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Chapter 3

Overview of Image Analysis Tools and
Tasks for Microscopy

The advent of fluorescent proteins, together with the redevelopment of advanced high-resolution microscopes, has
enabled scientists to probe the intricate structure andtiwm of cells and subcellular structures with unpreceelént
accuracy and specificity. Imaging experiments have becbmetin source of data for biologists to test and validate
hypotheses related to basic cellular and molecular phenam@omputational methods for automated interpretation
and information extraction from biological images haveraegted the impact of imaging experiments and are quickly
becoming a valuable extension of the microscope. Suchestudive long been a major topic of biomedical research
(see, for example, [1]), and the recent advances in micppsdmage acquisition systems as well as sophisticated
image processing algorithms indicate that this is a tregalylito continue [2, 3].

We present a brief overview of computer-aided image amalgsils and tasks for microscopy. While the tasks
and applications we discuss are those currently needee ifiefld, the algorithms used to perform them are not often
state-of-the-art. Thus, our aim is to introduce the readéhé modern tools of signal processing and data mining
for microscopy, highlighting opportunities for innovagivesearch in the area. Some recent accomplishments can be
found in the special issue of the Signal Processing Magaminmaolecular and cellular bioimaging [4].

The overview of the system we discuss is given in Fig. 3.1. \8girbby reviewing a system’s level approach
that summarizes the physical aspects of acquisition desttiin Chapter 1 (the first two blocks in the figure, PSF
and A/D conversion). Important features and artifacts adiging acquisition systems such as sampling, blurring,
and noise are briefly discussed in connection to traditiandimodern techniques for automated artifact removal and
information extraction (the blocks of denoising, decomtion and restoration in the figure). The chapter is strgztur
around mathematical tools currently used as well as sonteatieanot, but have the potential for high impact in
automated biological image analysis. We conclude the ehndgyt covering various image processing and analysis
tasks needed in microscopy in the order they appear in ayst@l, starting with registration and mosaicing, followed
by segmentation, tracing and tracking, and finally data riiogleanalysis and simulation (the last three blocks in the
figure). The main aim of this chapter is to provide a conciseraiew of the state-of-the-art tools and algorithms for
computer-aided extraction of quantitative informaticonfrimages, in the hope that they become state-of-the-dst too
in microscopy as well.

3.1 Image Analysis Framework

We first set up the framework in which we will examine digitaldges arising from typical microscopes (widefield,
confocal, and others). As terms themselves can lead to simmfuwe note the following: The term “digital image”
typically refers to a continuous-domain image that has lieeth discretized (that is, sampled on a discrete grid), as
well as digitized (that is, the intensity has been quantfeedligital representation). Further, in the signal praieg
literature, “time” is often used to denote the image domaithough strictly speaking the domain of images can be
space, time, channels, etc. Therefore, to avoid confugiban speaking of the types of domains, we will refer to them
as continuous domain and discrete domain (we will, howewesp the standard nomenclature, such as discrete-time
Fourier transform, time-frequency, etc).
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Figure 3.1: A conceptual pipeline. The specimen is imagéuyusny of today’s microscopes, modeled by the input
imagef (v) passing through the blocks of PSF (properties of the miosocdescribed by convolution with{v)) and
A/D conversion (analog-to-digital conversion, effectsaimpling and digitization together with uncertainty inlneed
by various sources of noise), producing a digital image That digital image is then restored either via a denoising
followed by deconvolution, or via joint denoising/decohutin, producing a digital imagé,. Various options are
possible: the image could go through a registration/masgjarocessing producing,, segmentation/tracing/tracking
producings,, and finally a data analysis/modeling/simulations blockwiite outputy,,. At the input/output of each
block, one can join the pathway to either skip a block or sexadiback to previous block(s) in the system. (Images
courtesy of K. N. Dahl.)
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Without discretization, the result of imaging an objectg@men) would be a continuous-domain image. We
introduce images (both continuous-domain as well as disetemain) as vectors in Hilbert spaces and acquisi-
tion/imaging systems as transformations from one Hilbpstce into another. Most of these will be linear and can
transform one continuous-domain image into another (nantis-domain filtering), a continuous-domain image into
a discrete-domain one (analog-to-digital conversion (3/Dr, a discrete-domain image into a discrete-domain one
(discrete-domain filtering). We will discuss all three oétabove in what follows. A conceptual view of the whole
system is given in Fig. 3.1. An excellent reference text amfiations of image science is [5].

3.1.1 Continuous-Domain Image Processing

What we usually call anicroscope imagés an already acquired, and thus discrete-domain data bathwe refer

to from now on as a digital image. Since ultimately, what wallyewant to understand, analyze and interpret, are
the biological characteristics of the underlying specinvemmust first understand the continuous-domain image at its
root. While we should distinguish between the specimen b@dhtage of the specimen, from now on, we will assume
that the continuous-domain image of the specimen is thengrtuth.

Framework. We will denote such an image g%z, vy, 2, t, ¢), wherex, y are the two spatial dimensions in the focal
plane of the objective; is the third spatial dimension perpendicular to the focahplt is the time dimension in case
of time-lapse imaging and denotes multiple channels. (Not all the dimensions aregnitaa every case.) To make
matters even simpler, we introduce a veetet (z, y, z, t, ¢) which will allow us to add other dimensions to the vector
if needed. The number of dimensions is denoted Iffjve in this case). The imagg(v) appears as the input to the
system in Fig. 3.1.

Very often, the value of (v) is scalar, for examplef(v) could denote the intensity. It is also possible fgo)
to be vector valued, as in the case of color. Thus, at any poiapace and timef(v) could be given in one of
the standard, three-variable color models such as RGB, H8Y, and others. We will keep the notation the same
regardless of whethef(v) is scalar or vector valued; its meaning will be obvious frdra tontext. For example,
f(x,y) is typically called a 2D slicef (z,y, z) a z-stack,f (z, y, t) a 2D time series, whilg/(z, y, z, t) is a 3D time
series. In all these cases, the value can be either scalactarv For examplér(x, y), g(x, y),b(z,y)) = f(z,y) is
an RGB 2D slice.

While in reality the domain off is finite, that is, the domains aof, y, z, ¢, ¢ are all of finite support, the domain
of such images is often assumed to be infinite for ease of eapta. For example, while we might be imaging a
specimen of finite sizé00um x 100um in the focal plane, we might use the tools which assume tletitmain
is infinite. This is also done to avoid more cumbersome topksrating on a finite domain (such as the circular
convolution), although these tools have become standasebs
Deterministic Vs Stochastic Description.For now, we limit ourselves to the deterministic treatmdritrlages and
transformations between them. The issues of randomneagedtainty, such as those found when noise is present,
will be discussed later.

Linear-Shift Invariant Systems and Point Spread Functions Given an imagef (v), we may model the effect of
the acquisition system on it as the operatdf], resulting inz(v) = H[f(v)] (see Fig. 3.1), wheré/ is in general
nonlinear. In image processing, is termed Hilter, and in practice, we most often assume tHaits linear. In other
words, an imaging, or, acquisition system, is a linear fiamnsation from one Hilbert space into another.

Another important property of filters is shift invariance. s§stem/filter is calledhift invariantif, given the
input/output pair f (v), z(v)), the output of the system with the shifted ingift — vo) is a shifted output:(v — vy).
Combining the properties of linearity and shift invariargiees rise tdinear shift-invariant (LSl)systems; analysis
is the simplest when the system is LSI. For an LSI system, gegation of the filter on the image is described by
convolution denoted byx; given that each imagg(v) can be written as

flv) = /f(r)5(v —r)dr, (3.2)
whered(v) is the Dirac pulse, the filtered image is given by
z(v) = H {/f(r)d(v—r)dr] = /f(r)H[é(v—r)dr] = /f(r)h(v—r)dr = (h* f)(v). (3.2)
In the above, we have defined tingpulse responser point spread function (PSEf an LS| systenk(v), as the output
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of the system to the input which is a Dirac pulge). Note that the PSF is typically assumed to be positive, whike
is not necessarily true for the impulse response.
The Fourier View. Because of the cumbersome form of the convolution, wheryaimg images, one often resorts to
using theFourier transform (FT) as the convolution becomes multiplication in the Fourindin. For certain classes
of images, the FT finds the harmonic content of the imagenather words, it tries to represent the image as a sum
of sinusoids. Fig. 3.2 shows a few examples of simple and mamglex harmonic signals.

The FT of f(v) is given by (we follow the convention of using lower-casedes for the image data in the original
domain, and upper-case ones for the same in the Fourier diimai

F(w) = f(v)eij“T“dv, (3.3)
Rd
wherew, v are vectors in general. For a 2D signal, (3.3) reads
F(wth) — / f(Ul’vz)e*j(w1v1+w2v2)dvldv2_
R2

Using (3.3) on the convolution expression (3.2), we obthat the FT ofz(v) = (h * f)(v) is X (w) = H(w)F(w).

The FT is valid assuming our signals belong to the space afrsgiategrable function&?(R). If a signal is periodic,
that s, if it lives on a circle, then the appropriate FT idedFourier series (FS)

What This Means in Practice. In practice, the system we refer to in the impulse responsbheofystem or PSF,

is the microscope itself; thus, represents the optical properties of the microscope (wiplositive). Knowing these
properties allows us to determine the PSF and thus, if napgssverse the effects of the imaging system on the image
itself (remember, our goal is to have access to as “pure” siaeiof our specimen imagg&v) as possible). This is
depicted in Fig. 3.1, where the inputf$v), and the output is the filtered versiaiu).

3.1.2 A/D Conversion

While it is clear that if it were possible, the underlying iggawould have most of its parameters continuous in nature
(space and time at least), it is also intuitively clear thé ts not the output of a microscope. The reason for thisas th
there is a minimum distance at which the responses from tyarage points in the sample can be distinguished. This
minimum distance leads to the notionreolutionin microscopy, somewhat different from the same term agpiie
signal processing (where it denotes the amount of infowngiresent in a signal).

Sampling, or, discretization, can be performed withous laisnformation, if enough samples are taken to represent
the continuous-domain image faithfully. Intuitively, $hineans that the continuous-domain image cannot “vary” too
much as it would require too many samples to represent it Welt is, it must be somewhat “smooth”. This can be
mathematically made precise by saying that, if the contissdomain image:(v) is bandlimited, that is, if its FT is
zero above a certain frequen¢y (w)| = 0, for |w| > wy,, then it can be reconstructed from its samples taken at
twice the maximum frequenay, = 2w,,. This is known under various names, Shannon sampling theareong
others [6]. The resulting samples arg = z(un), wheren € Q, C Z is a set of index coordinates (for example,
pixels whend = 2 or voxels wheni = 3), andu € R collects the sampling steps in each dimension. The original
imagezx(v) can then be reconstructed fram via

d
z(v) = Z Zn Hsincui (vi — nip;), (3.4)

neQ, i=1

where thesinc function is given asinc,,, (v;) = sin(mv;/p;)/(Tvi / ;).

Continuous-domainimages are rarely truly bandlimited, thus, filtering is first performed to bandlimit the image
before sampling, resulting im(v) = (h * f)(v). This, in turn means that the filtered imag@) can be recovered
perfectly from its samples,,, though not the original onef,(v). In practice, however, several issues (for example,
noise, limited field of view, etc.) complicate the procedanel algorithms to recover a good estimate:af) depend
on many more assumptions to be detailed later in this chapter

One way to account for various sources of uncertainty istt@dtuce the probability of observing the valug at
coordinaten; this probability can be expressed7éun,,; ., ), whereP(-) is a probability model that accounts for the



uncertainty introduced due to noise in several steps dutisgyetization. As is the case with most photon detection-
based instruments, the primary source of uncertaintydiired is due to photon counting noise, whEres given by
a Poisson distribution:
Thne Tn
Plap;xn) = "7' (3.5
Sp!

Although photon detection instruments are inherentlytiahiby Poisson noise, photon counting effect is not the only
source of uncertainty in the image. Other artifacts suchasral noise and digitization noise (uncertainty intraetlic
by storing only a certain number of bits to describe eachlpixieie) also play a role and the overall probability model
is more likely to be a mixture of several sources of uncetyaifhis is modeled in Fig. 3.1 by the A/D block, where
the input is the image(v), and the output, instead of being just a simple sampledaisfithe inputz,,, is given as

gn = B(z(v), noise.

3.1.3 Discrete-Domain Image Processing

Framework. As we have seen, after A/D (discretization/digitizatidhg resulting image ig,,, withn = (n1, ..., nq).
For example, a gray-scale 2D time series with 2D slices of size&V; x N, will be denoted ag,,, n, n,, Wheren,
andn; are two spatial coordinates with domains=0,..., Ny —1,n, = 0,..., No —1 andng is the time coordinate
with domainns = 0,..., Ng — 1.

We stress an important point: Assume, for simplicity, wel déth a digital imagey,,, »,, that s, just a single 2D
slice. One can look at this image in two ways:

1. The domain ofv = (ny,ny) is infinite, that is botm € Z2. We then assume that the image is of finite energy,
written asg,, € ¢?(Z?), and is a set ofV; x N, nonzero values in the plane. In this case, the discrete-time
FT will be used (introduced in a moment) and the result of asotution gives support larger than the one with
which we started.

2. The domain ol = (n1,n2) is finite, thatis;m; = 0,...,N; — 1, andns = 0,..., N, — 1. The image is of
finite energy by construction. In other words, we assumetttetligital image exists only on a discrete grid of
size N1 x N,. That also means that the convolution used is the circularaation which preserves the domain,
and the appropriate Fourier transform is the discrete Eotnansform (also introduced in a moment).

While the above distinction might seem unimportant, it hasaggconsequences on the machinery we use.

Linear Shift-Invariant System and Digital Filters. Similarly to what was shown in continuous domain, most of
the time we deal with LS| systems—filters. For the discretmdin, these filters can model the effects after A/D
(discretization/digitization), or can be additional daifilters applied to achieve a certain effect. Their ogerabn a
discretized signaj,, can be described via convolution again as

(a*g)n = nganfm- (3.6)

Note that we use the same symbofor both continuous-domain as well as the discrete-domainvalution; the
meaning is clear from the context. In signal processing,nthe the domain of the digital image is finite (as it is in
practice), one often uses the so-caltédular convolution which preserves the domain. In other words, while the
convolution as defined in (3.6) produces a larger image a=thdt of filtering (how much larger depends on the filter),
the circular convolution produces the image of the same Sibese various convolutions may seem confusing and
cumbersome; in fact, mathematically, one is able to ded this problem in a unified way by defining the spaces of
signals and filters, and then deriving the appropriate farfreonvolution as well as the FT [7]. While that treatment
is beyond the scope of this introduction, the interestedees encouraged to look up [7] for more details.

The Fourier View. Similarly to what was done in continuous domain, we oftenthse~ourier machinery to analyze
digital images. As explained previously, one must distialgibbetween images for which we assume the domain is
infinite (yet with only a finite number of nonzero values),frahose whose domain is finite (which is the case in
practice). As we have seen, the convolution in these twaintss is different; so is the FT. Without going into
mathematical details, we just give those two versions offhieAgain, here we use the standard nomenclature for the
FT using time as the domain although the domain of imagesaisesjthis is done to avoid confusion when looking up
relevant literature. To make matters simple, we give belBwérsions:



1. Discrete-Time Fourier Transform (DTFT)

. . m/p o
F(ev) = ane_-”“"" > fn = Ll F(e?¥)e!* M dw (3.7)
2 —/p
nez
2. Discrete Fourier Transform (DFT)
N—-1 1 N-—-1
E, = ; FaWyF o fn= 5 2 FLWRF (3.8)

with Wy = e727/N . For example, for images, the 2D DFT would have the form

N171N271
Frims = > Fr W
ni,nz T 1,R2 7P N N2
NNz = o ] ’

3.2 Image Analysis Tools for Microscopy

The aim in this section is to give an overview of tools, botbsi which are currently used as well as those we
believe would be useful for solving imaging tasks in mickgse (see Section 3.3). As a plethora of such tools exist,
we give a brief overview of only a subset of those; well essileld methods for image analysis and synthesis using
both predetermined vectors (functions) as well as vectorsnaatically learned from data. Other important image
processing and data analysis tools applicable to micrés@mage analysis include pattern recognition and machine
learning methods for clustering and classification [8], all @s statistical signal processing methods for deteetiah
estimation [9, 10].

3.2.1 Signal and Image Representations

Signal representations (signal being a microscope imag@srcase) aim to represent a signal in a different domain
so that its salient characteristics might become obviotlsahdomain. For example, a simple image which is a sum
of two different frequencies in horizontal and verticalatitions might be difficult to interpret in the original/ineag
domain (see Fig. 3.2(e)), while its harmonic content is irdiately obvious in the Fourier domain (having two single
nonzero coefficients).

It is useful to consider signal/image representations inoaengeneral framework; then, many of the tools we
discuss are just specific instantiations of that framewsele (11, 12] for more details). Signals are usually assumed t
“live” in a Hilbert space. Hilbert spaces are those spac&ghith we are allowed to manipulate signals (add, multiply
by a constant), measure them, compute inner products, et¢caré/also allowed to represent our signals in terms
of bases(nonredundant representations)fames(redundant representations). These representationygmocalty
written as

g = Z Gips, (3.9)
icl
where is some index setp; are basis/frame elements belongingipand G, are called transform coefficients
(subband, Fourier or wavelet, in case of specific transforMathematically(=;; is the projection of the signal onto
the space spanned by andG; is the value of that projectiohThat projection is computed as

Gi = (%i,9), (3.10)

whereg; form what is usually called dual basis/frame.

The difference between bases and frames is that in the casanoés, there are more vectors than needed to
represent a particular signal, making it a redundant reptasion. For example, any vector in a plane can be uniquely
represented by two projections onto two noncolinear lisabgpaces). Projecting onto yet another line will not dgstr
the representation property; it will just make it redundant

1we are not being entirely rigorous here as for infinite-disienal spaces, bases have to be defined with some care; weayles those
subtleties in this treatment.



Matrix View. Itis possible to look at signal expansions using linear afpgs/matrices, offering a more compact, and
very often, a more easily understood way of looking at regm&tions. Equation (3.10) can be rewritten as

whereg is now a vector containing the input signél, is the vector of transform coefficients addis the matrix
containing the dual basis/frame vectors as its columnsn;T{39) can be written as:

g = ®G = dP*g, (3.12)

from where it is obvious that for this to be a valid represtatg ®®* must be an identity. For baseb,and® are
square an@ = (®*)~!, while for frames, the framé and the dual framé are both rectangular.

Spaces We Consider.For ease of notation, we
will keep our discussion in 1D; extensions to more
than one dimension are most often obtained by
separate application of 1D concepts to each di-
mension in turn (Kronecker product).

Standard and most intuitive spaces with which
we deal are real/complex Euclidean spaf&%
andC". In these spaces, signals are considered to
be vectors of finite lengthv and the inner product
is the standard component-wise product. Then the
index setl above is just the sdt= {1,..., N}.

In discrete-time signal processing we deal al-
most exclusively with sequenceshaving finite
square sum or finite energy, where= (..., g_1,

Jo, g1, - - ) IS, in general, complex-valued. Such a
Figure 3.2: Example images. (a) Simple 1D sinusoidal imagg€guence is a vector in the Hilbert spadé(Z).
f(z,y) = sin(r/50)z. (b) 2D sinusoidal image of low fre- Orthonormal Bases.In case of nonredundantrep-
quency: f(z,y) = sin(r/50)zsin(7/50)y. (c) 2D sinusoidal resentations, whed = &, and thusb®* = I, we
image of high frequency;f(z,y) = sin(r/10)zsin(r/10)y. deal withorthonormal bases (ONBs)Both pro-

(d) 2D sinusoidal image of different frequencies in the tvio djection and reconstruction are performed using the
rections: f(z,y) = sin(r/50)z sin(7/10)y. (e) 2D image ob- Same set of basis vectobs Many properties hold

@

(d)

tained as a sum of two frequencies in two directiofig, y) = for orthonormal bases:

sin(7/50) sin(7/10)y + sin(7/14)z sin(7/20)y. (f) General Orthonormality of Basis VectorsSinced®* =

image. D, (p;,p;) = 6;—j, that is, basis vectors are or-
thonormal.

Projections. A characteristic of orthonormal bases allowing us to appnaxe signals is that an orthogonal pro-
jection onto a subspace spanned by a subset of basis vefolses, whereJ is the index set of that subset is
Pg =3 ,c; (i, 9)¢i, thatis, it is a sum of projections onto individual one-dive®nal subspaces spanned by each
;. Beware that this is not true whep; },c ; do not form an orthonormal system.

Parseval’'s EqualityThe Parseval’s equalitys simply thenorm-preservingroperty of ONBs. In other words,

lgl* = > Heag)? = D 1Gi (3.13)

i€l i€l

Least-Squares Approximatiorsuppose that we want to approximate a vector from a Hilbexteyy a vector
lying in the subspacé& = {y;};c;. The orthogonal projection af onto S is given earlier byPg. The difference
vectord = g — g satisfiesd L S. This approximation is best in the least-squares senseisthain ||g — y|| for
y in S is attained fory = Y. G;p; with G; = (g4, g) being the expansion coefficients. In other words, the best
approximation is ouff = Pg. An immediate consequence of this result is the succespiaimation property of
orthogonal expansions. Call*) the best approximation af on the subspace spanned fay;, ¢, ..., ¢r}. Then
the approximatiorg*+1) is given byg*+1) = () + (011, g)wr+1, that is, the previous approximation plus the
projection along the added vectpg, ;.



Note that the successive approximation property does ridtfbo nonorthogonal bases. When calculating the
approximatiorj*t1) one cannot simply add one term to the previous approximghiat has to recalculate the whole
approximation.

Tight Frames. In case of redundant representations, wier- ®, and thus
®d* = I, we deal withParseval tight frames (PTFgwhen®®* = cI, the
frame is tight). Both projection and reconstruction arefganed using the
same set of frame vectods (albeit possibly scaled). Note, however, that while
for bases®*® = I as well, this is not the case for frames. Orthonormality of
frame vectors does not hold anymore as the vectors are earljnndependent,
but a generalized sort of Parseval's equality still holdg|¢ = >, , c|Gi|?,
with ¢ = 1 for PTFs). More details on frames can be foundin [11, 12].

How to Choose the Right Representation.From what we have described
above, we have the option of choosing the nonredundantidzthi representa-
tion, and then, orthonormal/general for bases and tigh&igd for frames. Even Gabor
once one of these four options is chosen, we are still left whié task of choos-
ing the specific basis/frame elements. Fortunately, ck@beund, and we now
present some of those.

Time-Frequency Considerations.One of the often used criteria when choos-
ing basis functions is how well they can represent certasallevents in the
original domain (space for images) as well as frequency.ekample, a pure
sinusoid is considered a perfectly local event in frequewtyle a Dirac pulse

is a perfectly local event in time (original domain). To sesvia specific rep-
resentation localizes in time (original domain) or freqeierone typically uses

a conceptual tool calletime-frequency planésee Fig. 3.3 for examples). Con-
sider any of the three bottom diagrams. Each has time (@&iigiomain) on
the horizont.al gxis_and frequency on the verti(_:al. Thg figwesent the time- Figure 3.3: Energy distribution of
frequency distribution of t.he energy of th(_a basis functiohthe cpr.respondmg a simple low-frequency signal with
transfon_”n. Fo_r example, |n.the DFT, thg tiles are all reclm1gplltt!ng the fre— a Dirac pulse using different bases:
guency into pieces, but going over all time. This is becahsetsis functions DET, Gabor and DWT.

for the DFT cover all time but only pieces of frequency. Thusg can see that

the DFT will work well to isolate events local in frequencythvill not isolate those local in time.

DFT

3.2.2 Fourier Analysis

When one is interested in the harmonic content of a signalri€oanalysis is the tool of choice. The reason for this
is that the representation functions are sinusoids (comg{ponentials).

Fourier Bases. Let us see how the Fourier view from the previous sectiontiits the representation framework we
just introduced. We do this by looking at the DFT as a signpk@sion (this is a short version of the same example
in [11]), which, while ubiquitous, is rarely looked upon asignal expansion or written in matrix form. The easiest
way to do that is to write the reconstruction expression)(iB.8natrix notation as

1 1 GO
11t wy e Wzl\yfl Gy
g = v . . . . = DFTxNG. (3.14)
L Wyt o Wy Gn_1
N———
®=DFTy G

The DFT matrix defined as above is not normalized, thgtigV)(DF Ty )(DFT% ) = I. If we normalized the above
matrix by1/+/N, the DFT would exactly implement an orthonormal basis. Témothposition formula (3.8) in matrix
notation becomes:

G = DFTY g. (3.15)

The advantage of looking at the DFT in matrix form is that iperation now becomes “visual” and projections onto
the corresponding subspaces are easily seen. For exampl¥, £ 2, the DFT would project onto a space with



“smooth” signals (averaging) as well as the space of “desaghals (differencing). One can also see that each of the
coefficients will extract a specific range of “frequenciesirh the signal, that is, it will measure how “wiggly” the
signal is. An important point about the Fourier analysisat twhile it extract perfectly the frequency content of the
signal, the local events in the original domain (for examplepike in 1D or edge in 2D) are diluted over the whole
frequency domain as each basis function will capture thosa levents. This is one of the reasons other techniques,
such as wavelets, are used, where a trade-off between fregiaad original domain localization can be achieved.
Fourier Frames. Similarly to Fourier bases, Fourier frames exist. They arevkn under the namlearmonic tight
frames (HTFsand are obtained by projecting a Fourier basis from a langaces onto a smaller one. For example,
given a DFT of size\l x M, we can obtain an HTF of siz& x M, with N < M, by deleting columns of the DFT.
These representations possess similar properties to thiedXEept that they are redundant. As HTFs are possible
for any combination of\/, V, any redundancy can be achieved and the choice is governie lapplication. More
details on these frames can be found in [12].

3.2.3 Gabor Analysis

While the Fourier-type tools are best used on signals whielr@asonably smooth as that global behavior will be
captured in the frequency domain, they are not appropraatadnstationary signals. A classic example is that of a
signal consisting of a sinusoid and a Dirac pulse. The sidus@aptured by the Fourier tools while the Dirac pulse is
spread over all frequencies and its location is lost (seeFR&) DFT). One way to deal with the problem is to window
the Fourier basis functions so that just those with the sttpper the Dirac pulse will contain information about it;
all the other basis functions will not overlap and will thumtain no information about it. This leads to tGabor
transform (GT)also calledshort-time Fourier transform (STF),)and is pictorially shown in Fig. 3.3, Gabor. Thus,
upon observing that the coefficients corresponding to tiséslianctions with support coinciding with the support of
the Dirac pulse contain more energy, one can conclude tedotation of the Dirac pulse is somewhere within the
range of that window (the window is shifted along the oridjignés to cover the entire original domain). This method
still suffers from the problem that the “zoom” factor of theadysis, or how finely we can pinpoint the Dirac pulse,
depends on the choice of the window. One can write the sarmaiegs as (3.14)-(3.15):

g = GTG, GT = WDFTy, (3.16)
G = GT'g, (3.17)

where the GT is obtained by windowing the DFT B¥. The windowlV is a diagonal matrix with window elements
along the diagonal. Since the window multiplies IhET y on the left, it multiplies each DFT basis function in turn.
The windowWV is typically chosen to be a symmetric lowpass filter.

3.2.4 Multiresolution Analysis

The wavelet transform (WTand thediscrete wavelet transform (DWHEyose in response to the problems the GT
could not solve. The answer came as a tool with short basigifins at high frequencies together with long basis
functions at low frequencies. As such, the WT is just the toolackle the above example (see Fig. 3.3, DWT).
Unlike the DFT and GT, which both have fixed basis functiohe, WT (or DWT) allows for different families with
the same time-frequency tiling as in the figure. These arailndd by choosing different template wavelets and then
forming the whole basis from the template by shifts and iditet. While the DWT is an appropriate tool for the above
problem, it does not do so well if the frequency of the sind$®high, as then the position of the Dirac pulse cannot be
distinguished in the high frequenciddultiresolution (MR)techniques encompass a whole set of tools allowing for a
rather arbitrary division of the time-frequency plane tachahe signal at hand, including the one we just mentioned.
As such, the DFT as well as the GT become subcases of it, wéttifgptilings.

Implementing MR Transforms Using Filter Banks. These various MR transforms are implemented using filter
banks (FBs), signal processing devices which split theureagy spectrum into parts. The basic frequency splitting is
achieved through filtering and sampling, while reconstaucis done in the reverse direction, upsampling and filtgrin
again. The analysis filter bank maps the signal into transfavefficients (also called subbands) as in (3.10) or (3.11),
while the synthesis filter bank reconstructs the origingihal from those, as in (3.9) or (3.12).

Discrete Wavelet Transform. The DWT achieves the tiling as in Fig. 3.3, DWT, by iteratimgtchannel FBs on the
lowpass (smoothing, coarse) channel. The number of iteratiletermines the number of leaves of the DWT (or any



MR transform) as well as the level of coarseness at the lask (the more levels, the coarser). The actual filters used
determine the basis functions are many: Well-known famiéiee Haar, Daubechies, Coiflets, and others [6, 13, 14].
Depending on the basis functions used, we can have ONBs ergdrases (Haar and Daubechies are ONBs, Coiflets
are general bases with symmetries). For example, the BHagr DWT is given by the following matrix:

0 0 0 0 0 0 1 -1
0 0 0 0 1 -1 0 0
6o o 1 -1 0 O 0 O
DWTimear = C- | ¢ ¢ o o 0 9 9 9 (3.18)
1 1 -1 -1 0 0 0 0
1 1 1 1 -1 -1 -1 -1
1 1 1 1 1 1 1 1

whereC is a diagonal matrix of constants, = diag(1/v/2,1/v/2,1/v2,1/v/2,1/2,1/2,1/4,1/4), needed to make
the DWT an ONB. Many others are possible leading to diffevahies in the above matrix (assuming three levels).
Wavelet Packets and Variations.As one could have split the coarse channel again, one coudane it with the
highpass as well. Thus, one can obtain arbitrary trees, essfrom a full tree with/ levels corresponding to 2/
GT, to a DWT with.J levels, to an arbitrary tree witli levels (calledvavelet packet (WP)

One can also split the frequency range ink@hannels immediately, getting the DFT as a subcase. Byisglthe
N-channelfilter bank further in any of the above ways, oneiobtan even more arbitrary tiling of the time-frequency
plane.

Recommendations.The first goal in choosing one of the above transforms ismggttie one to represent the signal
the best. In other words, the first concern should be matcdhimgransform to the time-frequency distribution of the
underlying signal (image). After that has been done suéagssthe choice of particular filters and such may be
attempted. However, choosing the appropriate transformtigasy; the idea behind WP is to grow a full tree and then
prune back given a cost function, which might not be readibilable. For example, in compression, people use the
number of bits; thus, if pruning the tree at a particular breleaves us with fewer bits, we do it; otherwise we do not.
Most often, we do not have an appropriate cost function, astivacase in [15], where the authors solved the problem
by assigning weights to all the nodes in the tree. Then, teefoaction is implemented implicitly; low weights mean
pruning of the branch, while high weight means the branclep .k

3.2.5 Unsupervised, Data-Driven Representation and Anasys Methods

Except for the WP, the techniques described above use atpradeed set of vectors (functions) to represent signals
and images. Alternatively, representation schemes cawnilidbased on any available training data using automated
learning approaches, an area of intense research. We nefly meview examples of data-driven representation and
analysis methods, beginning with tpencipal component analysis (PCA9chnique. Many more works for dimen-
sionality reduction and data analysis exist (see, for exenfips, 17]), but for brevity these are not reviewed here.
PCA. PCA is a method for reducing the dimensionality of a data gétiding a projection of the original set of vectors
{g1,-..,9Mm}, onto a lower-dimensional space, optimal in a mean-sqb&83 §ense. Assume that the dimensionality
of the original space i%/, thatis, eacly; € RY, and that we want to reduce the dimensionalitj.tevith L < N. PCA
accomplishes this task by finding &rdimensional ONBP = {1, ..., ¢}, such that the error of the approximation
between the original vectors and their approximations isimmzed in the MS sense. I, the projections of the
original vectors are expressed as:

L
g; = m—i—Zak’icpk, 1=1,..., M, (3.19)
k=1
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wherem = (1/M) Y., g; is the sample mean. We now fipd, k = 1,.. ., L, such that

M L
E@) = _lIm+) orier—gill? (3.20)
=1 k=1

gi
is minimized. It is fairly simple to prove [18], that the st@ihn is found as thd. eigenvectorsp,, &k = 1,..., L,
corresponding to thé largest eigenvalues of the so-called scatter matrix (saplariance):

S =17 (i —m)(gi —m)". (3.21)

The coefficientsy, ; are the values of the projections, that is, they are given by

ki = (i, Pk)- (3.22)
The eigenvectorg;, can provide meaningful geometric insight into the disttitsa from which the samplesg;,i =
1,..., M, were drawn. The first eigenvector is the one for which the squared energy of the projection isimam.

The second eigenvectps is the one whose energy is also maximum, but it is constrdimbd orthogonal to the first,
and so on. Although PCA was originally developed as a si@gisiata analysis technique, modern uses of it include
finding optimal linear subspaces for representing image. dat

It is worth noting that while the terms Karhunen-Loéve (Kia)d PCA are often used interchangeably in the
literature, a distinction can be made in that PCA refers éodiagonalization of the sample covariance matrix, while
KL refers to the diagonalization of an ensemble covarianatrim
ICA. The PCA framework above is simple, efficient to compute, atdresively used in signal and image process-
ing as well as general data analysis applications. While Fi@ds orthogonal directions which best represent the
data in the MS senséndependent component analysis (IJA9, 20] finds directions which are most independent
from each other. When the underlying distribution for théada a multivariate Gaussian one, the coefficients
are uncorrelated, and therefore independent. If the uyidgrtlata does not originate from a multivariate Gaussian
distribution, correlation does not imply statistical ip@gadence and approximately independent coefficients may be
obtained using ICA. Thus, the goal in ICA is to find vectarg k = 1,..., L which produce coefficients;, that
are not only uncorrelated but statistically independenvel. The process of computing independent components
involves gradient-based nonlinear searches, normaliiized with results obtained from PCA. Implementation of
this technique also depends on a proper definition of indégeee. The Kullback-Leibler distance [21] (not a true
distance per se, but nonnegative nonetheless) is ofterassetheasure of statistical independence for ICA. However,
because of issues related to computational complexitgtificmers are restricted to using surrogates such as $isrto
coefficients [19]. ICA is most used for deciphering the comgrats, which, through addition, form a specific signal
of interest, that is, they physically come from multiple sms (see [22] as well as Hyvarinen’s web site for examples
and demos [23]).
KPCA. Other extensions of the PCA framework incluganel PCA (KPCAandgeneralized PCA (GPCAYhe idea
in KPCA is to search for structure in the data by embeddingtid a higher-dimensional (possibly infinite) space
through a functiony(g;) taking values in the feature spate The inner product ifl" is defined as(g;, g;). =
(v(9:),v(g5)), and defines a kerndl(g;, g;) which can also be decomposed into a set of eigenvalues agoveictors
to be used to estimate a low-dimensional representatioheobtiginal data (see [24] for more details about the
computations involved). While KPCA can be used to extratergsting information from a set of data points, there is
no general theory for choosing the kernel functidn$olynomials and Gaussian kernels are often used, althbegh
optimality for different applications is difficult to asdem. Many of the modern methods for nonlinear dimensidyali
reduction can be interpreted as KPCA but with different kématrices [25].
GPCA. GPCA is a fairly recent contribution [26] with the same gogtlae PCA, except that GPCA does not restrict
the subspaces to be orthonormal with respect to each othdteach can be of a different dimension. In addition,
GPCA identifies the membership of each data point. It starisstimating a collection of polynomials from the data.
Although the polynomials themselves are nonlinear, theéfficients can be estimated linearly from the data. Next,
one point per subspace is segmented with clustering tegbsj@nd a basis for the subspace passing through that point
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is obtained by evaluating appropriate derivatives.

ISOMAP. With the exception of KPCA, the approaches above providéstfmy finding linear subspaces, or a col-
lection of linear subspaces, to analyze and represent iage Given sufficient data, a larger class of nonlinear
manifolds can be recovered using 8 MAPalgorithm [27], which can be described in two relatively plmsteps.
First, the "geodesic” distance between data points is @stidh by constructing a neighborhood graph and then finding
the shortest path through the graph that connects the twasp(This distance is not the usual Euclidean distance,
but rather a distance that is adapted to the underlying geprokthe data.) The classical multidimensional scaling
method [28] is used to compute low-dimensional coordinfitesach point. The decay of the variance of the residual
of the approximations as a function of the number of apprexing dimensions can then be used to estimate the true
dimensionality (free parameters) of the data.

LLE. Another class of nonlinear manifold learning algorithmsiwes searching for low-dimensional representations
that best preserve local structures of the data. liflear local embedding (LLER9] algorithm is an example of such
an approach. Like ISOMAP, the first step in the LLE algorittaria compute thé® nearest neighbors of each data
pointg;. The second step is to assign weighis; to each nearest neighbor of each point such that

2
(3.23)

M
El@) = >

i=1

P
9i — Z k. iJk
k=1

is minimized subject to the constraints that; = 0 if g, is not amongst thé” nearest neighbors @f;, and that

kazl ay; = 1for all i. In the final step, LLE computes data poigtse RZ, with L < N, that best preserve the
local properties of the data as represented by the sets ghtggsomputed in the previous step, by minimizing

M P
E@) = D || — > akidn
k=1

=1
and computing the bottod/ + 1 eigenvectors of the matrid — A)T (I — A), whereA; = ay ;.

2

, (3.24)

3.2.6 Statistical Estimation

The random variations introduced by system noise, artifaxd well as uncertainty originating from the biological
phenomena under observation, require stochastic imagessing methods. In fact, several tasks and applications
for microscopy we are about to review can be understood &st&tal estimation problems [9], where the goal is to
seek the solution to the problem at hand optimal in some fibbtic sense, requiring one to adopt some optimality
criterion.

MSE Estimators. The mean-squared error (MSE) between the estithafesome quantity), denoted as MS@) =

E {(é — 9)2}, where E is the expectation operator, is a desirable estigiate it minimizes the error of the estimate

(on average). The Wiener filtering method given in (3.29niexample of such an estimate. However, MSE estimators
often depend on unknown parameters, leading to other tdesieatimators, such as minimum-variance unbiased ones.
MAP Estimators. An interesting alternative is provided by the Bayesian amork. Letg represent the observed
image data and lei represent some pattern or hidden feature(s). In the Bayésisnework, an estimate dfis
computed by maximizing the a posteriori probability (MAP)

p(blg) = %p@. (3.25)

Sincep(g) is constant with respect tg maximizing (3.25) is equivalent to maximizing

p(g[b)p(b), (3.26)

wherep(g|b) is the so-called probabilistic data model, ar{d) is interpreted as a prior bias @énTaking logarithms,
the problem in (3.26) is equivalent to minimizing the folliog cost function

U(b) = logp(g|b) + logp(b), (3.27)
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whose solution is the estimaeve want to find:

b = arg max U (b). (3.28)

The MAP problem is often recast as a minimization instead atimization, by taking the negative of the quantities
above. When no prior knowledge éiis available (for exampley(b) is a uniform distribution), (3.28) is equivalent to
a Maximum Likelihood (ML) estimate df.

Closed-form solutions for computing MAP estimates arelyaaeailable due to the nonlinearity present in nearly
all but the most trivial problems. Instead, one is often regflito solve (3.27) numerically. Whénandg are inter-
preted to belong to a Hilbert space of continuous functitims Bayesian framework reduces to solving a variational
calculus problem. The forms @f ¢|b) andp(b) specify the required function spaces to whichndb must belong
(for example, square integrable, Sobolev, bounded varniagtc.). A common approach is to derive maximization
(minimization) approaches based on Euler-Lagrange empgfiom the maximization problem. Many algorithms in
image restoration, segmentation, and registration dészliater in the chapter can be viewed within this framework.
Gradient-Based Estimators.Whenb is a finite-dimensional vector, standard gradient-basédhagation approaches
can be used, the most common of which is the steepest dese#imban The cost functio® (b) is given by (3.27),
whereb is now a finite-dimensional vector. The steepest descertadetomputes by solvingV, ¥ (b) = 0 through
the following three-step iterative approach: The estindatés iteratively updated by (1) computing the gradient of
the objective functiorVV, ¥ (b) |,_;, , (2) finding7 such thatll (b, — 7V, ¥ (b) lp—3,,) is minimized, and (3) updating
bry1 = b — TV, U (D) |,_;, . Often, step (2) is bypassed ands fixed to a small value.

3.3 Imaging Tasks in Microscopy

The goal in an imaging-based biological experiment is toasttstructural, spatial, and functional quantitativeaf
mation about some biological phenomenon accurately apos§ible, automatically. We now briefly review some of
the canonical problems in microscopic image analysis foaekng such information, such as restoration, registnat
segmentation and others. A general view of the system, whislsection follows, is given in Fig. 3.1.

3.3.1 Intelligent Acquisition

Although the general process of acquisition was describ&kction 3.1, a new set of techniques aiming at providing
intelligence during the acquisition process has emerged.

The first motivation for these approaches is to enhanceutsnl In laser scanning confocal microscopy, images
are acquired line-by-line, pixel-by-pixel [30]. We can asfe significant time savings by only imaging those regions
where we expect to find an object. These time savings coufdhibaised to increase the frame rate, or to acquire the
selected regions at a higher spatial resolution.

The second motivation is to reduce photobleaching and pindtity. In fluorescence microscopy, images are
acquired by shining excitation light on the specimen tovaté fluorescence. However, this can damage the fluorescent
signal (photobleaching) [31], as well as the cell itselfdf@toxicity) [32], thus limiting the duration over which we
can view a cellular process. By reducing the total area aedun each frame, we reduce the overall exposure to
excitation light, hence reducing both photobleaching amatqtoxicity.

Intelligent acquisition of microscope images has not beedisd until recently. In [33], the authors designed an
algorithm to reduce the number of pixels sampled in a 2D orrfBRge when using a laser scanning confocal micro-
scope. They observed that a large portion of scanning timpéast on low fluorescence regions, which presumably
contain little useful information. The approach is thenéginm by scanning the field at a low resolution. Each scanned
value is examined, and if found to be significant, the arearzatadt is scanned at a higher resolution. The process is
repeated iteratively.

In [34] instead, the authors provide intelligence whilertéag the data model. They study a large number of tiny
moving objects over a sustained period of time. To assi$t @fficient acquisition, they develop and continually refine
a model to describe the objects’ motion. In [35], the autlppeyvide algorithms for modeling objects’ motions for the
purposes of tracking, and although not used directly, teik helped inspire the approach in [34].
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3.3.2 Deconvolution, Denoising and Restoration

Microscope images typically contain artifacts that, if ectwated, may prevent reliable information extraction and
interpretation of the image data. Two main sources of a@tfaan be identified: blurring caused by the P5Eee
(3.2)), and noise arising from the electronics of A/D cosi@n (see Fig. 3.1). The combined tasks of deconvolution
(deblurring) and denoising are generally referred to agggrenhancement or restoration, as shown in Fig. 3.1. In
the figure, two parallel paths are possible: (1) Joint déngiand deconvolution known as restoration, which as input
has the output of the microscopg, and as the output, the estimafe of the input imagef (v). Note that while the
output of restoration is another digital image the problem itself is posed in terms of its continuous-dionaarsion,
that is, finding the best estimafe;‘v). Our discussion in this section focuses mostly on this p@hSeparate tasks
of denoising, having as input has the output of the microsggp and as the output, the estimatg, followed by
deconvolution.

The problem of deconvolution in the presence of noise daek imany decades and has been applied to a variety
of imaging problems related to astronomy, medicine, andynoéimers, in addition to microscopy (for recent reviews,
see [36—-38]). Our purpose here is not to provide an extenswew of existing methodology, but rather an overview of
important concepts often used, their relationship to Feawnalysis, as well as more modern ideas based on wavelets
and sparse representations.

The plethora of restoration methods available can be fledsiccording to different criteria. Some of the termi-
nology associated with different methods available inellimkear versus nonlinear, least squares, maximum liketiho
expectation maximization, blind versus model-based, dners. Here we describe two different optimization créeri
based on which several different methods have been desigagithning with the minimum MSE estimation. All of
the methods being described assume an LSI degradation fiR®I€), and can be applied in two or three dimensions.
MSE Estimation. The approach used here was described in Section 3.2.¢(Letepresent an image one wishes to
reconstruct, ideally, by undoing the effects of the PSF biige filtering operatiohj, on some measured dajév),

f(v) = (hin * g)(v). The measured datgv), the original imagef (v), as well as its estimatg(v), can all be viewed
as random variables due to the uncertainty introduced lgersmiurces. Thus, a reasonable criterion to minimize is the
MSE between the linear estimafév) and the real imagg(v), that is, (f — f)2}. Under assumptions explained
below, it is possible to derive the well-known Wiener filt&9] solution to the problem, expressed in the Fourier
domain as: H(w)

~ w

P9 = HOP+s.@/5,0)

Hin(w)

G(w), (3.29)

whereH (w) is the Fourier transform of the PSF, (w) is the power spectral density of the noise source, $ind)

is the power spectral density of the image being measuregl d€hivation above assumes that both the image and the
noise source are well modeled by ergodic random variabtewedl as that the noise is additive and white (uncorre-
lated). These assumptions are often violated in microstoaging experiments. Moreover, the quantiti&$w) and

Sy (w) are seldom known and practitioners often replace the fti@)/S,(w) by some constant

MAP Estimation. The approach used here was also described in Section 3.2/, We denote the ensemble of
possible images by, while the output estimate will be callefd That is, we seek to maximize the posterior probability
p(blg) = (p(g]d)/p(g))p(b), wherep(g) does not depend dn andp(b) represents the prior knowledge one may have
about the imagé. The cost function is the following functional (a version(8f27)):

U(b) = ¢(g,b) +cP(b), (3.30)

where the logarithms have been subsumed into the above,t&thisis a regularization function derived based on
a priori knowledge, and is an arbitrary constant. Its role is to prevent the solutmihe algorithm from contain-
ing certain undesired characteristics such as excessoitations. Restoration algorithms are normally set up as
minimization problems by defining the terms above as thetiegaf the log of the probabilities.

Modeling the Minimization FunctionWhen the Poisson distribution is used to mogigl|b), the minimization
term¢ is defined as:

¢p(9,b) = / [(h# b)(v) = g(v) log(h x b)(v))] dv, (3:31)
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while the equivalent for a Gaussian distribution modelf@y|b) is:

b6(g.b) = / (b)) — g2 dv = [[h#b— g2, (3.32)

Several algorithms can be derived to optimize these funatfo A classical example is the Richardson-Lucy (RL)
algorithm: an iterative, unregularized algorithm that imiizes ¢ (g, b), one out of a class of methods known to
produce result images dominated by noise as the number of iterations increase ad@itigion of different priors on

b, together with other constraints such as positivenesshegmovercome these difficulties.

Modeling the Prior. Many different priors orb, P(b), have been used in the literature. One of the most often
used is theL,-type regularization:Pg(b) = |\Db||pp, where D is a linear operator (often of a differential type)
andp = 1 or 2. Whenp = 2 this regularizer tends to minimize the energy of either thage itself O = 1) or
properties of the image (for example, derivatives= V). This leads to a Tikhonov-type regularizer [40], which
tends to produce blurred estimafe$ountering the effect of theé(g, b) minimization term. In contrasp = 1 leads
to so-called "sparsity” maximizing solutions which tendpmeserve edge structures better. Examples include total
variation regularization termd) = V) [41] and wavelet-based sparse representations (\Wheefers to coefficients
of the WT of the image) [42].

Other regularization methods include entropy-type prigngre one uses a model(v) which represents the prior
knowledge about the image. The entropy prior is defined as

b(v)
P:(b) = / [b(v) m(v) — b(v) log ) dv. (3.33)
This entropy functional is an optimal distance measure ésitjve functions [43]. However, since a precise model for
the image to be measured is often not available, researghmcslly use a constant function leading to a preference
for smooth functions [37].

Other regularization approaches exist, such as the Goodghness penalty [44] which often yields estimates of
good quality in comparison with other methods [37]. In aiddit for situations when a precise model for the PSF is
unknown, there exist so called "blind” restoration algomiis that seek to estimate both the image as well as the PSF.
One notable example is based on the RL iterative algorithsariteed above [45].

Finally, in actual implementation, the overall functionidb) (consisting of any combination of the terms,
¢g, Pe, Pg) is discretized at the measured image grid of pixels and tinetional is minimized using standard
approaches such as the steepest-gradient descent (sea Se26), conjugate gradient descent, Newton-type ak wel
as multiplicative methods [36, 37,41]. Computational ctemjby is often a concern. Linear methods, such as the
Wiener filter explained earlier, can be implemented in regmkt More recent, nonlinear methods, such as the one
described in [42], are more computationally demandindoalgh recent advances [46] may help overcome these
difficulties.

3.3.3 Registration and Mosaicing

Image registration refers to the task of finding the spaghdtionship and alignment between two or more images.
Registration methods are useful for combining the infofamatontained in multiple images of the same object, ac-
quired by different instruments, and at perhaps differesblutions. Other applications include mosaicing as well a
tracking objects in image time series. Here we provide amia of image registration methods applicable to micro-
scope images beginning with semi-automatic landmarkebasggstration, followed by fully automated intensity-bds
methods.
Registration. Let 2, ; € RY, i =1,---,Ny, andQy € R?, k = 1,---, Ny, be the pixel coordinates (in units
of meters) of two imageg, (2 ;) and f>(Q,.1), respectively. The goal in a registration (alignment) feabis to
find a spatial transformatiofi that relates the coordinates of the source image to the twded of the target image:
Ql,k = (B(Qs,). The value of the imagél at positionf)l,;C does not exist in general, since the im@@eis only
defined at coordinate®; ; € R, i = 1,--- , N;. However, a reasonable guess may be computed by using sfanda
continuous, representations of the imaf‘igeﬂl) =3 Fucpi(ﬂl), as described in Section 3.1, to compﬁi(aﬁm).
With the knowledge of a set a¥ corresponding pointg; » = p2x, k= 1,--- , N, one is often able to compute a
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spatial transformatiof¥ by solving the following minimization problem:

N
1
P = in — - 2 3.34
B argmin ; 18(p1k) = P2kl (3.34)
whereC defines a certain class for the spatial transformafiand|| - || is the standard vector norm. The problem

above is akin to the well-known Procrustes problem, andHerdlass of rigid-body transformations (rotations plus
translations), the closed-form solution is known [47]. Qir&t removes the mean from the coordinates — p; and
P2k — P2, With p; = % Zﬁzlpl,k andp, = % fo:lpm (then these mean-zero values are assigned foand
p2.x). Define the matrix{ = PlTPQ, whereP; and P, are matrices with each row comprising of a vegigy, and
P2k, respectively. The singular value decomposition= UDVT can be used to compute the rotation maftithat
aligns the two point clouds:

R = VAUT, (3.35)

with A = diag1,1,detfVUT)) as an example in three dimensions [48]. The translation compt is given by
a = py — Rp; and the final transformation is given bByp,) = Rp1 + a.

The framework above can be extended to include other clagspatial transformations, such as the set of trans-
formations composed of linear combination of radial basiefions. If at leasiV basis functions are used, with minor
assumptions, two point clouds can be matched exactly @htte error in (3.34) i8). One often used class of radial
basis functions are thin-plate splines (see [49] for an g@tan

The methodology above is not used universally as the casreipg landmark points are often hard to obtain.
Automated landmark extraction methods are difficult to iempént while manual landmark selection is cumbersome,
time consuming, and often imprecise. Another importargsiaf image registration methods are those that operate
directly on the intensity values of the imagBsand f» by solving a different optimization problem

Bop = a’rg%lenclT (flvf?aﬂ)v (336)

whereY (-) refers to an objective function normally composed of (1) ia)@imilarity measure between the intensity
values of the target imagg (2, ) and warped source imagie(3(€2;)) and (2) a constraint, or, regularization term so
as to "bias” towards any available prior information. Many differenttineds for intensity-based image registration
exist and can be classified according to the type of spatiasformatiorns, the objective functio’, and optimization
method chosen (for comprehensive reviews, see [50,51ti@transformations often used include rigid body, affine
polynomial, linear combination of B-splines or radial lsafsinctions, as well as elastic and fluid deformation models.
Objective functions currently in use in the literature irsé the sum of squared differences between the intensity
values of the target imag# (©2) and warped source imag@(3(<2)), their correlation coefficient, as well as their
mutual information [52]. Optimization methods used in@uelowel’s direction set method [53], gradient descent,
conjugate gradients, as well as Newton-type methods.

The landmark and intensity-based methods are not mutuatipsive and can be combined by adding the two
terms into a single optimization problem:

N
. c ;
B = argmin & [18018) ~ P2l + e (. f2. ). (3.37)
k=1

wherec; andce; are arbitrary constants. For an example of such an apprseeli54].

Mosaicing. Automated and semi-automated image registration methadsssential for building image mosaics.
Due to the limited field of view of magnification objectivebjg operation is often necessary for obtaining a more
global view of the object, but with sufficient resolution fatricate analysis. Automated stages for mosaicing exist,
but are often not accurate enough [55]. Large mosaics mayilitentith the aid of image registration methods given
slightly overlapping images (a recent example can be foan®6]). Other applications of image registration to
microscopic image analysis include electrophoresis ina@ig@ment for protein analysis [57], as well as studies of
tissue differentiation during the evolution of Drosophil@lanogaster embryos [54].
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3.3.4 Segmentation, Tracing, and Tracking

Broadly speaking, segmentation and tracing refer to theatien of relevant contiguous objects within an image as
well as the determination of their positions. Segmentadiod tracing methods allow for localized analysis within an
image and are essential for extracting information peirigito one or more specific objects (for example, cells, or-
ganelles) in an image, while tracking refers to the detaativestimation of objects as a function of time in time series
data sets. Naturally, manual image segmentation, tragidgracking are all possible with the aid of modern com-
puter display systems. However, given the enormous qiestf data produced by modern imaging systems, manual
image interpretation and information extraction is notyardstly, but also inaccurate and has poor reproducibility.
now briefly review some of the automatic and semi-automaéthimds for cell and nuclear segmentation and neuronal
tracing.

Segmentation, tracing and tracking methods are typicadlffitst step in many imaging applications and have been
applied to the classification and clustering of cellular@hEb8], cell biomass computation [59], leukocyte detattio
and tracking [60], neurite tracing [61], cell migration [68ubcellular analysis [63] and studies of the influence of
Golgi-protein expression on the size of the Golgi apparg@dl among others.

Segmentation.The simplest and most widely used automated image segrimanta¢thod available is that of thresh-
olding. This method consist of assigning the label of backgd to every pixel in the image whose value falls below
a chosen threshold, while the label of foreground is assigaeach pixel that matches or exceeds the value of the
threshold. More advanced thresholding methods chooseathe wof the threshold adaptively, through computation of
global, or at times local, image histograms. However, thokting methods alone are seldom effective as microscope
images contain noise and are not illuminated uniformly, @l as because they neglect to account for geometric
information in the data. These methods are thus commonty aisly as initialization to other, more elaborate ones.

Voronoi-Based Segmentatia@ne such, relatively simple, technique is known as Voromaghm-based segmen-
tation, often used when more than one relevant object (famgte, cells, nuclei) are present. The idea is to use
coordinates within each object (one coordinate per objetet segmented, obtained with the help of thresholding
techniques) as representative coordinates for the erijezip and to "draw” edges and vertices so that each coordi-
nate is enclosed by a single polygon. For example, this tgokris often used to segment cell nuclei in images of
DNA probes [65]. However, it does not perform well when thgegls being segmented are asymmetric or are close
in space. In these situations, a single point is too simplégstescription for the geometry of the object, and the edges
computed may not respect the boundary of the objects begmgesgted.

Watershed SegmentatioA more attractive technique is watershed segmentation¢lwban capture intricate
object boundaries without overwhelming computationat.cdse basic idea is to view a 2D image, for example, as
a topographical surface, and "flood” the surface from itslaninima by considering its intensity level sets. When
two regions are merging, a dam is built to represent an edg®anndary in the segmentation result. This technique
can be applied directly to the raw image data as well as togsssd images, such as edge-enhanced ones or distance-
transformed ones. However, it is known to oversegment image careful seeding (initialization) must be used [66,
67].

Active-Contour Segmentation Methodhe segmentation methods described above rely on a disotetpre-
tation of the image data in that any continuous propertieth@fobjects being imaged are disregarded. In the past
couple of decades, a different class of segmentation &hgosi that explicitly include continuous information, such
as curvature, has emerged, and is generally denoted asridflermodels or active contours [68]. An active contour
is a closed curve’(l), with [ some parameterizatidne [0, 1], andC'(0) = C(1) (in two dimensions, such a curve
is represented b¢'(1) = (Cx (1), Cy(1))). Active-contour segmentation methods seek to find theczoatwhich best
delineate different objects in an image. Kass et al. [69fidate this as a variational optimization problem, with a

cost function given by:
2 1
dl + 2 /
0

v (C) = 01/01

wherecy, co, c3 are arbitrary constants, andr(v) represents the gradient of the imageThe above can be a sum
of other applicable forces as well (see [70] for an exampée thcludes a stochastic term). The cost function is
minimized through variational methods [68] and leads to digladifferential equation-type solution to the problem,
dC/dt = F(C,r), with ¢t being a time variable artificially included, arfd(C, r) representing a force (or sum of
forces) term derived based on (3.38). This equation canleedswith Euler integration methods. Another interesting

dC (1)

dl

d2C(1)
di?

2 1
dl + 03/ [Vr(C)| dl, (3.38)
0
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aspect of such methods is that the cu@/g) is normally parameterized using interpolating splines,egample.
Parametric contours can be difficult to generalize to midtgbject and changes in topology, as a reparameterization
of the curve(s) is necessary. Again, as in the tasks destcpiteviously, the problem is posed in a continuous-domain
setting and later discretized.

An alternative technology for propagating contours is dase the level-set methods [71], which avoid param-
eterization of the curv&’ by defining it implicitly as a level set (normally the zero éd\set) of a functionp(v)
({v|¢(v) = 0}). For conveniencey)(v) is normally defined over the same domain as the imagerdaja The level-
set functiong is usually initialized as a signed distance function to atialhcontour drawn over the image, and a
typical implementation involves the following differeatiequation:

do _
= = V(0|9 (3.39)

whereV (k) is the so called speed function (normally involving imageges), whilex is the curvature of the con-
tour, which can be computed directly frogn As mentioned previously for the active-contour equati®38), the
corresponding level-set equation can be given as the sumpplitable forces (see [70], for example). The solution
is obtained in steady state (the contours do not evolve argmusing Euler-type integration methods. There are
several advantages to the level-set formulation. As meatiabove, changes in topology are handled automatically
without extra effort. In addition, it is an Eulerian formtitan, meaning that all computations are done with respect to
a fixed grid (as opposed to tracking a determined amount gfgating "particles” defining a contour). Therefore the
technique can easily be extended to three or more dimenganameterized front propagation methods are compli-
cated in three or more dimensions, especially if changesgalbgy are involved). The disadvantage of the level-set
method is that the level-set functi@nneeds to be computed throughout the domain of the image,tbeeigh only

a contour (or sets of contours) is desired. Methods for cdimgw only in the neighborhood of its zero level set
exist [71], although the speed-up is not substantial wherirttages consist of many contours close to each other. A
novel approach to this computational problem is presemt¢@4]. The authors combine the power of active contours
with the multiresolution (MR)/multiscale (MS) framewort tompute forces using convolutions at different scales.
This approach eliminates the need for the level-set frameand extensive computations, leading to a new class of
active-contour methods dubbed multiscale active contM&AC) [64], with computational savings of 1-2 orders of
magnitude. Modern image segmentation methods based dnsketgecan be generalized to include many different
force terms and may not require image gradients, allowimgdbust segmentation of objects without strong edges
(see, for example, [72]). Other methods are based on the STA@Gorithm we mentioned earlier [70], as well as
follow-ups to that work, such as TPSTACS [73] as well as MSASSatibed above [64].

Tracing. The problem of tracing elongated pathways in image datasergiglly a segmentation problem. The
overall goal is the same as in segmentation: to detect arefrdigte the location of a structure of interest. The
significant geometric differences between neurons (ndyreldngated and not necessarily closed contours) and cells
for example, call for the development of a different metHodg. Methods based on skeletonization [74] often fall
because of the presence of noise, out-of-focus noise, lmdrlation artifacts. Those techniques that do not depend
on skeletonization rely on a local path following approac¢k starting point is given and a step is taken along a
direction computed from the local intensity values of thage data. The approach can be summarized as an ordinary
differential equation problem, where one seeks to find a @dth by solving

dC(l)

=t (3.40)

wheret (1) is a vector that represents the tangential direction of Xoa at location”(l) in the image. The tangential
direction can be computed by matching, locally, a cylinglrimodel for the axon, as in [75]. Alternativel§{/) can

be computed from the eigenvectors of the Hessian (matriecdsd derivatives) of the image data locally as in [61].
Such path following approaches often fail in the presenceoide and other artifacts (imperfect illumination, etc.),
and thus typically require significant user interaction]|[61

Tracking. Image-based tracking refers to the detection of relevajgictdin image time series as well as the deter-
mination of their spatial positions in time. Tracking hagbepplied to modeling and understanding of biological
molecular dynamics [76, 77], as well as to understandingreigration [60, 62]. In a broad sense, tracking can be
thought of as a time-dependent segmentation problem, aindstetic image segmentation, a variety of methods exist.
A comparison of methods for tracking single fluorescentiplag is given in [78]. The simplest tracking algorithm
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consists of identifying potential molecules or cells byetrolding (possibly followed by morphological operations
to remove holes and spurious artifacts) and then performéagest neighbor matching. While this approach may be
fruitful for tracking fluorescence particles in image datgerforms poorly when the objects being tracked change
shape as time progresses [77]. For this reason, time-depeadtive contours and deformable models are preferred
for studies of cell migration, for example.

3.3.5 Classification and Clustering

The advent of modern, automated, digital microscopesthegevith target specific fluorescent probes has enabled the
collection of large amounts of image data whose impact carabdy augmented through the use of high-throughput
image screening and analysis methods. The image processikg described previously (restoration, registration,
segmentation, tracking, etc.) can be combined with trawliti machine learning methodology to deliver powerful
tools to aid discovery and validation for life sciences &gilons [79].

A prominent example is the application of image-based ehirgj and classification methods to the problem of
subcellular localization of proteins within cellular coargments. The development of advanced protein tagging-meth
ods, with the aid of biological image database systems [B0aBd advanced feature extraction, classification, and
clustering methods have enabled scientists to addressréfsdepr of analyzing subcellular location patterns on a
proteome-wide basis, providing valuable information oe tholecular mechanisms that dictate cell structure and
function [15, 65]. Introduction of more advanced tools sasiMR, has been proposed in [15] for subcellular analysis,
as well as in [82] for detection of developmental staDessophilaembryos.

Yet another common use of classification methods in bioimgi in cell cycle analysis and determination. Com-
mon applications include studying of the effects of genepsegsion [83] as well as drug therapies [84]. The steps
used to implement an image processing system capable afrpeniy automated classification and analysis of cell
cycle response are normally the same as for other applisaind include, but are not limited to, image restoration,
registration to remove translation and rotation depengl@naumerical feature extraction, as well as training of the
classifier.

3.3.6 Modeling

Computational imaging methods also have a place in modatidgsimulation of biological phenomena at the cellular
and subcellular scales. Quantitative information auticafly extracted from images can be used for model selection
calculating model parameters, as well as for validatinfgdiint models. We describe two applications of image-based
modeling in cells and subcellular structures: computatiomaterial parameters describing force distribution itlsge
as well as modeling the dynamical properties of microtutule

The precise determination of the mechanical propertieglts,aunder different environments, can be used to gain
a better understanding of a variety of biological phenomeéirate-element models derived based on constitutive laws
can be used to estimate stress-strain relationships, hasvether physical parameters, based on boundary conglition
extracted from image data. Modeling and simulation of uiaibeell stretching experiments were performed in [85]
where cell boundaries were extracted (segmented) as ddarmdttime from image of cells undergoing stretching.

Modeling has also been performed in an effort to understhadriotion of subcellular structures with the aid of
time-lapse microscopy [86]. One of the simplest and mostl msedels for describing particle random motion is the
auto regressive moving average (ARMA) model, where the gaal describe the value of an observed variable as a
linear combination of past values of that variable as weplast values of a white noise random variable [87]. In [86]
localization information obtained from automated tragkalgorithms [88] were used to estimate the parameters of
an ARMA model for studying kinetochore microtubule dynasiic yeast. Another new area for modeling is that of
intelligent acquisition, discussed at the beginning of 8&ction, where data set models, as opposed to the data itsel
are learned and acquired [34].
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