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Chapter 3

Overview of Image Analysis Tools and
Tasks for Microscopy

The advent of fluorescent proteins, together with the recentdevelopment of advanced high-resolution microscopes, has
enabled scientists to probe the intricate structure and function of cells and subcellular structures with unprecedented
accuracy and specificity. Imaging experiments have become the main source of data for biologists to test and validate
hypotheses related to basic cellular and molecular phenomena. Computational methods for automated interpretation
and information extraction from biological images have augmented the impact of imaging experiments and are quickly
becoming a valuable extension of the microscope. Such studies have long been a major topic of biomedical research
(see, for example, [1]), and the recent advances in microscopic image acquisition systems as well as sophisticated
image processing algorithms indicate that this is a trend likely to continue [2,3].

We present a brief overview of computer-aided image analysis tools and tasks for microscopy. While the tasks
and applications we discuss are those currently needed in the field, the algorithms used to perform them are not often
state-of-the-art. Thus, our aim is to introduce the reader to the modern tools of signal processing and data mining
for microscopy, highlighting opportunities for innovative research in the area. Some recent accomplishments can be
found in the special issue of the Signal Processing Magazineon molecular and cellular bioimaging [4].

The overview of the system we discuss is given in Fig. 3.1. We begin by reviewing a system’s level approach
that summarizes the physical aspects of acquisition described in Chapter 1 (the first two blocks in the figure, PSF
and A/D conversion). Important features and artifacts of imaging acquisition systems such as sampling, blurring,
and noise are briefly discussed in connection to traditionaland modern techniques for automated artifact removal and
information extraction (the blocks of denoising, deconvolution and restoration in the figure). The chapter is structured
around mathematical tools currently used as well as some that are not, but have the potential for high impact in
automated biological image analysis. We conclude the chapter by covering various image processing and analysis
tasks needed in microscopy in the order they appear in a real system, starting with registration and mosaicing, followed
by segmentation, tracing and tracking, and finally data modeling, analysis and simulation (the last three blocks in the
figure). The main aim of this chapter is to provide a concise overview of the state-of-the-art tools and algorithms for
computer-aided extraction of quantitative information from images, in the hope that they become state-of-the-art tools
in microscopy as well.

3.1 Image Analysis Framework

We first set up the framework in which we will examine digital images arising from typical microscopes (widefield,
confocal, and others). As terms themselves can lead to confusion, we note the following: The term “digital image”
typically refers to a continuous-domain image that has beenboth discretized (that is, sampled on a discrete grid), as
well as digitized (that is, the intensity has been quantizedfor digital representation). Further, in the signal processing
literature, “time” is often used to denote the image domain,although strictly speaking the domain of images can be
space, time, channels, etc. Therefore, to avoid confusion,when speaking of the types of domains, we will refer to them
as continuous domain and discrete domain (we will, however,keep the standard nomenclature, such as discrete-time
Fourier transform, time-frequency, etc).
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Figure 3.1: A conceptual pipeline. The specimen is imaged using any of today’s microscopes, modeled by the input
imagef(v) passing through the blocks of PSF (properties of the microscope, described by convolution withh(v)) and
A/D conversion (analog-to-digital conversion, effects ofsampling and digitization together with uncertainty introduced
by various sources of noise), producing a digital imagegn. That digital image is then restored either via a denoising
followed by deconvolution, or via joint denoising/deconvolution, producing a digital imagêfn. Various options are
possible: the image could go through a registration/mosaicing processing producingrn, segmentation/tracing/tracking
producingsn and finally a data analysis/modeling/simulations block with the outputyn. At the input/output of each
block, one can join the pathway to either skip a block or send feedback to previous block(s) in the system. (Images
courtesy of K. N. Dahl.)
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Without discretization, the result of imaging an object (specimen) would be a continuous-domain image. We
introduce images (both continuous-domain as well as discrete-domain) as vectors in Hilbert spaces and acquisi-
tion/imaging systems as transformations from one Hilbert space into another. Most of these will be linear and can
transform one continuous-domain image into another (continuous-domain filtering), a continuous-domain image into
a discrete-domain one (analog-to-digital conversion (A/D)), or, a discrete-domain image into a discrete-domain one
(discrete-domain filtering). We will discuss all three of the above in what follows. A conceptual view of the whole
system is given in Fig. 3.1. An excellent reference text on foundations of image science is [5].

3.1.1 Continuous-Domain Image Processing

What we usually call amicroscope imageis an already acquired, and thus discrete-domain data set, which we refer
to from now on as a digital image. Since ultimately, what we really want to understand, analyze and interpret, are
the biological characteristics of the underlying specimen, we must first understand the continuous-domain image at its
root. While we should distinguish between the specimen and the image of the specimen, from now on, we will assume
that the continuous-domain image of the specimen is the ground truth.
Framework. We will denote such an image asf(x, y, z, t, c), wherex, y are the two spatial dimensions in the focal
plane of the objective,z is the third spatial dimension perpendicular to the focal plane,t is the time dimension in case
of time-lapse imaging andc denotes multiple channels. (Not all the dimensions are present in every case.) To make
matters even simpler, we introduce a vectorv = (x, y, z, t, c) which will allow us to add other dimensions to the vector
if needed. The number of dimensions is denoted byd (five in this case). The imagef(v) appears as the input to the
system in Fig. 3.1.

Very often, the value off(v) is scalar, for example,f(v) could denote the intensity. It is also possible forf(v)
to be vector valued, as in the case of color. Thus, at any pointin space and time,f(v) could be given in one of
the standard, three-variable color models such as RGB, YUV,HSV, and others. We will keep the notation the same
regardless of whetherf(v) is scalar or vector valued; its meaning will be obvious from the context. For example,
f(x, y) is typically called a 2D slice,f(x, y, z) a z-stack,f(x, y, t) a 2D time series, whilef(x, y, z, t) is a 3D time
series. In all these cases, the value can be either scalar or vector. For example,(r(x, y), g(x, y), b(x, y)) = f(x, y) is
an RGB 2D slice.

While in reality the domain off is finite, that is, the domains ofx, y, z, t, c are all of finite support, the domain
of such images is often assumed to be infinite for ease of explanation. For example, while we might be imaging a
specimen of finite size100µm × 100µm in the focal plane, we might use the tools which assume that the domain
is infinite. This is also done to avoid more cumbersome tools operating on a finite domain (such as the circular
convolution), although these tools have become standard aswell.
Deterministic Vs Stochastic Description.For now, we limit ourselves to the deterministic treatment of images and
transformations between them. The issues of randomness anduncertainty, such as those found when noise is present,
will be discussed later.
Linear-Shift Invariant Systems and Point Spread Functions. Given an imagef(v), we may model the effect of
the acquisition system on it as the operatorH [·], resulting inx(v) = H [f(v)] (see Fig. 3.1), whereH is in general
nonlinear. In image processing,H is termed afilter, and in practice, we most often assume thatH is linear. In other
words, an imaging, or, acquisition system, is a linear transformation from one Hilbert space into another.

Another important property of filters is shift invariance. Asystem/filter is calledshift invariant if, given the
input/output pair(f(v), x(v)), the output of the system with the shifted inputf(v − v0) is a shifted outputx(v − v0).
Combining the properties of linearity and shift invariancegives rise tolinear shift-invariant (LSI)systems; analysis
is the simplest when the system is LSI. For an LSI system, the operation of the filter on the image is described by
convolution, denoted by∗; given that each imagef(v) can be written as

f(v) =

∫

f(r)δ(v − r)dr, (3.1)

whereδ(v) is the Dirac pulse, the filtered image is given by

x(v) = H

[∫

f(r)δ(v − r)dr

]

=

∫

f(r)H [δ(v − r)dr] =

∫

f(r)h(v − r)dr = (h ∗ f)(v). (3.2)

In the above, we have defined theimpulse responseor point spread function (PSF)of an LSI systemh(v), as the output
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of the system to the input which is a Dirac pulseδ(v). Note that the PSF is typically assumed to be positive, whilethis
is not necessarily true for the impulse response.
The Fourier View. Because of the cumbersome form of the convolution, when analyzing images, one often resorts to
using theFourier transform (FT), as the convolution becomes multiplication in the Fourier domain. For certain classes
of images, the FT finds the harmonic content of the image, or, in other words, it tries to represent the image as a sum
of sinusoids. Fig. 3.2 shows a few examples of simple and morecomplex harmonic signals.

The FT off(v) is given by (we follow the convention of using lower-case letters for the image data in the original
domain, and upper-case ones for the same in the Fourier domain):

F (ω) =

∫

Rd

f(v)e−jωT vdv, (3.3)

whereω, v are vectors in general. For a 2D signal, (3.3) reads

F (ω1, ω2) =

∫

R2

f(v1, v2)e
−j(ω1v1+ω2v2)dv1dv2.

Using (3.3) on the convolution expression (3.2), we obtain that the FT ofx(v) = (h ∗ f)(v) is X(ω) = H(ω)F (ω).
The FT is valid assuming our signals belong to the space of square-integrable functions,L2(R). If a signal is periodic,
that is, if it lives on a circle, then the appropriate FT is calledFourier series (FS).
What This Means in Practice. In practice, the system we refer to in the impulse response ofthe system or PSF,
is the microscope itself; thus,h represents the optical properties of the microscope (withh positive). Knowing these
properties allows us to determine the PSF and thus, if necessary, reverse the effects of the imaging system on the image
itself (remember, our goal is to have access to as “pure” a version of our specimen imagef(v) as possible). This is
depicted in Fig. 3.1, where the input isf(v), and the output is the filtered versionx(v).

3.1.2 A/D Conversion

While it is clear that if it were possible, the underlying image would have most of its parameters continuous in nature
(space and time at least), it is also intuitively clear that this is not the output of a microscope. The reason for this is that
there is a minimum distance at which the responses from two separate points in the sample can be distinguished. This
minimum distance leads to the notion ofresolutionin microscopy, somewhat different from the same term applied in
signal processing (where it denotes the amount of information present in a signal).

Sampling, or, discretization, can be performed without loss of information, if enough samples are taken to represent
the continuous-domain image faithfully. Intuitively, this means that the continuous-domain image cannot “vary” too
much as it would require too many samples to represent it well, that is, it must be somewhat “smooth”. This can be
mathematically made precise by saying that, if the continuous-domain imagex(v) is bandlimited, that is, if its FT is
zero above a certain frequency,|X(ω)| = 0, for |ω| > ωm, then it can be reconstructed from its samples taken at
twice the maximum frequencyωs = 2ωm. This is known under various names, Shannon sampling theorem among
others [6]. The resulting samples arexn = x(µn), wheren ∈ Ωs ⊂ Zd is a set of index coordinates (for example,
pixels whend = 2 or voxels whend = 3), andµ ∈ Rd collects the sampling steps in each dimension. The original
imagex(v) can then be reconstructed fromxn via

x(v) =
∑

n∈Ωs

xn

d∏

i=1

sincµi
(vi − niµi), (3.4)

where thesinc function is given assincµi
(vi) = sin(πvi/µi)/(πvi/µi).

Continuous-domain images are rarely truly bandlimited, and thus, filtering is first performed to bandlimit the image
before sampling, resulting inx(v) = (h ∗ f)(v). This, in turn means that the filtered imagex(v) can be recovered
perfectly from its samplesxn, though not the original one,f(v). In practice, however, several issues (for example,
noise, limited field of view, etc.) complicate the procedureand algorithms to recover a good estimate ofx(v) depend
on many more assumptions to be detailed later in this chapter.

One way to account for various sources of uncertainty is to introduce the probability of observing the valueαn at
coordinaten; this probability can be expressed asP(αn; xn), whereP(·) is a probability model that accounts for the
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uncertainty introduced due to noise in several steps duringdiscretization. As is the case with most photon detection-
based instruments, the primary source of uncertainty introduced is due to photon counting noise, whereP is given by
a Poisson distribution:

P(αn; xn) =
xαn

n e−xn

sn!
. (3.5)

Although photon detection instruments are inherently limited by Poisson noise, photon counting effect is not the only
source of uncertainty in the image. Other artifacts such as thermal noise and digitization noise (uncertainty introduced
by storing only a certain number of bits to describe each pixel value) also play a role and the overall probability model
is more likely to be a mixture of several sources of uncertainty. This is modeled in Fig. 3.1 by the A/D block, where
the input is the imagex(v), and the output, instead of being just a simple sampled version of the inputxn, is given as
gn = β(x(v), noise).

3.1.3 Discrete-Domain Image Processing

Framework. As we have seen, after A/D (discretization/digitization),the resulting image isgn, with n = (n1, . . . , nd).
For example, a gray-scale 2D time series withN3 2D slices of sizeN1 × N2, will be denoted asgn1,n2,n3

, wheren1

andn2 are two spatial coordinates with domainsn1 = 0, . . . , N1−1, n2 = 0, . . . , N2−1 andn3 is the time coordinate
with domainn3 = 0, . . . , N3 − 1.

We stress an important point: Assume, for simplicity, we deal with a digital imagegn1,n2
, that is, just a single 2D

slice. One can look at this image in two ways:

1. The domain ofn = (n1, n2) is infinite, that is bothn ∈ Z
2. We then assume that the image is of finite energy,

written asgn ∈ ℓ2(Z2), and is a set ofN1 × N2 nonzero values in the plane. In this case, the discrete-time
FT will be used (introduced in a moment) and the result of a convolution gives support larger than the one with
which we started.

2. The domain ofn = (n1, n2) is finite, that is,n1 = 0, . . . , N1 − 1, andn2 = 0, . . . , N2 − 1. The image is of
finite energy by construction. In other words, we assume thatthe digital image exists only on a discrete grid of
sizeN1×N2. That also means that the convolution used is the circular convolution which preserves the domain,
and the appropriate Fourier transform is the discrete Fourier transform (also introduced in a moment).

While the above distinction might seem unimportant, it has great consequences on the machinery we use.
Linear Shift-Invariant System and Digital Filters. Similarly to what was shown in continuous domain, most of
the time we deal with LSI systems—filters. For the discrete domain, these filters can model the effects after A/D
(discretization/digitization), or can be additional digital filters applied to achieve a certain effect. Their operation on a
discretized signalgn can be described via convolution again as

(a ∗ g)n =
∑

m

gman−m. (3.6)

Note that we use the same symbol∗ for both continuous-domain as well as the discrete-domain convolution; the
meaning is clear from the context. In signal processing, when the the domain of the digital image is finite (as it is in
practice), one often uses the so-calledcircular convolution, which preserves the domain. In other words, while the
convolution as defined in (3.6) produces a larger image as theresult of filtering (how much larger depends on the filter),
the circular convolution produces the image of the same size. These various convolutions may seem confusing and
cumbersome; in fact, mathematically, one is able to deal with this problem in a unified way by defining the spaces of
signals and filters, and then deriving the appropriate formsof convolution as well as the FT [7]. While that treatment
is beyond the scope of this introduction, the interested reader is encouraged to look up [7] for more details.
The Fourier View. Similarly to what was done in continuous domain, we often usethe Fourier machinery to analyze
digital images. As explained previously, one must distinguish between images for which we assume the domain is
infinite (yet with only a finite number of nonzero values), from those whose domain is finite (which is the case in
practice). As we have seen, the convolution in these two instances is different; so is the FT. Without going into
mathematical details, we just give those two versions of theFT. Again, here we use the standard nomenclature for the
FT using time as the domain although the domain of images is space; this is done to avoid confusion when looking up
relevant literature. To make matters simple, we give below 1D versions:
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1. Discrete-Time Fourier Transform (DTFT)

F (ejω) =
∑

n∈Z

fne−jµωn ↔ fn =
µ

2π

∫ π/µ

−π/µ

F (ejω)ejµωndω (3.7)

2. Discrete Fourier Transform (DFT)

Fk =

N−1∑

n=0

fnW−nk
N ↔ fn =

1

N

N−1∑

k=0

FkWnk
N (3.8)

with WN = ej2π/N . For example, for images, the 2D DFT would have the form

fn1,n2
=

1

N1N2

N1−1∑

k1=0

N2−1∑

k2=0

Fk1,k2
Wn1k1

N1
Wn2k2

N2
.

3.2 Image Analysis Tools for Microscopy

The aim in this section is to give an overview of tools, both those which are currently used as well as those we
believe would be useful for solving imaging tasks in microscopy (see Section 3.3). As a plethora of such tools exist,
we give a brief overview of only a subset of those; well established methods for image analysis and synthesis using
both predetermined vectors (functions) as well as vectors automatically learned from data. Other important image
processing and data analysis tools applicable to microscopic image analysis include pattern recognition and machine
learning methods for clustering and classification [8], as well as statistical signal processing methods for detectionand
estimation [9,10].

3.2.1 Signal and Image Representations

Signal representations (signal being a microscope image inthis case) aim to represent a signal in a different domain
so that its salient characteristics might become obvious inthat domain. For example, a simple image which is a sum
of two different frequencies in horizontal and vertical directions might be difficult to interpret in the original/image
domain (see Fig. 3.2(e)), while its harmonic content is immediately obvious in the Fourier domain (having two single
nonzero coefficients).

It is useful to consider signal/image representations in a more general framework; then, many of the tools we
discuss are just specific instantiations of that framework (see [11,12] for more details). Signals are usually assumed to
“live” in a Hilbert space. Hilbert spaces are those spaces inwhich we are allowed to manipulate signals (add, multiply
by a constant), measure them, compute inner products, etc. We are also allowed to represent our signals in terms
of bases(nonredundant representations) orframes(redundant representations). These representations are typically
written as

g =
∑

i∈I

Giϕi, (3.9)

whereI is some index set,ϕi are basis/frame elements belonging toΦ, andGi are called transform coefficients
(subband, Fourier or wavelet, in case of specific transforms). Mathematically,Giϕi is the projection of the signal onto
the space spanned byϕi andGi is the value of that projection.1 That projection is computed as

Gi = 〈ϕ̃i, g〉, (3.10)

whereϕ̃i form what is usually called adual basis/framẽΦ.
The difference between bases and frames is that in the case offrames, there are more vectors than needed to

represent a particular signal, making it a redundant representation. For example, any vector in a plane can be uniquely
represented by two projections onto two noncolinear lines (subspaces). Projecting onto yet another line will not destroy
the representation property; it will just make it redundant.

1We are not being entirely rigorous here as for infinite-dimensional spaces, bases have to be defined with some care; we gloss over those
subtleties in this treatment.
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Matrix View. It is possible to look at signal expansions using linear operators/matrices, offering a more compact, and
very often, a more easily understood way of looking at representations. Equation (3.10) can be rewritten as

G = Φ̃∗g, (3.11)

whereg is now a vector containing the input signal,G is the vector of transform coefficients and̃Φ is the matrix
containing the dual basis/frame vectors as its columns. Then, (3.9) can be written as:

g = ΦG = ΦΦ̃∗g, (3.12)

from where it is obvious that for this to be a valid representation, ΦΦ̃∗ must be an identity. For bases,Φ andΦ̃ are
square and̃Φ = (Φ∗)−1, while for frames, the frameΦ and the dual framẽΦ are both rectangular.

Spaces We Consider.For ease of notation, we
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Figure 3.2: Example images. (a) Simple 1D sinusoidal image:
f(x, y) = sin(π/50)x. (b) 2D sinusoidal image of low fre-
quency: f(x, y) = sin(π/50)x sin(π/50)y. (c) 2D sinusoidal
image of high frequency:f(x, y) = sin(π/10)x sin(π/10)y.
(d) 2D sinusoidal image of different frequencies in the two di-
rections:f(x, y) = sin(π/50)x sin(π/10)y. (e) 2D image ob-
tained as a sum of two frequencies in two directions:f(x, y) =
sin(π/50)x sin(π/10)y + sin(π/14)x sin(π/20)y. (f) General
image.

will keep our discussion in 1D; extensions to more
than one dimension are most often obtained by
separate application of 1D concepts to each di-
mension in turn (Kronecker product).

Standard and most intuitive spaces with which
we deal are real/complex Euclidean spacesRN

andC
N . In these spaces, signals are considered to

be vectors of finite lengthN and the inner product
is the standard component-wise product. Then the
index setI above is just the setI = {1, . . . , N}.

In discrete-time signal processing we deal al-
most exclusively with sequencesg having finite
square sum or finite energy, whereg = (. . . , g−1,
g0, g1, . . .) is, in general, complex-valued. Such a
sequenceg is a vector in the Hilbert spaceℓ2(Z).
Orthonormal Bases.In case of nonredundant rep-
resentations, wheñΦ = Φ, and thusΦΦ∗ = I, we
deal withorthonormal bases (ONBs). Both pro-
jection and reconstruction are performed using the
same set of basis vectorsΦ. Many properties hold
for orthonormal bases:

Orthonormality of Basis Vectors.SinceΦ∗ =
Φ, 〈ϕi, ϕj〉 = δi−j , that is, basis vectors are or-
thonormal.

Projections.A characteristic of orthonormal bases allowing us to approximate signals is that an orthogonal pro-
jection onto a subspace spanned by a subset of basis vectors,{ϕi}i∈J , whereJ is the index set of that subset is
Pg =

∑

i∈J 〈ϕi, g〉ϕi, that is, it is a sum of projections onto individual one-dimensional subspaces spanned by each
ϕi. Beware that this is not true when{ϕi}i∈J do not form an orthonormal system.

Parseval’s Equality.TheParseval’s equalityis simply thenorm-preservingproperty of ONBs. In other words,

‖g‖2 =
∑

i∈I

|〈ϕi, g〉|2 =
∑

i∈I

|Gi|2. (3.13)

Least-Squares Approximation.Suppose that we want to approximate a vector from a Hilbert space by a vector
lying in the subspaceS = {ϕi}i∈J . The orthogonal projection ofg ontoS is given earlier byPg. The difference
vectord = g − ĝ satisfiesd ⊥ S. This approximation is best in the least-squares sense, that is, min ‖g − y‖ for
y in S is attained fory =

∑

i Giϕi with Gi = 〈ϕi, g〉 being the expansion coefficients. In other words, the best
approximation is our̂g = Pg. An immediate consequence of this result is the successive approximation property of
orthogonal expansions. Callĝ(k) the best approximation ofg on the subspace spanned by{ϕ1, ϕ2, . . . , ϕk}. Then
the approximation̂g(k+1) is given byĝ(k+1) = ĝ(k) + 〈ϕk+1, g〉ϕk+1, that is, the previous approximation plus the
projection along the added vectorϕk+1.
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Note that the successive approximation property does not hold for nonorthogonal bases. When calculating the
approximation̂g(k+1), one cannot simply add one term to the previous approximation, but has to recalculate the whole
approximation.
Tight Frames. In case of redundant representations, whenΦ̃ = Φ, and thus

Gabor

DFT

DWT

Figure 3.3: Energy distribution of
a simple low-frequency signal with
a Dirac pulse using different bases:
DFT, Gabor and DWT.

ΦΦ∗ = I, we deal withParseval tight frames (PTFs)(whenΦΦ∗ = cI, the
frame is tight). Both projection and reconstruction are performed using the
same set of frame vectorsΦ (albeit possibly scaled). Note, however, that while
for bases,Φ∗Φ = I as well, this is not the case for frames. Orthonormality of
frame vectors does not hold anymore as the vectors are not linearly independent,
but a generalized sort of Parseval’s equality still holds (‖g‖2 =

∑

i∈I c|Gi|2,
with c = 1 for PTFs). More details on frames can be found in [11,12].
How to Choose the Right Representation.From what we have described
above, we have the option of choosing the nonredundant/redundant representa-
tion, and then, orthonormal/general for bases and tight/general for frames. Even
once one of these four options is chosen, we are still left with the task of choos-
ing the specific basis/frame elements. Fortunately, choices abound, and we now
present some of those.
Time-Frequency Considerations.One of the often used criteria when choos-
ing basis functions is how well they can represent certain local events in the
original domain (space for images) as well as frequency. Forexample, a pure
sinusoid is considered a perfectly local event in frequency, while a Dirac pulse
is a perfectly local event in time (original domain). To see how a specific rep-
resentation localizes in time (original domain) or frequency, one typically uses
a conceptual tool calledtime-frequency plane(see Fig. 3.3 for examples). Con-
sider any of the three bottom diagrams. Each has time (original domain) on
the horizontal axis and frequency on the vertical. The tilesrepresent the time-
frequency distribution of the energy of the basis functionsof the corresponding
transform. For example, in the DFT, the tiles are all rectangles splitting the fre-
quency into pieces, but going over all time. This is because the basis functions
for the DFT cover all time but only pieces of frequency. Thus,one can see that
the DFT will work well to isolate events local in frequency but will not isolate those local in time.

3.2.2 Fourier Analysis

When one is interested in the harmonic content of a signal, Fourier analysis is the tool of choice. The reason for this
is that the representation functions are sinusoids (complex exponentials).
Fourier Bases.Let us see how the Fourier view from the previous section fits into the representation framework we
just introduced. We do this by looking at the DFT as a signal expansion (this is a short version of the same example
in [11]), which, while ubiquitous, is rarely looked upon as asignal expansion or written in matrix form. The easiest
way to do that is to write the reconstruction expression (3.8) in matrix notation as

g =
1

N








1 1 · · · 1

1 WN · · · WN−1
N

...
...

...
...

1 WN−1
N · · · WN








︸ ︷︷ ︸

Φ=DFTN








G0

G1

...
GN−1








︸ ︷︷ ︸

G

= DFTN G. (3.14)

The DFT matrix defined as above is not normalized, that is,(1/N)(DFTN )(DFT∗
N ) = I. If we normalized the above

matrix by1/
√

N , the DFT would exactly implement an orthonormal basis. The decomposition formula (3.8) in matrix
notation becomes:

G = DFT∗
N g. (3.15)

The advantage of looking at the DFT in matrix form is that its operation now becomes “visual” and projections onto
the corresponding subspaces are easily seen. For example, for N = 2, the DFT would project onto a space with
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“smooth” signals (averaging) as well as the space of “detail” signals (differencing). One can also see that each of the
coefficients will extract a specific range of “frequencies” from the signal, that is, it will measure how “wiggly” the
signal is. An important point about the Fourier analysis is that while it extract perfectly the frequency content of the
signal, the local events in the original domain (for example, a spike in 1D or edge in 2D) are diluted over the whole
frequency domain as each basis function will capture those local events. This is one of the reasons other techniques,
such as wavelets, are used, where a trade-off between frequency and original domain localization can be achieved.
Fourier Frames. Similarly to Fourier bases, Fourier frames exist. They are known under the nameharmonic tight
frames (HTFs)and are obtained by projecting a Fourier basis from a larger space onto a smaller one. For example,
given a DFT of sizeM × M , we can obtain an HTF of sizeN × M , with N < M , by deleting columns of the DFT.
These representations possess similar properties to the DFT, except that they are redundant. As HTFs are possible
for any combination ofM, N , any redundancy can be achieved and the choice is governed bythe application. More
details on these frames can be found in [12].

3.2.3 Gabor Analysis

While the Fourier-type tools are best used on signals which are reasonably smooth as that global behavior will be
captured in the frequency domain, they are not appropriate for nonstationary signals. A classic example is that of a
signal consisting of a sinusoid and a Dirac pulse. The sinusoid is captured by the Fourier tools while the Dirac pulse is
spread over all frequencies and its location is lost (see Fig. 3.3, DFT). One way to deal with the problem is to window
the Fourier basis functions so that just those with the support over the Dirac pulse will contain information about it;
all the other basis functions will not overlap and will thus contain no information about it. This leads to theGabor
transform (GT)(also calledshort-time Fourier transform (STFT)), and is pictorially shown in Fig. 3.3, Gabor. Thus,
upon observing that the coefficients corresponding to the basis functions with support coinciding with the support of
the Dirac pulse contain more energy, one can conclude that the location of the Dirac pulse is somewhere within the
range of that window (the window is shifted along the original axis to cover the entire original domain). This method
still suffers from the problem that the “zoom” factor of the analysis, or how finely we can pinpoint the Dirac pulse,
depends on the choice of the window. One can write the same equations as (3.14)-(3.15):

g = GT G, GT = W DFTN , (3.16)

G = GT∗ g, (3.17)

where the GT is obtained by windowing the DFT byW . The windowW is a diagonal matrix with window elements
along the diagonal. Since the window multiplies theDFTN on the left, it multiplies each DFT basis function in turn.
The windowW is typically chosen to be a symmetric lowpass filter.

3.2.4 Multiresolution Analysis

The wavelet transform (WT)and thediscrete wavelet transform (DWT)arose in response to the problems the GT
could not solve. The answer came as a tool with short basis functions at high frequencies together with long basis
functions at low frequencies. As such, the WT is just the toolto tackle the above example (see Fig. 3.3, DWT).
Unlike the DFT and GT, which both have fixed basis functions, the WT (or DWT) allows for different families with
the same time-frequency tiling as in the figure. These are obtained by choosing different template wavelets and then
forming the whole basis from the template by shifts and dilations. While the DWT is an appropriate tool for the above
problem, it does not do so well if the frequency of the sinusoid is high, as then the position of the Dirac pulse cannot be
distinguished in the high frequencies.Multiresolution (MR)techniques encompass a whole set of tools allowing for a
rather arbitrary division of the time-frequency plane to match the signal at hand, including the one we just mentioned.
As such, the DFT as well as the GT become subcases of it, with specific tilings.
Implementing MR Transforms Using Filter Banks. These various MR transforms are implemented using filter
banks (FBs), signal processing devices which split the frequency spectrum into parts. The basic frequency splitting is
achieved through filtering and sampling, while reconstruction is done in the reverse direction, upsampling and filtering
again. The analysis filter bank maps the signal into transform coefficients (also called subbands) as in (3.10) or (3.11),
while the synthesis filter bank reconstructs the original signal from those, as in (3.9) or (3.12).
Discrete Wavelet Transform.The DWT achieves the tiling as in Fig. 3.3, DWT, by iterating two-channel FBs on the
lowpass (smoothing, coarse) channel. The number of iterations determines the number of leaves of the DWT (or any
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MR transform) as well as the level of coarseness at the last level (the more levels, the coarser). The actual filters used
determine the basis functions are many: Well-known families are Haar, Daubechies, Coiflets, and others [6, 13, 14].
Depending on the basis functions used, we can have ONBs or general bases (Haar and Daubechies are ONBs, Coiflets
are general bases with symmetries). For example, the 3-level Haar DWT is given by the following matrix:

DWT3,Haar = C ·















0 0 0 0 0 0 1 −1
0 0 0 0 1 −1 0 0
0 0 1 −1 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 0 0 1 1 −1 −1
1 1 −1 −1 0 0 0 0
1 1 1 1 −1 −1 −1 −1
1 1 1 1 1 1 1 1















, (3.18)

whereC is a diagonal matrix of constants,C = diag(1/
√

2, 1/
√

2, 1/
√

2, 1/
√

2, 1/2, 1/2, 1/4, 1/4), needed to make
the DWT an ONB. Many others are possible leading to differentvalues in the above matrix (assuming three levels).
Wavelet Packets and Variations.As one could have split the coarse channel again, one could have done it with the
highpass as well. Thus, one can obtain arbitrary trees, anywhere from a full tree withJ levels corresponding to a2J

GT, to a DWT withJ levels, to an arbitrary tree withJ levels (calledwavelet packet (WP)).
One can also split the frequency range intoN channels immediately, getting the DFT as a subcase. By splitting the

N -channel filter bank further in any of the above ways, one obtains an even more arbitrary tiling of the time-frequency
plane.
Recommendations.The first goal in choosing one of the above transforms is getting the one to represent the signal
the best. In other words, the first concern should be matchingthe transform to the time-frequency distribution of the
underlying signal (image). After that has been done successfully, the choice of particular filters and such may be
attempted. However, choosing the appropriate transform isnot easy; the idea behind WP is to grow a full tree and then
prune back given a cost function, which might not be readily available. For example, in compression, people use the
number of bits; thus, if pruning the tree at a particular branch leaves us with fewer bits, we do it; otherwise we do not.
Most often, we do not have an appropriate cost function, as was the case in [15], where the authors solved the problem
by assigning weights to all the nodes in the tree. Then, the cost function is implemented implicitly; low weights mean
pruning of the branch, while high weight means the branch is kept.

3.2.5 Unsupervised, Data-Driven Representation and Analysis Methods

Except for the WP, the techniques described above use a predetermined set of vectors (functions) to represent signals
and images. Alternatively, representation schemes can be built based on any available training data using automated
learning approaches, an area of intense research. We now briefly review examples of data-driven representation and
analysis methods, beginning with theprincipal component analysis (PCA)technique. Many more works for dimen-
sionality reduction and data analysis exist (see, for example, [16,17]), but for brevity these are not reviewed here.
PCA. PCA is a method for reducing the dimensionality of a data set by finding a projection of the original set of vectors
{g1, . . . , gM}, onto a lower-dimensional space, optimal in a mean-square (MS) sense. Assume that the dimensionality
of the original space isN , that is, eachgi ∈ R

N , and that we want to reduce the dimensionality toL, with L ≤ N . PCA
accomplishes this task by finding anL-dimensional ONBΦ = {ϕ1, . . . , ϕL}, such that the error of the approximation
between the original vectors and their approximations is minimized in the MS sense. InΦ, the projections of the
original vectors are expressed as:

ĝi = m +

L∑

k=1

αk,iϕk, i = 1, . . . , M, (3.19)
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wherem = (1/M)
∑M

i=1 gi is the sample mean. We now findϕk, k = 1, . . . , L, such that

E(ϕ) =

M∑

i=1

‖m +

L∑

k=1

αk,iϕk

︸ ︷︷ ︸

ĝi

−gi‖2 (3.20)

is minimized. It is fairly simple to prove [18], that the solution is found as theL eigenvectorsϕk, k = 1, . . . , L,
corresponding to theL largest eigenvalues of the so-called scatter matrix (sample covariance):

S =
1

M

M∑

i=1

(gi − m)(gi − m)T . (3.21)

The coefficientsαk,i are the values of the projections, that is, they are given by

αk,i = 〈gi, ϕk〉. (3.22)

The eigenvectorsϕk can provide meaningful geometric insight into the distribution from which the samplesgi, i =
1, . . . , M, were drawn. The first eigenvectorϕ1 is the one for which the squared energy of the projection is maximum.
The second eigenvectorϕ2 is the one whose energy is also maximum, but it is constrainedto be orthogonal to the first,
and so on. Although PCA was originally developed as a statistical data analysis technique, modern uses of it include
finding optimal linear subspaces for representing image data.

It is worth noting that while the terms Karhunen-Loève (KL)and PCA are often used interchangeably in the
literature, a distinction can be made in that PCA refers to the diagonalization of the sample covariance matrix, while
KL refers to the diagonalization of an ensemble covariance matrix.
ICA. The PCA framework above is simple, efficient to compute, and extensively used in signal and image process-
ing as well as general data analysis applications. While PCAfinds orthogonal directions which best represent the
data in the MS sense,independent component analysis (ICA)[19, 20] finds directions which are most independent
from each other. When the underlying distribution for the data is a multivariate Gaussian one, the coefficientsαk

are uncorrelated, and therefore independent. If the underlying data does not originate from a multivariate Gaussian
distribution, correlation does not imply statistical independence and approximately independent coefficients may be
obtained using ICA. Thus, the goal in ICA is to find vectorsϕk, k = 1, . . . , L which produce coefficientsαk that
are not only uncorrelated but statistically independent aswell. The process of computing independent components
involves gradient-based nonlinear searches, normally initialized with results obtained from PCA. Implementation of
this technique also depends on a proper definition of independence. The Kullback-Leibler distance [21] (not a true
distance per se, but nonnegative nonetheless) is often usedas a measure of statistical independence for ICA. However,
because of issues related to computational complexity, practitioners are restricted to using surrogates such as kurtosis
coefficients [19]. ICA is most used for deciphering the components, which, through addition, form a specific signal
of interest, that is, they physically come from multiple sources (see [22] as well as Hyvärinen’s web site for examples
and demos [23]).
KPCA. Other extensions of the PCA framework includekernel PCA (KPCA)andgeneralized PCA (GPCA). The idea
in KPCA is to search for structure in the data by embedding it into a higher-dimensional (possibly infinite) space
through a functionγ(gi) taking values in the feature spaceΓ. The inner product inΓ is defined as〈gi, gj〉Γ =
〈γ(gi), γ(gj)〉, and defines a kernelΛ(gi, gj) which can also be decomposed into a set of eigenvalues and eigenvectors
to be used to estimate a low-dimensional representation of the original data (see [24] for more details about the
computations involved). While KPCA can be used to extract interesting information from a set of data points, there is
no general theory for choosing the kernel functionsΛ. Polynomials and Gaussian kernels are often used, althoughtheir
optimality for different applications is difficult to ascertain. Many of the modern methods for nonlinear dimensionality
reduction can be interpreted as KPCA but with different kernel matrices [25].
GPCA. GPCA is a fairly recent contribution [26] with the same goal as the PCA, except that GPCA does not restrict
the subspaces to be orthonormal with respect to each other, and each can be of a different dimension. In addition,
GPCA identifies the membership of each data point. It starts by estimating a collection of polynomials from the data.
Although the polynomials themselves are nonlinear, their coefficients can be estimated linearly from the data. Next,
one point per subspace is segmented with clustering techniques, and a basis for the subspace passing through that point
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is obtained by evaluating appropriate derivatives.
ISOMAP. With the exception of KPCA, the approaches above provide tools for finding linear subspaces, or a col-
lection of linear subspaces, to analyze and represent imagedata. Given sufficient data, a larger class of nonlinear
manifolds can be recovered using theISOMAPalgorithm [27], which can be described in two relatively simple steps.
First, the ”geodesic” distance between data points is estimated, by constructing a neighborhood graph and then finding
the shortest path through the graph that connects the two points. (This distance is not the usual Euclidean distance,
but rather a distance that is adapted to the underlying geometry of the data.) The classical multidimensional scaling
method [28] is used to compute low-dimensional coordinatesfor each point. The decay of the variance of the residual
of the approximations as a function of the number of approximating dimensions can then be used to estimate the true
dimensionality (free parameters) of the data.
LLE. Another class of nonlinear manifold learning algorithms involves searching for low-dimensional representations
that best preserve local structures of the data. Thelinear local embedding (LLE)[29] algorithm is an example of such
an approach. Like ISOMAP, the first step in the LLE algorithm is to compute theP nearest neighbors of each data
pointgi. The second step is to assign weightsαk,i to each nearest neighbor of each point such that

E(α) =

M∑

i=1

∥
∥
∥
∥
∥
gi −

P∑

k=1

αk,igk

∥
∥
∥
∥
∥

2

(3.23)

is minimized subject to the constraints thatαk,i = 0 if gk is not amongst theP nearest neighbors ofgi, and that
∑P

k=1 αk,i = 1 for all i. In the final step, LLE computes data pointsĝi ∈ RL, with L < N , that best preserve the
local properties of the data as represented by the sets of weights computed in the previous step, by minimizing

E(ĝ) =
M∑

i=1

∥
∥
∥
∥
∥
ĝi −

P∑

k=1

αk,iĝk

∥
∥
∥
∥
∥

2

, (3.24)

and computing the bottomM + 1 eigenvectors of the matrix(I − A)T (I − A), whereAk,i = αk,i.

3.2.6 Statistical Estimation

The random variations introduced by system noise, artifacts, as well as uncertainty originating from the biological
phenomena under observation, require stochastic image processing methods. In fact, several tasks and applications
for microscopy we are about to review can be understood as statistical estimation problems [9], where the goal is to
seek the solution to the problem at hand optimal in some probabilistic sense, requiring one to adopt some optimality
criterion.
MSE Estimators. The mean-squared error (MSE) between the estimateθ̂ of some quantityθ, denoted as MSE(θ̂) =

E
{

(θ̂ − θ)2
}

, where E is the expectation operator, is a desirable estimate since it minimizes the error of the estimate

(on average). The Wiener filtering method given in (3.29) is an example of such an estimate. However, MSE estimators
often depend on unknown parameters, leading to other desirable estimators, such as minimum-variance unbiased ones.
MAP Estimators. An interesting alternative is provided by the Bayesian framework. Letg represent the observed
image data and letb represent some pattern or hidden feature(s). In the Bayesian framework, an estimate ofb is
computed by maximizing the a posteriori probability (MAP)

p(b|g) =
p(g|b)
p(g)

p(b). (3.25)

Sincep(g) is constant with respect tob, maximizing (3.25) is equivalent to maximizing

p(g|b)p(b), (3.26)

wherep(g|b) is the so-called probabilistic data model, andp(b) is interpreted as a prior bias onb. Taking logarithms,
the problem in (3.26) is equivalent to minimizing the following cost function

Ψ(b) = log p(g|b) + log p(b), (3.27)
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whose solution is the estimateb̂ we want to find:

b̂ = argmax
b

Ψ(b). (3.28)

The MAP problem is often recast as a minimization instead of maximization, by taking the negative of the quantities
above. When no prior knowledge onb is available (for example,p(b) is a uniform distribution), (3.28) is equivalent to
a Maximum Likelihood (ML) estimate ofb.

Closed-form solutions for computing MAP estimates are rarely available due to the nonlinearity present in nearly
all but the most trivial problems. Instead, one is often required to solve (3.27) numerically. Whenb andg are inter-
preted to belong to a Hilbert space of continuous functions,the Bayesian framework reduces to solving a variational
calculus problem. The forms ofp(g|b) andp(b) specify the required function spaces to whichg andb must belong
(for example, square integrable, Sobolev, bounded variation, etc.). A common approach is to derive maximization
(minimization) approaches based on Euler-Lagrange equations from the maximization problem. Many algorithms in
image restoration, segmentation, and registration discussed later in the chapter can be viewed within this framework.
Gradient-Based Estimators.Whenb is a finite-dimensional vector, standard gradient-based optimization approaches
can be used, the most common of which is the steepest descent method. The cost functionΨ(b) is given by (3.27),
whereb is now a finite-dimensional vector. The steepest descent method computeŝb by solving∇bΨ(b) = 0 through
the following three-step iterative approach: The estimateb̂k is iteratively updated by (1) computing the gradient of
the objective function∇bΨ(b) |b=b̂k

, (2) findingτ such thatΨ(b̂k − τ∇bΨ(b) |b=b̂k
) is minimized, and (3) updating

b̂k+1 = b̂k − τ∇bΨ(b) |b=b̂k
. Often, step (2) is bypassed andτ is fixed to a small value.

3.3 Imaging Tasks in Microscopy

The goal in an imaging-based biological experiment is to extract structural, spatial, and functional quantitative infor-
mation about some biological phenomenon accurately and, ifpossible, automatically. We now briefly review some of
the canonical problems in microscopic image analysis for extracting such information, such as restoration, registration,
segmentation and others. A general view of the system, whichthis section follows, is given in Fig. 3.1.

3.3.1 Intelligent Acquisition

Although the general process of acquisition was described in Section 3.1, a new set of techniques aiming at providing
intelligence during the acquisition process has emerged.

The first motivation for these approaches is to enhance resolution. In laser scanning confocal microscopy, images
are acquired line-by-line, pixel-by-pixel [30]. We can achieve significant time savings by only imaging those regions
where we expect to find an object. These time savings could then be used to increase the frame rate, or to acquire the
selected regions at a higher spatial resolution.

The second motivation is to reduce photobleaching and phototoxicity. In fluorescence microscopy, images are
acquired by shining excitation light on the specimen to activate fluorescence. However, this can damage the fluorescent
signal (photobleaching) [31], as well as the cell itself (phototoxicity) [32], thus limiting the duration over which we
can view a cellular process. By reducing the total area acquired in each frame, we reduce the overall exposure to
excitation light, hence reducing both photobleaching and phototoxicity.

Intelligent acquisition of microscope images has not been studied until recently. In [33], the authors designed an
algorithm to reduce the number of pixels sampled in a 2D or 3D image when using a laser scanning confocal micro-
scope. They observed that a large portion of scanning time isspent on low fluorescence regions, which presumably
contain little useful information. The approach is then to begin by scanning the field at a low resolution. Each scanned
value is examined, and if found to be significant, the area around it is scanned at a higher resolution. The process is
repeated iteratively.

In [34] instead, the authors provide intelligence while learning the data model. They study a large number of tiny
moving objects over a sustained period of time. To assist with efficient acquisition, they develop and continually refine
a model to describe the objects’ motion. In [35], the authorsprovide algorithms for modeling objects’ motions for the
purposes of tracking, and although not used directly, theirwork helped inspire the approach in [34].
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3.3.2 Deconvolution, Denoising and Restoration

Microscope images typically contain artifacts that, if accentuated, may prevent reliable information extraction and
interpretation of the image data. Two main sources of artifacts can be identified: blurring caused by the PSFh (see
(3.2)), and noise arising from the electronics of A/D conversion (see Fig. 3.1). The combined tasks of deconvolution
(deblurring) and denoising are generally referred to as image enhancement or restoration, as shown in Fig. 3.1. In
the figure, two parallel paths are possible: (1) Joint denoising and deconvolution known as restoration, which as input
has the output of the microscopegn, and as the output, the estimatef̂n of the input imagef(v). Note that while the
output of restoration is another digital imagef̂n, the problem itself is posed in terms of its continuous-domain version,
that is, finding the best estimatêf(v). Our discussion in this section focuses mostly on this path.(2) Separate tasks
of denoising, having as input has the output of the microscope gn, and as the output, the estimatex̂n, followed by
deconvolution.

The problem of deconvolution in the presence of noise dates back many decades and has been applied to a variety
of imaging problems related to astronomy, medicine, and many others, in addition to microscopy (for recent reviews,
see [36–38]). Our purpose here is not to provide an extensivereview of existing methodology, but rather an overview of
important concepts often used, their relationship to Fourier analysis, as well as more modern ideas based on wavelets
and sparse representations.

The plethora of restoration methods available can be classified according to different criteria. Some of the termi-
nology associated with different methods available include linear versus nonlinear, least squares, maximum likelihood,
expectation maximization, blind versus model-based, and others. Here we describe two different optimization criteria
based on which several different methods have been designed, beginning with the minimum MSE estimation. All of
the methods being described assume an LSI degradation model(PSF), and can be applied in two or three dimensions.
MSE Estimation. The approach used here was described in Section 3.2.6. Letf(v) represent an image one wishes to
reconstruct, ideally, by undoing the effects of the PSF by inverse filtering operationhin on some measured datag(v),
f̂(v) = (hin ∗ g)(v). The measured datag(v), the original imagef(v), as well as its estimatêf(v), can all be viewed
as random variables due to the uncertainty introduced by noise sources. Thus, a reasonable criterion to minimize is the
MSE between the linear estimatêf(v) and the real imagef(v), that is, E{(f − f̂)2}. Under assumptions explained
below, it is possible to derive the well-known Wiener filter [39] solution to the problem, expressed in the Fourier
domain as:

F̂ (ω) =
H(ω)

|H(ω)|2 + Se(ω)/Sg(ω)
︸ ︷︷ ︸

Hin(ω)

G(ω), (3.29)

whereH(ω) is the Fourier transform of the PSF,Se(ω) is the power spectral density of the noise source, andSf (ω)
is the power spectral density of the image being measured. The derivation above assumes that both the image and the
noise source are well modeled by ergodic random variables, as well as that the noise is additive and white (uncorre-
lated). These assumptions are often violated in microscopeimaging experiments. Moreover, the quantitiesSe(ω) and
Sg(ω) are seldom known and practitioners often replace the ratioSe(ω)/Sg(ω) by some constantc.
MAP Estimation. The approach used here was also described in Section 3.2.6. Here, we denote the ensemble of
possible images byb, while the output estimate will be called̂f . That is, we seek to maximize the posterior probability
p(b|g) = (p(g|b)/p(g))p(b), wherep(g) does not depend onb, andp(b) represents the prior knowledge one may have
about the imageb. The cost function is the following functional (a version of(3.27)):

Ψ(b) = φ(g, b) + cP (b), (3.30)

where the logarithms have been subsumed into the above terms, P (b) is a regularization function derived based on
a priori knowledge, andc is an arbitrary constant. Its role is to prevent the solutionto the algorithm from contain-
ing certain undesired characteristics such as excessive oscillations. Restoration algorithms are normally set up as
minimization problems by defining the terms above as the negative of the log of the probabilities.

Modeling the Minimization Function.When the Poisson distribution is used to modelp(g|b), the minimization
termφ is defined as:

φP (g, b) =

∫

[(h ∗ b)(v) − g(v) log(h ∗ b)(v))] dv, (3.31)
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while the equivalent for a Gaussian distribution model forp(g|b) is:

φG(g, b) =

∫

|(h ∗ b)(v) − g(v)|2 dv = ‖h ∗ b − g‖2
L2

. (3.32)

Several algorithms can be derived to optimize these functionals. A classical example is the Richardson-Lucy (RL)
algorithm: an iterative, unregularized algorithm that minimizesφP (g, b), one out of a class of methods known to
produce result imageŝf dominated by noise as the number of iterations increase. Theaddition of different priors on
b, together with other constraints such as positiveness, canhelp overcome these difficulties.

Modeling the Prior. Many different priors onb, P (b), have been used in the literature. One of the most often
used is theLp-type regularization:PQ(b) = ‖Db‖p

Lp
, whereD is a linear operator (often of a differential type)

andp = 1 or 2. Whenp = 2 this regularizer tends to minimize the energy of either the image itself (D = 1) or
properties of the image (for example, derivativesD = ∇). This leads to a Tikhonov-type regularizer [40], which
tends to produce blurred estimatesb̂, countering the effect of theφ(g, b) minimization term. In contrast,p = 1 leads
to so-called ”sparsity” maximizing solutions which tend topreserve edge structures better. Examples include total
variation regularization terms (D = ∇) [41] and wavelet-based sparse representations (whenDb refers to coefficients
of the WT of the image) [42].

Other regularization methods include entropy-type priorswhere one uses a modelm(v) which represents the prior
knowledge about the image. The entropy prior is defined as

PE(b) =

∫ [

b(v) − m(v) − b(v) log
b(v)

m(v)

]

dv. (3.33)

This entropy functional is an optimal distance measure for positive functions [43]. However, since a precise model for
the image to be measured is often not available, researcherstypically use a constant function leading to a preference
for smooth functions [37].

Other regularization approaches exist, such as the Good’s roughness penalty [44] which often yields estimates of
good quality in comparison with other methods [37]. In addition, for situations when a precise model for the PSF is
unknown, there exist so called ”blind” restoration algorithms that seek to estimate both the image as well as the PSF.
One notable example is based on the RL iterative algorithm described above [45].

Finally, in actual implementation, the overall functionalΨ(b) (consisting of any combination of the termsφP ,
φG , PE , PQ) is discretized at the measured image grid of pixels and the functional is minimized using standard
approaches such as the steepest-gradient descent (see Section 3.2.6), conjugate gradient descent, Newton-type as well
as multiplicative methods [36, 37, 41]. Computational complexity is often a concern. Linear methods, such as the
Wiener filter explained earlier, can be implemented in real time. More recent, nonlinear methods, such as the one
described in [42], are more computationally demanding, although recent advances [46] may help overcome these
difficulties.

3.3.3 Registration and Mosaicing

Image registration refers to the task of finding the spatial relationship and alignment between two or more images.
Registration methods are useful for combining the information contained in multiple images of the same object, ac-
quired by different instruments, and at perhaps different resolutions. Other applications include mosaicing as well as
tracking objects in image time series. Here we provide an overview of image registration methods applicable to micro-
scope images beginning with semi-automatic landmark-based registration, followed by fully automated intensity-based
methods.
Registration. Let Ω1,i ∈ Rd, i = 1, · · · , N1, andΩ2,k ∈ Rd, k = 1, · · · , N2, be the pixel coordinates (in units
of meters) of two imageŝf1(Ω1,i) and f̂2(Ω2,k), respectively. The goal in a registration (alignment) problem is to
find a spatial transformationβ that relates the coordinates of the source image to the coordinates of the target image:
Ω̃1,k = β(Ω2,k). The value of the imagêf1 at positionΩ̃1,k does not exist in general, since the imagef̂1 is only
defined at coordinatesΩ1,i ∈ Rd, i = 1, · · · , N1. However, a reasonable guess may be computed by using standard,
continuous, representations of the imagef̂1(Ω1) =

∑

i F̂1,iϕi(Ω1), as described in Section 3.1, to computef̂1(Ω̃1,k).
With the knowledge of a set ofN corresponding pointsp1,k = p2,k, k = 1, · · · , N , one is often able to compute a
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spatial transformationβ by solving the following minimization problem:

βop = arg min
β∈C

1

N

N∑

k=1

‖β(p1,k) − p2,k‖2, (3.34)

whereC defines a certain class for the spatial transformationβ and‖ · ‖ is the standard vector norm. The problem
above is akin to the well-known Procrustes problem, and for the class of rigid-body transformations (rotations plus
translations), the closed-form solution is known [47]. Onefirst removes the mean from the coordinatesp1,k − p̄1 and
p2,k − p̄2, with p̄1 = 1

N

∑N
k=1 p1,k and p̄2 = 1

N

∑N
k=1 p2,k (then these mean-zero values are assigned top1,k and

p2,k). Define the matrixK = PT
1 P2, whereP1 andP2 are matrices with each row comprising of a vectorp1,k and

p2,k, respectively. The singular value decompositionK = UDV T can be used to compute the rotation matrixR that
aligns the two point clouds:

R = V △UT , (3.35)

with △ = diag(1, 1, det(V UT )) as an example in three dimensions [48]. The translation component is given by
a = p̄2 − Rp̄1 and the final transformation is given byβ(p1) = Rp1 + a.

The framework above can be extended to include other classesof spatial transformations, such as the set of trans-
formations composed of linear combination of radial basis functions. If at leastN basis functions are used, with minor
assumptions, two point clouds can be matched exactly (that is, the error in (3.34) is0). One often used class of radial
basis functions are thin-plate splines (see [49] for an example).

The methodology above is not used universally as the corresponding landmark points are often hard to obtain.
Automated landmark extraction methods are difficult to implement while manual landmark selection is cumbersome,
time consuming, and often imprecise. Another important class of image registration methods are those that operate
directly on the intensity values of the imagesf̂1 andf̂2 by solving a different optimization problem

βop = arg min
β∈C

Υ
(

f̂1, f̂2, β
)

, (3.36)

whereΥ(·) refers to an objective function normally composed of (1) a (dis)similarity measure between the intensity
values of the target imagêf2(Ω1) and warped source imagêf1(β(Ω1)) and (2) a constraint, or, regularization term so
as to ”bias”β towards any available prior information. Many different methods for intensity-based image registration
exist and can be classified according to the type of spatial transformationβ, the objective functionΥ, and optimization
method chosen (for comprehensive reviews, see [50,51]). Spatial transformations often used include rigid body, affine,
polynomial, linear combination of B-splines or radial basis functions, as well as elastic and fluid deformation models.
Objective functions currently in use in the literature include the sum of squared differences between the intensity
values of the target imagêf1(Ω) and warped source imagêf2(β(Ω)), their correlation coefficient, as well as their
mutual information [52]. Optimization methods used include Powel’s direction set method [53], gradient descent,
conjugate gradients, as well as Newton-type methods.

The landmark and intensity-based methods are not mutually exclusive and can be combined by adding the two
terms into a single optimization problem:

βop = argmin
β∈C

c1

N

N∑

k=1

‖β(p1,k) − p2,k‖2 + c2Υ
(

f̂1, f̂2, β
)

, (3.37)

wherec1 andc2 are arbitrary constants. For an example of such an approach,see [54].
Mosaicing. Automated and semi-automated image registration methods are essential for building image mosaics.
Due to the limited field of view of magnification objectives, this operation is often necessary for obtaining a more
global view of the object, but with sufficient resolution forintricate analysis. Automated stages for mosaicing exist,
but are often not accurate enough [55]. Large mosaics may be built with the aid of image registration methods given
slightly overlapping images (a recent example can be found in [56]). Other applications of image registration to
microscopic image analysis include electrophoresis imagealignment for protein analysis [57], as well as studies of
tissue differentiation during the evolution of Drosophilamelanogaster embryos [54].
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3.3.4 Segmentation, Tracing, and Tracking

Broadly speaking, segmentation and tracing refer to the detection of relevant contiguous objects within an image as
well as the determination of their positions. Segmentationand tracing methods allow for localized analysis within an
image and are essential for extracting information pertaining to one or more specific objects (for example, cells, or-
ganelles) in an image, while tracking refers to the detection or estimation of objects as a function of time in time series
data sets. Naturally, manual image segmentation, tracing and tracking are all possible with the aid of modern com-
puter display systems. However, given the enormous quantities of data produced by modern imaging systems, manual
image interpretation and information extraction is not only costly, but also inaccurate and has poor reproducibility.We
now briefly review some of the automatic and semi-automatic methods for cell and nuclear segmentation and neuronal
tracing.

Segmentation, tracing and tracking methods are typically the first step in many imaging applications and have been
applied to the classification and clustering of cellular shape [58], cell biomass computation [59], leukocyte detection
and tracking [60], neurite tracing [61], cell migration [62], subcellular analysis [63] and studies of the influence of
Golgi-protein expression on the size of the Golgi apparatus[64], among others.
Segmentation.The simplest and most widely used automated image segmentation method available is that of thresh-
olding. This method consist of assigning the label of background to every pixel in the image whose value falls below
a chosen threshold, while the label of foreground is assigned to each pixel that matches or exceeds the value of the
threshold. More advanced thresholding methods choose the value of the threshold adaptively, through computation of
global, or at times local, image histograms. However, thresholding methods alone are seldom effective as microscope
images contain noise and are not illuminated uniformly, as well as because they neglect to account for geometric
information in the data. These methods are thus commonly used only as initialization to other, more elaborate ones.

Voronoi-Based Segmentation.One such, relatively simple, technique is known as Voronoi diagram-based segmen-
tation, often used when more than one relevant object (for example, cells, nuclei) are present. The idea is to use
coordinates within each object (one coordinate per object to be segmented, obtained with the help of thresholding
techniques) as representative coordinates for the entire object, and to ”draw” edges and vertices so that each coordi-
nate is enclosed by a single polygon. For example, this technique is often used to segment cell nuclei in images of
DNA probes [65]. However, it does not perform well when the objects being segmented are asymmetric or are close
in space. In these situations, a single point is too simplistic a description for the geometry of the object, and the edges
computed may not respect the boundary of the objects being segmented.

Watershed Segmentation.A more attractive technique is watershed segmentation, which can capture intricate
object boundaries without overwhelming computational cost. The basic idea is to view a 2D image, for example, as
a topographical surface, and ”flood” the surface from its local minima by considering its intensity level sets. When
two regions are merging, a dam is built to represent an edge and boundary in the segmentation result. This technique
can be applied directly to the raw image data as well as to processed images, such as edge-enhanced ones or distance-
transformed ones. However, it is known to oversegment images and careful seeding (initialization) must be used [66,
67].

Active-Contour Segmentation Methods.The segmentation methods described above rely on a discreteinterpre-
tation of the image data in that any continuous properties ofthe objects being imaged are disregarded. In the past
couple of decades, a different class of segmentation algorithms that explicitly include continuous information, such
as curvature, has emerged, and is generally denoted as deformable models or active contours [68]. An active contour
is a closed curveC(l), with l some parameterizationl ∈ [0, 1], andC(0) = C(1) (in two dimensions, such a curve
is represented byC(l) = (Cx(l), Cy(l))). Active-contour segmentation methods seek to find the contours which best
delineate different objects in an image. Kass et al. [69] formulate this as a variational optimization problem, with a
cost function given by:

Ψ(C) = c1

∫ 1

0

∣
∣
∣
∣

dC(l)

dl

∣
∣
∣
∣

2

dl + c2

∫ 1

0

∣
∣
∣
∣

d2C(l)

dl2

∣
∣
∣
∣

2

dl + c3

∫ 1

0

|∇r(C(l))|2 dl, (3.38)

wherec1, c2, c3 are arbitrary constants, and∇r(v) represents the gradient of the imager. The above can be a sum
of other applicable forces as well (see [70] for an example that includes a stochastic term). The cost function is
minimized through variational methods [68] and leads to a partial differential equation-type solution to the problem,
dC/dt = F (C, r), with t being a time variable artificially included, andF (C, r) representing a force (or sum of
forces) term derived based on (3.38). This equation can be solved with Euler integration methods. Another interesting
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aspect of such methods is that the curveC(l) is normally parameterized using interpolating splines, for example.
Parametric contours can be difficult to generalize to multiple object and changes in topology, as a reparameterization
of the curve(s) is necessary. Again, as in the tasks described previously, the problem is posed in a continuous-domain
setting and later discretized.

An alternative technology for propagating contours is based on the level-set methods [71], which avoid param-
eterization of the curveC by defining it implicitly as a level set (normally the zero level set) of a functionφ(v)
({v|φ(v) = 0}). For convenience,φ(v) is normally defined over the same domain as the image datar(v). The level-
set functionφ is usually initialized as a signed distance function to an initial contour drawn over the image, and a
typical implementation involves the following differential equation:

dφ

dt
= V (κ)|∇φ|, (3.39)

whereV (κ) is the so called speed function (normally involving image edges), whileκ is the curvature of the con-
tour, which can be computed directly fromφ. As mentioned previously for the active-contour equation (3.38), the
corresponding level-set equation can be given as the sum of applicable forces (see [70], for example). The solution
is obtained in steady state (the contours do not evolve anymore) using Euler-type integration methods. There are
several advantages to the level-set formulation. As mentioned above, changes in topology are handled automatically
without extra effort. In addition, it is an Eulerian formulation, meaning that all computations are done with respect to
a fixed grid (as opposed to tracking a determined amount of propagating ”particles” defining a contour). Therefore the
technique can easily be extended to three or more dimensions(parameterized front propagation methods are compli-
cated in three or more dimensions, especially if changes in topology are involved). The disadvantage of the level-set
method is that the level-set functionφ needs to be computed throughout the domain of the image, eventhough only
a contour (or sets of contours) is desired. Methods for computing φ only in the neighborhood of its zero level set
exist [71], although the speed-up is not substantial when the images consist of many contours close to each other. A
novel approach to this computational problem is presented in [64]. The authors combine the power of active contours
with the multiresolution (MR)/multiscale (MS) framework to compute forces using convolutions at different scales.
This approach eliminates the need for the level-set framework and extensive computations, leading to a new class of
active-contour methods dubbed multiscale active contours(MSAC) [64], with computational savings of 1-2 orders of
magnitude. Modern image segmentation methods based on level sets can be generalized to include many different
force terms and may not require image gradients, allowing for robust segmentation of objects without strong edges
(see, for example, [72]). Other methods are based on the STACS algorithm we mentioned earlier [70], as well as
follow-ups to that work, such as TPSTACS [73] as well as MSAC described above [64].
Tracing. The problem of tracing elongated pathways in image data is essentially a segmentation problem. The
overall goal is the same as in segmentation: to detect and determine the location of a structure of interest. The
significant geometric differences between neurons (normally elongated and not necessarily closed contours) and cells,
for example, call for the development of a different methodology. Methods based on skeletonization [74] often fail
because of the presence of noise, out-of-focus noise, and illumination artifacts. Those techniques that do not depend
on skeletonization rely on a local path following approach.A starting point is given and a step is taken along a
direction computed from the local intensity values of the image data. The approach can be summarized as an ordinary
differential equation problem, where one seeks to find a pathC(l) by solving

dC(l)

dl
= t(l), (3.40)

wheret(l) is a vector that represents the tangential direction of the axon at locationC(l) in the image. The tangential
direction can be computed by matching, locally, a cylindrical model for the axon, as in [75]. Alternatively,t(l) can
be computed from the eigenvectors of the Hessian (matrix of second derivatives) of the image data locally as in [61].
Such path following approaches often fail in the presence ofnoise and other artifacts (imperfect illumination, etc.),
and thus typically require significant user interaction [61].
Tracking. Image-based tracking refers to the detection of relevant objects in image time series as well as the deter-
mination of their spatial positions in time. Tracking has been applied to modeling and understanding of biological
molecular dynamics [76, 77], as well as to understanding cell migration [60, 62]. In a broad sense, tracking can be
thought of as a time-dependent segmentation problem, and asin static image segmentation, a variety of methods exist.
A comparison of methods for tracking single fluorescent particles is given in [78]. The simplest tracking algorithm
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consists of identifying potential molecules or cells by thresholding (possibly followed by morphological operations
to remove holes and spurious artifacts) and then performingnearest neighbor matching. While this approach may be
fruitful for tracking fluorescence particles in image data,it performs poorly when the objects being tracked change
shape as time progresses [77]. For this reason, time-dependent active contours and deformable models are preferred
for studies of cell migration, for example.

3.3.5 Classification and Clustering

The advent of modern, automated, digital microscopes, together with target specific fluorescent probes has enabled the
collection of large amounts of image data whose impact can bevastly augmented through the use of high-throughput
image screening and analysis methods. The image processingtasks described previously (restoration, registration,
segmentation, tracking, etc.) can be combined with traditional machine learning methodology to deliver powerful
tools to aid discovery and validation for life sciences applications [79].

A prominent example is the application of image-based clustering and classification methods to the problem of
subcellular localization of proteins within cellular compartments. The development of advanced protein tagging meth-
ods, with the aid of biological image database systems [80, 81] and advanced feature extraction, classification, and
clustering methods have enabled scientists to address the problem of analyzing subcellular location patterns on a
proteome-wide basis, providing valuable information on the molecular mechanisms that dictate cell structure and
function [15,65]. Introduction of more advanced tools suchas MR, has been proposed in [15] for subcellular analysis,
as well as in [82] for detection of developmental stagesDrosophilaembryos.

Yet another common use of classification methods in bioimaging is in cell cycle analysis and determination. Com-
mon applications include studying of the effects of gene suppression [83] as well as drug therapies [84]. The steps
used to implement an image processing system capable of performing automated classification and analysis of cell
cycle response are normally the same as for other applications and include, but are not limited to, image restoration,
registration to remove translation and rotation dependency in numerical feature extraction, as well as training of the
classifier.

3.3.6 Modeling

Computational imaging methods also have a place in modelingand simulation of biological phenomena at the cellular
and subcellular scales. Quantitative information automatically extracted from images can be used for model selection,
calculating model parameters, as well as for validating different models. We describe two applications of image-based
modeling in cells and subcellular structures: computationof material parameters describing force distribution in cells,
as well as modeling the dynamical properties of microtubules.

The precise determination of the mechanical properties of cells, under different environments, can be used to gain
a better understanding of a variety of biological phenomena. Finite-element models derived based on constitutive laws
can be used to estimate stress-strain relationships, as well as other physical parameters, based on boundary conditions
extracted from image data. Modeling and simulation of uniaxial cell stretching experiments were performed in [85]
where cell boundaries were extracted (segmented) as a function of time from image of cells undergoing stretching.

Modeling has also been performed in an effort to understand the motion of subcellular structures with the aid of
time-lapse microscopy [86]. One of the simplest and most used models for describing particle random motion is the
auto regressive moving average (ARMA) model, where the goalis to describe the value of an observed variable as a
linear combination of past values of that variable as well aspast values of a white noise random variable [87]. In [86]
localization information obtained from automated tracking algorithms [88] were used to estimate the parameters of
an ARMA model for studying kinetochore microtubule dynamics in yeast. Another new area for modeling is that of
intelligent acquisition, discussed at the beginning of this section, where data set models, as opposed to the data itself,
are learned and acquired [34].
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[11] J. Kovačević and A. Chebira, “Life beyond bases: The advent of frames (Part I),”IEEE Signal Proc. Mag.,
vol. 24, pp. 86–104, Jul. 2007.
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