Uniform tight frames for signal processing and
communication

Peter G. Casazza*
Department of Mathematics
University of Missouri-Columbia
Columbia, MO 65211
pete@math.missouri.edu

Jelena Kovacevié
Bell Labs

Murray Hill, NJ 07974
jelena@research.bell-labs.com

July 27, 2001

Abstract

We will review the latest developements concerning uniform tight
frames and their applications to signal processing.

1 Introduction

Frames are redundant sets of vectors in a Hilbert space which yield one natu-
ral representation for each vector in the space, but which may have infinitely
many different representations for a given vector. Frames have been used in
signal processing because of their resilience to additive noise[8], resilience to
quantization[15], as well as their numerical stability of reconstruction[8], and
greater freedom to capture signal characeristics[2, 3]. Recently, several new ap-
plications for (uniform tight ) frames have been developed. The first, developed
by Goyal and Kovacevi¢ and Vetterli[10, 11, 12, 13, 14], uses the redundancy of
a frame to mitigate the effect of losses in packet-based communication systems.
Modern communication networks transport packets of data from a “source”
to a “recipient”. These packets are sequences of information bits of a certain
length surrounded by error-control, addressing, and timing information that as-
sure that the packet is delivered without errors. It accomplishes this by not
delivering the packet if it contains errors. Failures here are due primarily to
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buffer overlfows at intermediate nodes in the network. So to most users, the
behavior of a packet network is not characterized by random loss, but by un-
predictable transport time. This is due to a protocol, invisible to the user, that
retransmits lost packets. Retransmission of packets takes much longer than the
original transmission. In many applications, retransmission of lost packets is
not feasible and the potential for large delay is unacceptable.

If a lost packet is independent of the other transmitted data, then the in-
formation is truly lost to the receiver. But if there are dependencies between
transmitted packets, one could have partial or complete recovery despite losses.
This leads one naturally to use frames for encoding. But the question is: What
are the best frames for this purpose? With an additive noise model for quan-
tization, Goyal and Kovacevi¢[11] show that a uniform frame minimizes mean-
squared error if and only if it is tight. So it is this class of frames - the uniform
normalized tight frames (see Section 2 for the definitions) - which we need to
identify.

Another recent important application of uniform normalized tight frames is
in multiple-antenna code design[7, 17]. Much theoretical work has been done
to show that communication systems that employ multiple antennas can have
very high channel capacities[9, 20]. These methods rely on the assumption that
the receiver knows the complex valued Rayleigh fading coefficients. To remove
this assumption, in Refs. 6 and 18 new classes of unitary space-time signals are
proposed. If we have N transmitter antennas and we transmit in blocks of M
time samples (over which the fading coefficients are approximately constant),
then a constellation of K unitary space-time signals is a (weighted by
VM) collection of M x N complex matricies {®;} for which ®;®; = I. The
nt" column of any ¢, contains the signal transmitted on antenna n as a function
of time. The only structure required in general is the time-orthogonality of the
signals.

Originally it was believed that designing such constellations was a too cum-
bersome and difficult optimization problem for practice. However, in Ref. 19
it was shown that constellations arising in a “systematic” fashion can be done
with relatively little effort. Systematic here means that we need to design high-
rate space-time constellations with low encoding and decoding complexity. It
is known that full transmitter diversity (i.e. where the constellation is a set
of unitary metrices whose differences have nonzero determinant) is a desirable
property for good performance. In a tour-de-force, Hassibi, Hochwald, Shokrol-
lahi, and Sweldens[17] used fixed-point-free groups and their representations
to design high-rate constellations with full diversity. Moreover, they classified
all full-diversity constellations that form a group, for all rates and numbers of
transmitter antennas.

For these applications, and a host of other applications in signal processing,
it has become important that we understand the class of uniform normalized
tight frames. In this paper[6], we will make the first systematic study of this
class of frames.



2 Frames

In this section we will introduce the concepts to be used in the paper.

Definition 1. A family {f;}ics is a frame for a Hilbert space H if there are
constants 0 < A, B satisfying:

ANFIP <SS £ < BIIFIP, for all f € H.

i€l

We call A, B a set of frame bounds for the frame with A the lower frame
bound and B the upper frame bound. We call {f;}icr a tight frame if
A = B and o normalized tight frame if A = B = 1. If ||fi|| = || f;ll, for
all i,j € I this is a uniform frame. If also A = B = 1, we have a uniform
normalized tight frame.

For the basic theory of frames we refer the reader to Ref. 3 and 21. If {f; }ics
is a frame for H, we define the synthesis operator T : (, — H by Te; = f;
where {e;}icr is an orthonormal basis for ££. The analysis operator is the
operator T*. A direct calculation shows that

T*f = (f, fi)ei, forall feH.

iel

Hence,
1T £ =D KF )P
i€l
It follows that:

Theorem 1. Let {f;}ics be a sequence in a Hilbert space H with synthesis
operator T'. The following are equivalent:

(1) {fi}ticr is a frame for H.

(2) T is a bounded, linear and onto map.

(8) T* is an isomorphism.

Moreover, {fi}icr is a normalized tight frame if and only if T is a quotient
map (or equivalently, T* is a partial isometry).

Corollary 1. If{f;}icr is a frame for H then S = TT* is an invertible operator
on H called the frame operator.

Now,

Sf=Y (1.1
icl
It follows that for all f € H,

(SE,1y=D_If )

i€l



Hence, S is an invertible, self-adjoint, positive operator on H with A < S <
BI. So {fi}icr is a normalized tight frame if and only if S = I and we have
reconstruction of any function f € H by:

SF=Y(ST'f. fi)f

iel

We say that two frames {f;}icr and {g;}icr for H are equivalent if there is
an invertible operator L on H for which Lf; = g; for all i € I, and they are
unitarily equivalent if L can be chosen to be a unitary operator. A direct
calculation shows that {S~'/2f;} is a normalized tight frame for any frame {f;}.
In particular, every frame is equivalent to a normalized tight frame.

A useful way to view normalized tight frames is due to Neumark[1] (see also
Han and Larson[16]):

Theorem 2. [Han and Larson] A family {fi}icr in a Hilbert space H is a
normalized tight frame for H if and only if there is a larger Hilbert space H C K
and an orthonormal basis {e;};cr for K so that the orthogonal projection P of
K onto H satisfies: Pe; = f;, for all i € I.

3 Uniform Normalized Tight Frames: Some Ex-
amples

For any natural number N, we write Hy for an N-dimensional Hilbert space.
There are two general classes of uniform tight frames which are commonly used.
The (general) harmonic frames and the tight Gabor frames.

Definition 2. Fiz M > N, |¢;| = 1, and {b;}}¥, with |b;| = —~. Let {c¢;}Y,
be distinct M™ roots of ¢, and for 0 < k < M — 1, let
ok = (cfby, c5ba, -+, cibn).

Then {gzﬁk}i}/[:?)l is a uniform normalized tight frame for Hy called a general
harmonic frame.

For the other general class, we introduce two special operators on L?(R).
Fix 0 < a,b and for f € L?(R) define translation by a as

Taf(t) = f(t - a))

and modulation by b as

Eypf(t) = "™ f ().

If {EpnpTnag}m.nez is a frame for L2(R), we call it a Gabor frame (or a Weyl-
Heisenberg frame). It is clear that this class of frames are uniform. Also, since
the frame operator S for a Gabor frame {Ey,3T009}m, nez must commute with



translation and modulation, each Gabor frame is equivalent to the (uniform)
normalized tight Gabor frame {EmbTMS’l/zg}m,neZ For an introduction to
Gabor frames we refer the reader to Ref. 5 and 18.

Although we would like to classify all uniform tight frames, especially those
which can be obtained by reasonable “algorithms”, this is essentially an impos-
sible task in general because every finite family of norm one vectors in a Hilbert
space can be extended to become a uniform tight frame.

Theorem 3. If {f;}}1, is a family of norm one vectors in a Hilbert space H,
then there is a uniform tight frame for H which contains the family {f;}M .

Proof. For each 1 < i < M choose an orthonormal basis {g;;};jes for H which
contains the vector fi. Now the family {g;;}2, ;c; is made up of norm one
vectors and for any f € H we have

M M
SO T E i =D IFIP = MI|FI1%
=1

i=1 jeJ
O

In the above construction we get as a tight frame bound the number of
elements in the family {f;}}2,. In general this is best possible. For example,
justlet f; = f; forall 1 <i,5 < M.

There is another general class of uniform tight frames (see Ref. 11).

Theorem 4. A family {f; f\g{l is a uniform normalized tight frame for Hy
if and only if {fi}4r is wnitarily equivalent to the frame {Pe;}t" where
{ei}ﬁ\gl'l is an orthonormal basis for Hy41 and P is the orthogonal projection
of Hyy1 onto the orthogonal complement of the one-dimensional subspace of
N+1

Hy1 spanned by Y ;7 e;.

More general classes of uniform tight frames are the full-diversity constella-
tions that form a group given in Ref. 17.

4 Uniform Normalized Tight Frames

There is a general method for getting finite uniform normalized tight frames:

Theorem 5. There is a unique way to get uniform tight frames with M ele-
ments in H = CN or H = RN . Take any orthonormal set {¢;}~_, in CM which
has the property

N
Z |pri|* = ¢, for all i.
k=1

Thinking of the ¢ as row vectors, switch to the M column vectors and divide
by \/c. This family is a uniform tight frame for CN with M elements, and all
uniform normalized tight frames for Hy with M elements are obtained in this
way.



Corollary 2. If {fi}M, is a uniform normalized tight frame for Hy then

M
112 = 22

There is a detailed discussion concerning the uniform normalized tight frames
for R2 in Ref. 11. In Ref. 17 there is a deep classification of groups of unitary
operators which generate uniform normalized tight frames. The simplest case of
this is the harmonic frames. In the theorem below[6], we do not assume that we
have a “group” of unitaries, but instead conclude that our family of unitaries
must be a group.

Theorem 6. A family {(bk}iv‘;l is a general harmonic frame for Hy if and
only if there is a vector ¢y € Hy with ||¢o||*> = 2%, an orthonormal basis {e;}Y,
for Hy and a unitary operator U on Hy with Ue; = c;e;, with {ci}ﬁil distinct

M _roots of some |c| = 1 so that ¢y = Uk¢y, for all0 <k < M — 1.

The picture becomes much more complicated if the uniform normalzied tight
frame is generated by a group of unitaries with more than one generator (see
Ref. 17) or worse, if the uniform tight frame comes from a subset of the elements
of such a group.

5 Frames Equivalent to Uniform Tight Frames

We saw earlier that every frame is equivalent to a normalized tight frame. That
is, given any frame {fi};c; with frame operator S, the frame {S—1/2f;};c; is
a normalized tight frame. Therefore, it is natural to try to find ways to turn
frames into uniform normalized tight frames. As it turns out, this is not possible
in most cases. The following results come from Ref. 6:

Theorem 7. If a frame {f;}icr with frame operator S is equivalent to a uni-
form tight frame, then {S—Y?f;Yicr is a uniform normalized tight frame. In
particular, a tight frame which is not uniform cannot be equivalent to any uni-
form normalized tight frame.

6 Uniform Tight Frames and Subspaces of the
Hilbert Space

As we saw in Theorem 2, there is a unique way to get normalized tight frames
on Hy with M-elements. Namely, we take an orthonormal basis {e;}, for Hys
and take the orthogonal projection Pg, of Hys onto Hy. Then { P, ei}f‘il is
a normalized tight frame for Hy with M-elements. In particular, there is a
natural one-to-one correspondence between the normalized tight frames for Hy
with M-elements and the orthonormal bases for Hj;. The uniform normalized
tight frames for Hy are the ones for which ||Pe;|| = || Pe;l|, for all 1 <4, < M.
In Ref. 6 this is used to exhibit natural correspondences between these families



and certains subspaces of Hy;. Here we treat two frames as the same if they
are unitarily equivalent.

Theorem 8. There is a natural one to one correspondence between the normal-
ized tight frames for Hy with M -elements and the family of all N-dimensional
subspaces of Hyy.

For the uniform case we have Ref. 6:

Theorem 9. Fiz an orthonormal basis {e;}}, for Hy so that if P is the or-
thogonal projection of Hyr onto Hy then {Pe;}M | is a uniform normalized tight
frame for Hy. Then there is a natural one to one correspondence between the
uniform normalized tight frames for Hy with M -elements and the subspaces W
of Hyy for which |Pwe;||> = M/N, for all 1 <i < M.

7 Uniform Dual Frames

Another way to get uniform frames is to find them as alternate dual frames for
a frame.

Definition 3. Let {f;}icr be a frame for a Hilbert space H with frame operator
S. We call {S™'f;}icr the canonical dual frame of {f;}icr. In this case,

F=Y (S fi)fi, forall feH.
iel
So the canonical dual frame can be used to reconstruct the elements of

H from the frame. However, there may be other sequences in H which give
reconstruction.

Definition 4. Let {f;}icr be a frame for a Hilbert space H. A family {g;}ics
is called an alternate dual frame for {f;};cr if

F=> {f.9i)fi, forall feH.

i€l

There are generally many alternate dual frames for a given frame. In fact[16],
a frame has a unique alternate dual frame (i.e. the canonical dual frame) if and
only if it is a Riesz basis. Moreover,[16] no two distinct alternate dual frames
for a given frame are equivalent. For a normalized tight frame, its canonical
dual frame is the frame itself.

We mention some results from Ref. 6 describing the existence of (uniform)
tight dual frames for a given frame.

Proposition 1. If {f;}icr is a normalized tight frame for Hy, then the only
normalized tight alternate dual frame for {fi}icr is {fi}icr itself.

Proposition 2. If {f;}¥ | is a normalized tight frame for Hy and k < 2N,
then the only tight dual frame for {fi}k_, is {fi}k_, itself. If k > 2N then there
are infinitely many (non-equivalent) tight alternate dual frames for {fi}¥_,.



But it is really the uniform case we are interested in.

Proposition 3. If {f;}2Y, is a uniform normalized tight frame for Hy then
there are infinitely many uniform tight alternate dual frames for {f;}2].

We are currently looking into uses for these uniform tight alternate dual
frames in the setting of signal processing, as well as applications of the other
results. An important goal here is to find uniform normalized tight frames with
“structure” which will allow their use in signal processing. Current results show
that the classes with group-based structure are quite limited. The next step
is to find other classes of “computationally efficient” uniform normalized tight
frames as perhaps those for which the operator matrices can be factored in some
simple way.
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