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Abstract

We will review the latest developements concerning uniform tight

frames and their applications to signal processing�

� Introduction

Frames are redundant sets of vectors in a Hilbert space which yield one natu�
ral representation for each vector in the space� but which may have in�nitely
many di�erent representations for a given vector� Frames have been used in
signal processing because of their resilience to additive noise���� resilience to
quantization��	�� as well as their numerical stability of reconstruction���� and
greater freedom to capture signal characeristics�
� ��� Recently� several new ap�
plications for �uniform tight 
 frames have been developed� The �rst� developed
by Goyal and Kova�cevi�c and Vetterli���� ��� �
� ��� ���� uses the redundancy of
a frame to mitigate the e�ect of losses in packet�based communication systems�
Modern communication networks transport packets of data from a �source�
to a �recipient�� These packets are sequences of information bits of a certain
length surrounded by error�control� addressing� and timing information that as�
sure that the packet is delivered without errors� It accomplishes this by not
delivering the packet if it contains errors� Failures here are due primarily to
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bu�er overlfows at intermediate nodes in the network� So to most users� the
behavior of a packet network is not characterized by random loss� but by un�
predictable transport time� This is due to a protocol� invisible to the user� that
retransmits lost packets� Retransmission of packets takes much longer than the
original transmission� In many applications� retransmission of lost packets is
not feasible and the potential for large delay is unacceptable�

If a lost packet is independent of the other transmitted data� then the in�
formation is truly lost to the receiver� But if there are dependencies between
transmitted packets� one could have partial or complete recovery despite losses�
This leads one naturally to use frames for encoding� But the question is� What
are the best frames for this purpose� With an additive noise model for quan�
tization� Goyal and Kova�cevi�c���� show that a uniform frame minimizes mean�
squared error if and only if it is tight� So it is this class of frames � the uniform
normalized tight frames �see Section 
 for the de�nitions
 � which we need to
identify�

Another recent important application of uniform normalized tight frames is
in multiple�antenna code design��� ���� Much theoretical work has been done
to show that communication systems that employ multiple antennas can have
very high channel capacities��� 
��� These methods rely on the assumption that
the receiver knows the complex valued Rayleigh fading coe�cients� To remove
this assumption� in Refs� � and �� new classes of unitary space�time signals are
proposed� If we have N transmitter antennas and we transmit in blocks of M
time samples �over which the fading coe�cients are approximately constant
�
then a constellation of K unitary space�time signals is a �weighted byp
M
 collection of M � N complex matricies f�kg for which ��k�k � I � The

nth column of any �k contains the signal transmitted on antenna n as a function
of time� The only structure required in general is the time�orthogonality of the
signals�

Originally it was believed that designing such constellations was a too cum�
bersome and di�cult optimization problem for practice� However� in Ref� ��
it was shown that constellations arising in a �systematic� fashion can be done
with relatively little e�ort� Systematic here means that we need to design high�
rate space�time constellations with low encoding and decoding complexity� It
is known that full transmitter diversity �i�e� where the constellation is a set
of unitary metrices whose di�erences have nonzero determinant
 is a desirable
property for good performance� In a tour�de�force� Hassibi� Hochwald� Shokrol�
lahi� and Sweldens���� used �xed�point�free groups and their representations
to design high�rate constellations with full diversity� Moreover� they classi�ed
all full�diversity constellations that form a group� for all rates and numbers of
transmitter antennas�

For these applications� and a host of other applications in signal processing�
it has become important that we understand the class of uniform normalized
tight frames� In this paper���� we will make the �rst systematic study of this
class of frames�






� Frames

In this section we will introduce the concepts to be used in the paper�

De�nition �� A family ffigi�I is a frame for a Hilbert space H if there are
constants � � A�B satisfying�

Akfk� �
X

i�I
jhf� fiij� � Bkfk�� for all f � H�

We call A�B a set of frame bounds for the frame with A the lower frame
bound and B the upper frame bound� We call ffigi�I a tight frame if
A � B and a normalized tight frame if A � B � �� If kfik � kfjk� for
all i� j � I this is a uniform frame� If also A � B � �� we have a uniform
normalized tight frame�

For the basic theory of frames we refer the reader to Ref� � and 
�� If ffigi�I
is a frame for H � we de�ne the synthesis operator T � �I� � H by Tei � fi
where feigi�I is an orthonormal basis for �I�� The analysis operator is the
operator T �� A direct calculation shows that

T �f �
X

i�I
hf� fiiei� for all f � H�

Hence�

kT �fk� �
X

i�I
jhf� fiij��

It follows that�

Theorem �� Let ffigi�I be a sequence in a Hilbert space H with synthesis
operator T � The following are equivalent�

��� ffigi�I is a frame for H�
��� T is a bounded� linear and onto map�
��� T � is an isomorphism�
Moreover� ffigi�I is a normalized tight frame if and only if T is a quotient

map �or equivalently� T � is a partial isometry��

Corollary �� If ffigi�I is a frame for H then S � TT � is an invertible operator
on H called the frame operator�

Now�

Sf �
X

i�I
hf� fiifi�

It follows that for all f � H �

hSf� fi �
X

i�I
jhf� fiij��
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Hence� S is an invertible� self�adjoint� positive operator on H with AI � S �
BI � So ffigi�I is a normalized tight frame if and only if S � I and we have
reconstruction of any function f � H by�

Sf �
X

i�I
hS��f� fiifi�

We say that two frames ffigi�I and fgigi�I for H are equivalent if there is
an invertible operator L on H for which Lfi � gi for all i � I � and they are
unitarily equivalent if L can be chosen to be a unitary operator� A direct
calculation shows that fS����fig is a normalized tight frame for any frame ffig�
In particular� every frame is equivalent to a normalized tight frame�

A useful way to view normalized tight frames is due to Neumark��� �see also
Han and Larson����
�

Theorem �� �Han and Larson� A family ffigi�I in a Hilbert space H is a
normalized tight frame for H if and only if there is a larger Hilbert space H � K
and an orthonormal basis feigi�I for K so that the orthogonal projection P of
K onto H satis	es� Pei � fi� for all i � I�

� Uniform Normalized Tight Frames� Some Ex�

amples

For any natural number N � we write HN for an N �dimensional Hilbert space�
There are two general classes of uniform tight frames which are commonly used�
The �general
 harmonic frames and the tight Gabor frames�

De�nition �� Fix M � N � jcij � �� and fbigNi�� with jbij � �p
M
� Let fcigNi��

be distinct M th roots of c� and for � � k �M � �� let

�k � �ck�b�� c
k
�b�� � � � � ckNbN 
�

Then f�kgM��
k�� is a uniform normalized tight frame for HN called a general

harmonic frame�

For the other general class� we introduce two special operators on L��R
�
Fix � � a� b and for f � L��R
 de�ne translation by a as

Taf�t
 � f�t� a
�

and modulation by b as

Ebf�t
 � e��imbtf�t
�

If fEmbTnaggm�n�Z is a frame for L��R
� we call it aGabor frame �or aWeyl�
Heisenberg frame
� It is clear that this class of frames are uniform� Also� since
the frame operator S for a Gabor frame fEmbTnaggm�n�Zmust commute with
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translation and modulation� each Gabor frame is equivalent to the �uniform

normalized tight Gabor frame fEmbTnaS

����ggm�n�Z For an introduction to
Gabor frames we refer the reader to Ref� 	 and ���

Although we would like to classify all uniform tight frames� especially those
which can be obtained by reasonable �algorithms�� this is essentially an impos�
sible task in general because every �nite family of norm one vectors in a Hilbert
space can be extended to become a uniform tight frame�

Theorem �� If ffigMi�� is a family of norm one vectors in a Hilbert space H�
then there is a uniform tight frame for H which contains the family ffigMi���
Proof� For each � � i � M choose an orthonormal basis fgijgj�J for H which
contains the vector fi� Now the family fgijgMi���j�J is made up of norm one
vectors and for any f � H we have

MX

i��

X

j�J
jhf� gijij� �

MX

i��

kfk� �Mkfk��

In the above construction we get as a tight frame bound the number of
elements in the family ffigMi��� In general this is best possible� For example�
just let fi � fj for all � � i� j �M �

There is another general class of uniform tight frames �see Ref� ��
�

Theorem �� A family ffigN��i�� is a uniform normalized tight frame for HN

if and only if ffigN��i�� is unitarily equivalent to the frame fPeigN��i�� where
feigN��i�� is an orthonormal basis for HN�� and P is the orthogonal projection
of HN�� onto the orthogonal complement of the one�dimensional subspace of

HN�� spanned by
PN��

i�� ei�

More general classes of uniform tight frames are the full�diversity constella�
tions that form a group given in Ref� ���

� Uniform Normalized Tight Frames

There is a general method for getting �nite uniform normalized tight frames�

Theorem 	� There is a unique way to get uniform tight frames with M ele�
ments in H � CN or H � RN � Take any orthonormal set f�kgNk�� in CM which
has the property

NX

k��

j�kij� � c� for all i�

Thinking of the �k as row vectors� switch to the M column vectors and divide
by

p
c� This family is a uniform tight frame for CN with M elements� and all

uniform normalized tight frames for HN with M elements are obtained in this
way�

	



Corollary �� If ffigMi�� is a uniform normalized tight frame for HN then

kfik� � M

N
�

There is a detailed discussion concerning the uniform normalized tight frames
for R� in Ref� ��� In Ref� �� there is a deep classi�cation of groups of unitary
operators which generate uniform normalized tight frames� The simplest case of
this is the harmonic frames� In the theorem below���� we do not assume that we
have a �group� of unitaries� but instead conclude that our family of unitaries
must be a group�

Theorem 
� A family f�kgM��
k�� is a general harmonic frame for HN if and

only if there is a vector �� � HN with k��k� � N
M � an orthonormal basis feigNi��

for HN and a unitary operator U on HN with Uei � ciei� with fcigNi�� distinct
M th�roots of some jcj � � so that �k � Uk��� for all � � k �M � ��

The picture becomes much more complicated if the uniform normalzied tight
frame is generated by a group of unitaries with more than one generator �see
Ref� ��
 or worse� if the uniform tight frame comes from a subset of the elements
of such a group�

� Frames Equivalent to Uniform Tight Frames

We saw earlier that every frame is equivalent to a normalized tight frame� That
is� given any frame ffigi�I with frame operator S� the frame fS����figi�I is
a normalized tight frame� Therefore� it is natural to try to �nd ways to turn
frames into uniform normalized tight frames� As it turns out� this is not possible
in most cases� The following results come from Ref� ��

Theorem �� If a frame ffigi�I with frame operator S is equivalent to a uni�
form tight frame� then fS����figi�I is a uniform normalized tight frame� In
particular� a tight frame which is not uniform cannot be equivalent to any uni�
form normalized tight frame�

� Uniform Tight Frames and Subspaces of the

Hilbert Space

As we saw in Theorem 
� there is a unique way to get normalized tight frames
on HN withM �elements� Namely� we take an orthonormal basis feigMi�� for HM

and take the orthogonal projection PHN of HM onto HN � Then fPHN eigMi�� is
a normalized tight frame for HN with M �elements� In particular� there is a
natural one�to�one correspondence between the normalized tight frames for HN

with M �elements and the orthonormal bases for HM � The uniform normalized
tight frames for HN are the ones for which kPeik � kPejk� for all � � i� j �M �
In Ref� � this is used to exhibit natural correspondences between these families
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and certains subspaces of HM � Here we treat two frames as the same if they
are unitarily equivalent�

Theorem �� There is a natural one to one correspondence between the normal�
ized tight frames for HN with M�elements and the family of all N�dimensional
subspaces of HM �

For the uniform case we have Ref� ��

Theorem 
� Fix an orthonormal basis feigMi�� for HM so that if P is the or�
thogonal projection of HM onto HN then fPeigMi�� is a uniform normalized tight
frame for HN � Then there is a natural one to one correspondence between the
uniform normalized tight frames for HN with M �elements and the subspaces W
of HM for which kPW eik� �M�N � for all � � i �M �

� Uniform Dual Frames

Another way to get uniform frames is to �nd them as alternate dual frames for
a frame�

De�nition �� Let ffigi�I be a frame for a Hilbert space H with frame operator
S� We call fS��figi�I the canonical dual frame of ffigi�I � In this case�

f �
X

i�I
hf� S��fiifi� for all f � H�

So the canonical dual frame can be used to reconstruct the elements of
H from the frame� However� there may be other sequences in H which give
reconstruction�

De�nition �� Let ffigi�I be a frame for a Hilbert space H� A family fgigi�I
is called an alternate dual frame for ffigi�I if

f �
X

i�I
hf� giifi� for all f � H�

There are generally many alternate dual frames for a given frame� In fact�����
a frame has a unique alternate dual frame �i�e� the canonical dual frame
 if and
only if it is a Riesz basis� Moreover����� no two distinct alternate dual frames
for a given frame are equivalent� For a normalized tight frame� its canonical
dual frame is the frame itself�

We mention some results from Ref� � describing the existence of �uniform

tight dual frames for a given frame�

Proposition �� If ffigi�I is a normalized tight frame for HN � then the only
normalized tight alternate dual frame for ffigi�I is ffigi�I itself�

Proposition �� If ffigki�� is a normalized tight frame for HN and k � 
N �
then the only tight dual frame for ffigki�� is ffigki�� itself� If k � 
N then there
are in	nitely many �non�equivalent� tight alternate dual frames for ffigki���
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But it is really the uniform case we are interested in�

Proposition �� If ffig�Ni�� is a uniform normalized tight frame for HN then
there are in	nitely many uniform tight alternate dual frames for ffig�Ni���

We are currently looking into uses for these uniform tight alternate dual
frames in the setting of signal processing� as well as applications of the other
results� An important goal here is to �nd uniform normalized tight frames with
�structure� which will allow their use in signal processing� Current results show
that the classes with group�based structure are quite limited� The next step
is to �nd other classes of �computationally e�cient� uniform normalized tight
frames as perhaps those for which the operator matrices can be factored in some
simple way�
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