2
FP({gm(t)}) = 4Re

M∑
m=1

M∑
m′=1

{
〈g′′m, gm′〉〈gm′ , gm〉 + 〈g′m, g′m′〉〈gm′ , gm〉

+ 〈g′m, gm′〉〈g′m′ , gm〉 + 〈g′m, gm′〉〈gm′ , g′m〉
}

.

Meanwhile, for any m = 1, . . . , M ,

gm(0) = fm, g′m(0) =
{

zmamh, m ∈ Ij ,
0, m /∈ Ij ,

g′′m(0) =
{−|zm|2fm, m ∈ Ij ,

0, m /∈ Ij .

Thus, the first-order Taylor coefficient is,

d
dt

FP({gm(t)})
∣∣∣
t=0

= 4Re
∑

m∈Ij

M∑
m′=1

〈zmamh, fm′〉〈fm′ , fm〉,

= 4Re
∑

m∈Ij

〈F ∗Fzmamh, fm〉 = 4λJRe
∑

m∈Ij

zmam〈h, fm〉 = 0,

where 〈h, fm〉 = 0 for all m ∈ Ij , as j �= J . As the first-order coefficient is
zero, we compute the second-order coefficient,

1
2

d2

dt2
FP({gm(t)})

∣∣∣
t=0

= 2Re

{ ∑
m∈Ij

M∑
m′=1

〈−|zm|2fm, fm′〉〈fm′ , fm〉

+
∑

m∈Ij

∑
m′∈Ij

[〈zmamh, zm′am′h〉〈fm′ , fm〉 + 〈zmamh, fm′〉〈zm′am′h, fm〉]

+
∑

m∈Ij

M∑
m′=1

〈zmamh, fm′〉〈fm′ , zmamh〉
}

.

To begin simplifying this expression, note that,

∑
m∈Ij

M∑
m′=1

〈−|zm|2fm, fm′〉〈fm′ , fm〉 = −
∑

m∈Ij

|zm|2〈F ∗Ffm, fm〉,

= −
∑

m∈Ij

|zm|2λj〈fm, fm〉 = −λj

∑
m∈Ij

|zm|2a2
m.

Next, the definition of {zm} and the fact that 〈h, fm〉 = 0 for m ∈ Ij gives,
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m∈Ij

∑
m′∈Ij

[〈zmamh, zm′am′h〉〈fm′ , fm〉 + 〈zmamh, fm′〉〈zm′am′h, fm〉]

=
∑

m∈Ij

∑
m′∈Ij

‖h‖2〈zm′am′fm′ , zmamfm〉 =
∥∥∥∥ ∑

m∈Ij

zmamfm

∥∥∥∥2

= ‖0‖2 = 0.

Finally,

∑
m∈Ij

M∑
m′=1

〈zmamh, fm′〉〈fm′ , zmamh〉 =
∑

m∈Ij

|zm|2a2
m〈F ∗Fh, h〉,

=
∑

m∈Ij

|zm|2a2
mλJ〈h, h〉 = λJ

∑
m∈Ij

|zm|2a2
m.

Thus, the second-order Taylor coefficient is,

1
2

d2

dt2
FP({gm(t)})

∣∣∣
t=0

= 2(λj − λJ)
∑

m∈Ij

|zm|2a2
m.

To determine the sign of this coefficient, note that λj > λJ since j < J .
Also, the sequence {zm}M

m=1 is nonzero, by assumption. Furthermore, since
IJ contains the indices of any zero elements of {fm}M

m=1 by decree, then
am = ‖fm‖ > 0 for all m ∈ Ij . Thus, the second-order coefficient is
negative. An explicit, straightforward computation reveals that the third
derivative of FP({gm(t)}) is bounded near zero. Thus, by Taylor’s theorem,
FP({gm(t)}M

m=1) < FP({fm}M
m=1) for all sufficiently small t, a contradiction.

Claim 4: For any j < J , (1/
√

λj){fm}m∈Ij
is an orthonormal basis for Ej.

First note that since j < J , then λj > λJ ≥ 0. This, combined with the
previous two claims, gives that {fm}m∈Ij

is a linearly independent λj-tight
frame for Ej . As a tight frame is necessarily a spanning set, {fm}m∈Ij

is a
basis for Ej . Thus, |Ij | = dim Ej , and so the analysis operator Fj : Ej → C|Ij |

which already satisfies F ∗
j Fj = λjI must also satisfy FjF

∗
j = λjI. Letting

{em}m∈IJ
be the standard basis for C|Ij |, we have that for any m,m′ ∈ Ij ,

〈fm, fm′〉 = 〈F ∗
j em, F ∗

j em′〉 = 〈FjF
∗
j em, em′〉 = λj〈em, em′〉.

Thus, {fm}m∈Ij
is orthogonal and a2

m = ‖fm‖2 = λj for all m ∈ Ij .

Claim 5: (N − M + |IJ |)λJ =
∑

m∈IJ
a2

m. For any j < J , the previous claim
gives that {fm}m∈Ij

is a basis for Ej . Thus,

M =
J∑

j=1

|Ij | = |IJ | +
J−1∑
j=1

|Ij | = |IJ | +
J−1∑
j=1

dim Ej = |IJ | + N − dim EJ .

By the second claim, {fm}m∈IJ
is λJ -tight for EJ . Thus, by Proposition 1,
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(N − M + |IJ |)λJ = (dim EJ )λJ =
∑

m∈IJ

a2
m.

Claim 6: {N0, . . . ,M} ⊆ IJ . We prove the complement inclusion, namely
IC

J ⊆ {1, . . . , N0 − 1}. Take any n ∈ Ij ⊂ IC
J . Using the previous claim and

the fact that {a2
m}M

m=1 is decreasing, note that,

M∑
m=n+1

a2
m = |IJ ∩ {1, . . . , n}|a2

n +
M∑

m=n+1

a2
m − |IJ ∩ {1, . . . , n}|a2

n,

≤
n∑

m∈IJ , m=1

a2
m +

M∑
m=n+1

a2
m − |IJ ∩ {1, . . . , n}|a2

n,

=
∑

m∈IJ

a2
m +

M∑
m∈IC

J , m=n+1

a2
m − |IJ ∩ {1, . . . , n}|a2

n,

<
[
N − M + |IJ | + |IC

J ∩ {n + 1, . . . ,M}| − |IJ ∩ {1, . . . , n}|]a2
n,

=
[
N − M + |{n + 1, . . . , N}|]a2

n = (N − n)a2
n.

As defined in Lemma 2, the index N0 is the starting point at which the
opposite inequality begins to hold. Thus, n < N0, that is, n ∈ {0, . . . , N0−1}.
Claim 7: {N0, . . . ,M} = IJ . By the previous claim, it suffices to show
{1, . . . , N0−1}∩IJ = ∅. Assume to the contrary that {1, . . . , N0−1}∩IJ �= ∅,
with minimal index n0 and maximal index n1. Applying Proposition 1 along
with the second and fifth claims gives,[

N − M + |IJ | − 1
]
a2

n0
≤ [

N − M + |IJ |
]
λJ − a2

n0
≤

∑
m∈IJ , m>n0

a2
m.

When applied to the sequence {a2
m}m∈IJ

, Lemma 2 then guarantees a similar
inequality holds at n1,[

N − M + |IJ | − |{1, . . . , n1} ∩ IJ |
]
a2

n1
≤

∑
m∈IJ , m>n1

a2
m.

By the previous claim and the definition of n1, this reduces to,

[
N − (N0 − 1)

]
a2

N0−1 ≤ [
N − M + |{N0, . . . ,M}|]a2

n1
≤

M∑
m=N0

a2
m.

However, the definition of the irregularity N0 gives that,

(N − n)a2
n >

M∑
m=n+1

a2
m,

for all n < N0, which is a contradiction when n = N0 − 1.
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To complete the proof we need only summarize our progress. By the first
and seventh claim,

{fm}M
m=1 = {fm}m∈IC

J
∪ {fm}m∈IJ

= {fm}N0−1
m=1 ∪ {fm}M

N0
,

where, by the fourth claim, {fm}N0−1
m=1 is an orthogonal basis for Span{Ej}J−1

j=1 ,
and, by the second claim, {fm}M

m=N0
is tight for EJ , which is the orthogonal

complement of Span{fm}M
m=N0

= Span{Ej}J−1
j=1 . Finally, in the case where

the number of nonzero elements of {am}M
m=1 is at least N , then at least

one element of {fm}M
m=N0

is nonzero. By Proposition 1, the corresponding
tightness constant is then positive, and so {fm}M

m=N0
is a tight frame. ��

We note that for the special case of am = 1 for all m, this result reduces to
the main result of Benedetto and Fickus [2]. As a consequence of Theorem 1,
we next demonstrate the sufficiency of the fundamental inequality, answering
the question that began our chapter.

Corollary 1. Let HN be an N -dimensional Hilbert space, and let {am}M
m=1 be

a nonzero nonnegative sequence. Then, there exists a tight frame {fm}M
m=1 for

HN with ‖fm‖ = am for all m if and only if {am}M
m=1 satisfies the fundamental

inequality.

Proof. The necessity of the fundamental inequality is given by Proposition 1.
For the converse, let {am}M

m=1 satisfy the fundamental inequality. By Lemma
3, the regularity N0−1 of {am}M

m=1 is zero. Next, note that the frame potential
is clearly continuous over the compact set S({am}M

m=1), and thus has a global
minimizer {fm} ∈ S({am}M

m=1). As global minimizers are necessarily local,
Theorem 1 gives that {fm}M

m=1 is of the form,

{fm}M
m=1 = {fm}0

m=1 ∪ {fm}M
m=1,

where {fm}M
m=1 is tight for the orthogonal complement of {fm}0

m=1 = ∅,
namely HN . By combining Proposition 1 with the fact that {am}M

m=1 is
nonzero, we conclude the tightness constant is positive. ��

As another corollary of Theorem 1, we improve upon Proposition 4 by
finding the actual minimum value of the frame potential when the fundamental
inequality is violated.

Corollary 2. Let HN be any N -dimensional Hilbert space, and let {am}M
m=1

be a nonnegative decreasing sequence of irregularity N0 − 1. Then, any lo-
cal minimizer of the frame potential FP : S({am}M

m=1) → R is also a global
minimizer, and the minimum value is,

N0−1∑
m=1

a4
m +

1
N − N0 + 1

[
M∑

m=N0

a2
m

]2

.
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Proof. First note that the frame potential is continuous over the compact
set S({am}M

m=1), and thus has at least one local minimizer. By Theorem 1,
any local minimizer of the frame potential consists of an orthogonal sequence
{fm}N0−1

m=1 for whose orthogonal complement the sequence {fm}M
m=N0

is tight.
We compute the frame potential of any such sequence. Since 〈fm, fm′〉 = 0
for any m′ �= m = 1, . . . , N0 − 1,

FP({fm}M
m=1) =

N0−1∑
m=1

|〈fm, fm〉|2 +
M∑

m=N0

M∑
m′=N0

|〈fm, fm′〉|2,

=
N0−1∑
m=1

a4
m + FP({fm}M

m=N0
).

Note that the definition of the irregularity N0 implies that the radii {am}N0
m=1

are strictly positive. Thus, the dimension of the span of {fm}N0−1
m=1 is N0 − 1,

and so the dimension of the orthogonal complement is (N − N0 + 1). As
{fm}M

m=N0
is tight for this space, the frame potential of {fm}M

m=N0
is given

by Proposition 4, yielding,

FP({fm}M
m=1) =

N0−1∑
m=1

a4
m +

1
N − N0 + 1

[
M∑

m=N0

a2
m

]2

. (8)

To summarize, there exists at least one local minimizer of the frame potential,
and all local minimizers attain the same value (8). Thus, every local minimizer
is also a global minimizer, and the minimum value is (8). ��

We now interpret these results in the context of the physical theory. Corol-
lary 2 is surprising from this point of view. In particular, consider the classical
problem of minimizing the potential energy,

M∑
m=1

∑
m′ �=m

1
‖fm − fm′‖ , (9)

of a system of M electrons on a conductive spherical shell which exhibit a
force upon one another in accordance with Coulomb’s Law. For all but the
smallest numbers of points, the function (9) has many local minimizers which
are not global. For example, a dodecahedral arrangement of twenty points is
known to be in equilibrium under Coulomb’s Law but not optimal.

The physical theory is especially helpful in gaining an intuitive under-
standing of the fundamental inequality. As before, consider a dynamic phys-
ical system of M points {fm}M

m=1 in which each point exerts a frame force
upon all the others, and in which the movement of the points is restricted to
concentric spheres about the origin of radii {am}M

m=1.
Though each point wants to make the others perpendicular to itself, this

is clearly impossible if the number of nonzero radii am is greater than the
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dimension N . At the same time, recall that a point a certain distance from
the origin gives off a greater push than other, closer points. Specifically, recall
that the power of the frame force field is taken to be a2

m. Thus, when a single
radius am′ is disproportionately large, it is conceivable that fm′ may be strong
enough to force all the other points into an orthogonal hyperplane.

Remarkably, Theorem 1 not only verifies that this phenomenon actually
occurs, it also provides a quantitative way to determine the degree to which it
happens. For example, consider a decreasing sequence {am}M

m=1 whose irreg-
ularity N0 − 1 is at least one. Let {fm} ∈ S({am}M

m=1) be a local minimizer
of the frame potential. Here, the definition of irregularity gives,

a2
1 >

1
N − 1

M∑
m=2

a2
m.

At the same time, Theorem 1 guarantees that f1 is necessarily orthogonal to
{fm}M

m=2. Thus, as long as f1 is stronger than the “dimensional average” of
the remaining points, then f1 is powerful enough to take an entire dimension
for itself, leaving the other points to fight over the remaining N−1 dimensions.

These points then repeat the above scenario on a smaller scale. In partic-
ular, if the irregularity of the original sequence is at least two, then,

a2
2 >

1
N − 2

M∑
m=3

a2
m.

Here, f2 takes its fill, and lets {fm}M
m=3 fight over the (N − 2)-dimensional

leftovers. This process keeps repeating until eventually, perhaps at N0 = N ,
we move beyond the point of irregularity. Here, none of the remaining points
{fm}M

m=N0
are strong enough to overcome the others. Forced to share the

orthogonal complement of {fm}N0
m=1, these points eventually settle into a tight

equilibrium. In the special case when the fundamental inequality is satisfied,
this balance is achieved from the very beginning, creating a tight frame for
the entire space.

As an example of these phenomena, consider the following parametrized
family of tight frames of three elements for R

2,{[
0√−2 cos 2t

]
,

[
sin t
cos t

]
,

[− sin t
cos t

]}
,

where t ∈ [π/2, 2π/3]. When t = 2π/3, this becomes the so-called Mercedes-
Benz UNTF, as pictured on the far left of Figure 1. As t gets smaller, the first
element moves away from the origin, while the others only change orientation.
In particular, the field generated by the first element grows stronger, forcing
the other two to become increasingly perpendicular in order to preserve the
equilibrium, as pictured in the second image from the left in Figure 1.
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However, this process does not continue forever. In particular at t = π/2,
the lengths of the frame elements are {√2, 1, 1}, and the fundamental inequal-
ity is satisfied as an equality. As pictured in the second image from the right
in Figure 1, the resulting arrangement is still tight, but just barely. Beyond
this parameter, an increase in the length of the first element may no longer
be compensated for by the other two points; it is not possible to be “more
orthogonal” than already being orthogonal. The resulting arrangements, as
seen on the far right of Figure 1, are still optimal for that set of given lengths,
but the balance is gone, and the tightness is lost.

Fig. 1. A paramterized family of local minimizers of the frame potential.

We conclude this chapter with a brief discussion of Viswanath and Anan-
tharam’s discovery of the fundamental inequality during their investigation of
the capacity region in synchronous Code-Division Multiple Access (CDMA)
systems. In a CDMA system, there are M users who share the available spec-
trum. The sharing is achieved by “scrambling” M -dimensional user vectors
into smaller, N -dimensional vectors. In terms of frame theory, this scrambling
corresponds to the application of a synthesis operator S = F ∗ corresponding
to M distinct N -dimensional signature vectors of length

√
N . Noise-corrupted

versions of these synthesized vectors arrive at a receiver, where the signature
vectors are used to help extract the original user vectors.

Viswanath and Anantharam showed that the design of the optimal signa-
ture matrix S depends upon the powers {pm}M

m=1 of the individual users. In
particular, they divided the users into two classes: those that are oversized
and those that are not, by applying the idea of Lemma 2 to {pm}M

m=1. While
the oversized users are assigned orthogonal channels for their personal use,
the remaining users have their signature vectors designed so as to be Welch
Bound Equality (WBE) sequences, namely, sequences which achieve the lower
bound of Proposition 4, which are necessarily tight frames.

When no user is oversized, that is, when the fundamental inequality is
satisfied, Viswanath and Anantharam show that the optimal signature se-
quences S must satisfy SDS∗ = ptotI, where D is a diagonal matrix whose
entries are the powers {pm}M

m=1, and where ptot =
∑M

m=1 pm. By letting
F = D1/2S∗/

√
N , this problem reduces to finding an M ×N matrix F whose

mth row is of norm
√

pm, and such that F ∗F = (ptot/N)I. That is, their
problem reduces to finding a tight frame for HN of lengths {√pm}M

m=1. While
Viswanath and Anantharam gave one solution to this problem using an ex-
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plicit construction, we have characterized all solutions to this problem using
a physical interpretation of frame theory.
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5. P.G. Casazza and J. Kovačević. Equal-norm tight frames with erasures. Ad-
vances in Computational Mathematics, 18(2–4):387–430, February 2003.
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