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Abstract

We study frames for robust transmission over a multiple-antenna wireless
system - BLAST. By considering as erased a component received with an SNR
inferior to a given threshold, we place frames in a setting where some of the ele-
ments are deleted. In [1], the authors focused on the performance of quantized
frame expansions up to M — N erased components, the stucture of a frame be-
ing thus preserved. In this paper we consider every possible scenario of erasures
for low-dimensionnal frames and we present optimal designs for corresponding
systems using a small number of antennas.

1 Introduction

Transmission of data in a wireless environment must contend with multipath prop-
agation, a characteristic historically viewed as an impairment which causes signal
fading. Bell Labs Layered Space-Time system (BLAST) was developed to exploit
this rich scattering environment, by using multiple transmitters and receivers, each
with its own antenna, to create parallel subchannels that transmit independent data.
This paper uses frames to provide robustness against erasures encountered in the
transmission over such a wireless system. The analysis of a system with a small num-
ber of antennas and therefore with frames of low dimensions leads to optimal designs
minimizing the mean-square error.

1.1 Bell Labs Layered Space Time System

BLAST is a communication technique which exploits the multipath characteristics
of the wireless channel in an efficient manner to enhance capacity. Jerry Foschini
and Mike Gans, worked out a theoretical framework for BLAST in 1995 [2]. Foschini
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proposed two layered space-time architectures: Diagonal BLAST (D-BLAST) and
Vertical BLAST (V-BLAST), which is simpler and more practical, yet capable of
attaining a hefty portion of the Shannon spectral efficiency.

BLAST assumes a rich scattering environment. t is a single user system that uses
multiple transmitters and receivers, each with its own antenna, to create a number
of parallel subchannels, each carrying independent data. The transmitted signals all
occupy the same bandwidth simultaneously, so spectral efficiency is roughly propor-
tional to the number of subchannels. At the receiver, BLAST uses a combination
of linear and nonlinear detection techniques to disentangle the mutually interfering
signals. The richer the scattering, the more subchannels can exceed the capacity
obtained when the channel is treated conventionally, i.e. as a single (scalar) channel.

e now explain V-BLAST. First a stream of data is demultiplexed
into M substreams of equal rate. ach substream is encoded and associated to an
antenna. The communication is organized in bursts of short enough duration so
that we can assume the channel essentially unchanged during a burst. However,
between two consecutive bursts, the channel may change substantially. Moreover, we
assume that the channel is unknown to the transmitter but learned by the receiver
through a training phase, during which known signals are transmitted and processed
at the receiver. Suppose we have a rate of  bits per symbol. Then bits are
demultiplexed in  sets, each going to one di erent antenna. t is asif di erent
users sent their message independently of one another. By chopping up , there is
no loss in overall throughput. Although the probability of error increases, the overall
capacity is not reduced as the receiver knows the matrix transfer matrix

The processing at the receiver is organized around
three phases: (a) interference nulling, where the interference from yet to be detect-
ed substreams is pro ected out, (b) interference cancelling, where interference from
already detected substreams is subtracted out and (c) compensation which enables
stronger elements of the received signal to compensate for the weaker elements.

The capacity per dimension
is limited by the worst of all the M transmitted blocks, since we impose that all
transmitters transmit at the same rate. Furthermore, a transmission is considered
successful if all M blocks are correctly received.

By writing , with 0 1, we get the following large-M limit:
log [1 ( 1)] :
being the signal-to-noise ratio (SNR) at each receive antenna. n the limit of a
large number of antennas, the V-BLAST Shannon capacity grows linearly with the
number of antennas.

1. ramesa dt eStr ct re t e r p sed System

Frames, providing redundant representations in contrast to bases, have been used
in diverse areas for di erent reasons. They provide resilience to additive noise [3],
resilience to quantization [1], numerical stability of reconstruction [3], and greater
freedom to capture signi cant signal characteristics [4, 5]. The redundancy of a frame
can also mitigate the e ect of losses in packet-based communication systems [1]. A
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ig. 1 Abstraction of a communication system using a quantized frame expansion. The

signal vector is expanded with a frame operator  to give the frame coe cient vector

. The scalar quantization of gives , which is transmitted over a BLAST system

with  transmit and  receive antennas that erases some components. A reconstruction
is computed from the received vector

good introduction on frames can be found in [3, Ch. 3].
Similarly to [1], our aim is to exploit the resilience of frame expansions to losses.
This resilience is a result of the redundancy a frame representation brings. The

communication system we studied is presented Fig. 1. e denote the -valued
information to be communicated by . The source vector is represented through a
frame expansion with the frame operator , yielding . The scalar

quantization of the frame expansion coefficients gives lying in a discrete subset of

The transmission is organized around a system using BLAST with  transmit
and receive antennas. According to the SNRs coming from the transmitters,
we decide to abstract the e ect of the transmission as erasures of some components
of . e systematically discard a component if the SNR is below a given threshold.

The decoder receives only of the quantized output sequences, where e is the
number of erasures during the transmission. n [1] it was assumed that there were no
more than erasures. Now we consider every possible case by using a statistical
model for the input sequence. e thus consider the source to be a zero-mean, white,
Gaussian vector with covariance matrix . e use entropy-coded uniform
quantization ( C ). e denote the distortion-rate performance of C on a
Gaussian variable with variance by (). For coding at a total rate of  bits
per component of | bits are split among  descriptions. Thus the quantization
noise power  is equal to (—). The reconstruction process is linear and uses
the pseudoinverse of the frame operator. For more details about quantization and
reconstruction, the reader in encouraged to consult [1].

e ultimately want to design frames that give good MS performance, for which
the rst step is to compute the e ect of erasures on the MS | considering both the
cases where the structure of the frame is preserved and when the number of erasures
being too large, we do not have a frame anymore. e then concentrate on optimizing
the frame design in systems with a small number of antennas in particular, we study
the optimization of 3 2 frames in a system with 3 transmit and 3 receive antennas.

unti d r n ion it r ur

n [1], the authors studied the e ect of erasures on the structure of an frame
and came to the conclusion that the deletion of more than vectors leaves
something which is no more a frame but that it is possible to nd uniform frames
such that we still have a frame for any erasures of up to components. Here, we



assume such frames . After recalling the results found for less than erasures
in [1], we study the scenarios with more than erasures, which require the
de nition of a statistical model for the source. e then present the criteria that will
rule our optimizations.

1 ec str cti it Lesst a ras res 1
Denote the index set of erasures by are lost. To the decoder it looks
as if a quantized frame expansion were computed with the frame ,
assuming  is a frame.The e ective frame operator is , where  captures
the losses is the ( ) matrix obtained by deleting the -numbered rows
from an identity matrix, with
hen there are at most erasures, the optimal reconstruction uses the dual
of the frame |, not the dual of the original frame . Denote the MS with
erasure set by MS . sing the frame operator associated with | the MS
has been determined in [1]:
— , where ) is the set of eigenvalues of
A useful equivalent form is tr(( ) ).
1.1 S it e ras re
Computing the MS when there is one erasure from a frame gives
1 1
MS 1 — 1 MS (1)

This result has a simple form and is independent from the erased component. Note
that deleting one element from a uniform tight frame fails to leave a frame if and
only if the original frame is a basis, the redundancy ratio is one. The MS (1)
obtained when the original frame is tight is both average-case and minimax optimal.

d. S it ras res

Limiting our attention to tight frames, the computation of the MS when a tight
frame is sub ect to an arbitrary number of erasures gives

MS 1 — MS (2)

with  being the eigenvalues of . n this case, tr( )
tr( ) . The minimum of (2) is obtained when each  is equal to 1 provided
this is feasible.

f , 1, 12 if and only if the erased vectors are pairwise
orthogonal. Then MS orthogonal erasures 1 —— MS

f , 1t is not possible to have eigenvalues equal to 1 because there will be
at most  non-zero eigenvalues. Denoting the non-zero eigenvalues ,MS



1 —— MS  This MS is minimized when , 12

which occurs when the form a tight frame.
S it ras res
hen more than components are erased, we do not have a frame anymore.

The decoder has less than a basis representation of . The reconstruction depends
on the source which can be orthogonally decomposed as

where (3)

Since the source is Gaussian, we know that  and are independent. That is the
reason why, the decoder not only has no direct measurement of  but it has no way
to estimate aside from using its mean which equals zero. The dimension of is

( ). Thus, the distortion introduced equals —(  ( )) . The received
coefficients provide a quantized basis representation of . The basis will in general
be nonorthogonal. Therefore, the distortion per component will exceed ( )

by a constant factor ~ which depends on the skew of the basis. e conclude

MS ( ) — (4)
The constant factor  is computed as follows: Recall that with more than ( )
erasures we do not have a frame anymore, thus is not invertible. e perform

a singular value decomposition of

0
010

where is a unitary matrix. Thus, is simply given by the trace of

1 a el ta es

Recall that we decided to abstract the transmission with BLAST by the erasure on
some components. The antennas are not identical and can be dependent on one
another. Thus, they have di erent probabilities of outage.

ample 1

Let  be the probability of the system states, being the set of erased components.
Then, we de ne the overall average distortion as

e will consider optimal the design that minimizes the overall average distortion.
n the following section, we discuss optimal frame design for a case of practical interest.
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ig. xample of a probability distribution for the di erent system states with transmit
and receive antennas. The value along the horizontal axis has to be converted into a
binary representation , with if substream i fails and 1 otherwise.

tud o r ctic

The multiple-antenna systems with BLAST generally use a small number of antennas.
e thus decided to analyze in detail the optimization in the case of a 3 2 frame,
that corresponds to a system using BLAST with 3 transmit and 3 receive antennas.
e consider sending a two-tuple source over three channels. The source [ |
has independent zero-mean Gaussian components with variance . The frame F
produces a vector of three descriptions [ ] . The descriptions are
then quantized to give [ ]. Although we discussed mostly uniform frames,
here we lift the restriction and consider an arbitrary frame. Call the covariance
matrix of y. As the source has independent components and F is a linear operator,
is also a vector of independent components. The covariance matrix, thus diagonal,

can be written as ( ). edenote ( )by ,1 3 and
1 2.
1 S it 1
Recall that for any number of erasures up to components, it is possible to
nd frames such that is still a frame. The dual of the frame is used

for optimal reconstruction. The MS has been determined in Section 2:

« )

0 n the case of no erasures, the MS can be easily determined from
the trace of ( )

1

The distortion-rate performance of C on a Gaussian variable with variance
connects the coding rate to the quantization noise power. So we get

= (©

2 2 2 1
3 3 3 3

Wl



Thus, combining (5) and (6), the expected squared error per component is given
by

1 2 ( ) )
6 3 ( )

1 Now consider the case of one erased component. Let us assume
that the erased component is . is still a frame and its associated
frame operator is sing the trace of ( ), we can write
Again, connects the coding rate to the quantization noise power.

1 2 2 1 2
2 3 3 3 3

Then we have,

[\
—~
~—

- ()

3 4 )
Similarly, if the erased components are respectively and , the
mean square errors are given by :
2 ) 2 )
3 4 ) 3 A4( )
(9)
S it 1
2

According to Section 2.1.2, the deletion of two components leaves a set that is no

longer a frame. can be decomposed as in (3). Suppose that the two last components
were lost. The MS has been determined in (4): - - . The

coefficient  is determined using a singular value decomposition of

Finally, the coefficient is given by the trace of _
Noting that — ) — , we get

N |
DN | =

[N}
w



Note that the MS , in the case of two erasures, does not depend on the frame. This
can be explained by the fact that the source is isotropic which implies that the dis-
tortion obtained is the same whatever component is received.

3
All the components are lost. Thus, the decoder has no way to estimate  besides
using its mean. This introduces a distortion of

erall era e ist rti per mp et

According to Section 2.2.1, the overall average distortion is

As the rst term does not depend on the frame, we only consider the second
bracketed term in the optimization. e denote this term by . Combining (7)-(10),
we can complete the computation of

L) !
— 6 ( ) 4 )
1 ( ) 1 ( )

4 4

e will restrict the optimization to the case of uniform frames, that is, frames

with 1 for k 1,2,3. The frame operator  can then be rewritten as
(sin  cos ) with 123.
sing (11), x 0 and write:
3 1
— 2 sin( ) sin( ) sin ( )
1 1 1
_— _— 12
sin ( ) sin () sin () (12)
Due to symmetry, if we suppose ( ) [ [ [ we can state that if

( ) [0 2[ [ 2 0] minimizes the distortion , then
( ) ( ): ( )i ( ),
( )s( )y( ) are also solutions. n addi-
tion, there is only one value of ( ) which minimizes the distortion in | [ [ [.
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ig. _— as a function of and . ight pairs minimize the distor-

tion. They all correspond to uniform tight frames.

.1 ase de tical te as

Let us rst consider the case where the antennas have equal probability of outage i.e.
. Then (12) reduces to

3 1 1 1

— 2(sin sin sin ( ) sin sin sin (

To nd the frame that minimizes the distortion, we di erentiate the distortion with re-

spect to and . e conclude that 2 3 and 3 minimizes the
average overall distortion, which corresponds to the uniform tight frames. n partic-
ular ( 3 3) is a solution belonging to the interval [0 2] [ 2 0.

n conclusion, a uniform tight frame minimizes the distortion and the minimum
does not depend on the uniform tight frame, which con rms that there is a unique
equivalence class of uniform tight frames for 2 and 3. Furthermore, the
design of the frame is independent of the probabilities of failure. This comes from
the fact that the uniform tight frames are optimal both in the case of zero and one
erasures.

As an example, Figure 3 shows the inverse of =) as a function of and for

25 1 6 e cansee the eight di erent peaks corresponding
to the minima of the distortion: ( ) (3 2 3)( ) (3 3,
( ) (23 3)( ) (2 32 3)( ) (3 3,
( ) (32 3)( ) (2 3 2 3)( ) (2 3 3)

ase e eaer te a

As our nal analysis, let us consider the case when one antenna has a higher proba-
bility of outage. For instance, we suppose: , . e can then consider
0 as well as 0. Then (12) becomes —

e nd that the minimum distortion is reached for 0, 2
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ig. xample of transmitted vs. received vectors for a the optimal frame design and
b a bad frame design.  denote transmistted while denote decoded points.

for all k . Figure 4 shows an example of transmission of vectors using respectively
the optimal frame design (i.e. 2) and a bad frame design. The experimental
setting uses one bad transmitting antenna and two good ones. The axes correspond
to the coordinates of the transmitted and received vectors. e can see a remarkable
di erence between the two designs.

onc u ion

n this paper, we considered the e ect of every possible case of erasures on the per-
formance of quantized frame expansions. The optimization of the frame design in the
context of a mutiple-antenna wireless system has further validated the importance
of uniform tight frames. e continue to investigate the design of good frames for a
larger number of antennas.
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