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ABSTRACT

We give a physical interpretation for finite tight frames along the lines of Columb’s Law in Physics. This allows
us to use results from classical mechanics to anticipate results in frame theory. As a consequence, we are able
to classify those frames for an N -dimensional Hilbert space which are the closest to being tight (in the sense
of minimizing potential energy) while having the norms of the frame vectors prescribed in advance. This also
yields a fundamental inequality that all finite tight frames must satisfy.

1. INTRODUCTION

If H is a Hilbert space, a sequence {ϕn}M
n=1 (M is finite or infinite) is a frame for H if there are constants A, B > 0

so that for all ϕ ∈ H,

A‖ϕ‖2 ≤
M∑

n=1

|〈ϕ, ϕn〉|2 ≤ B‖ϕ‖2.

If A = B = λ, {ϕn}M
n=1 is a λ-tight frame. If λ = 1, it is a Parseval frame; if ‖ϕn‖ = ‖ϕm‖ for all 1 ≤ n, m ≤ M

it is a equal-norm frame; and if ‖ϕn‖ = 1 for all n it is a unit-norm frame. The importance of λ-tight frames
is that they allow simple reconstruction of the elements of H. It is known that {ϕn}M

n=1 is a frame for H if and
only if

Sϕ =
M∑

n=1

〈ϕ, ϕn〉ϕn,

is an invertible operator on H called the frame operator. To reconstruct an element ϕ ∈ H we write

ϕ = SS−1ϕ =
M∑

n=1

〈S−1ϕ, ϕn〉ϕn.

So reconstruction requires inverting the frame operator which is often difficult or impossible in practice. It follows
that for all ϕ ∈ H we have

〈Aϕ, ϕ〉 = A‖ϕ‖2 ≤
M∑

n=1

|〈ϕ, ϕn〉|2 = 〈Sϕ, ϕ〉 ≤ B‖ϕ‖2 = 〈Bϕ, ϕ〉.

Hence, AI ≤ S ≤ BI and so our frame is λ-tight if and only if S = λI. So if {ϕn}M
n=1 is a λ-tight frame then for

all ϕ ∈ HN ,

ϕ =
1
λ

M∑
n=1

〈ϕ, ϕn〉ϕn.

So for applications we need to construct tight frames so the frame operator is immediately invertable.
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2. COLUMB’S LAW AND THE FRAME FORCE

The authors of2 investigated the common notions of what it means to equally distribute a collection of electrons
upon a conductive spherical shell. Physically, in the absence of external forces the charged particles will repel
each other according to the inverse-square Columb force law

CF (φm, φn) =
φm − φn

‖φm − φn‖3
.

Intuitively, the corresponding optimal arrangements are those which minimize the internal pressure of the points
upon each other. Specifically, given M distinct electrons located at points {φm}M

m=1, one seeks to minimize the
total corresponding potential energy of the system,

CP ({φm}M
m=1) =

M∑
m=1

∑
n �=m

1
‖φm − φn‖

.

And though only a global minimizer corresponds to true equidistribution in this context, local minimizers are
also of physical interest, in that they correspond to collections of points in equilibrium.

It is known that local minimizers of potential energy need not be global minimizers. For example, a dodeca-
hedron inscribed in a sphere is a local minimizer of potential energy while there are different configurations with
smaller total potential energy.

In,1 Benedetto and Fickus defined a central force between real unit norm vectors φm and φn (called the
frame force) by

FF (φm, φn) = 2〈φm, φn〉(φm − φn).

The important point here is that the frame force for orthogonal vectors is 0. Also, vectors having an acute angle
between them are repelling while vectors having an obtuse angle are attracting. So “charged particles” under
the frame force are trying to reach equilibrium by becoming as orthogonal as possible. There are some other
unnatural aspects to the frame force. For one, it needs a universal reference point—a fixed origin. Also, the
force field generated by a point is not conservative. That is, the work required to get from one point to another
depends upon the particular path taken. However (and this is all we need for our applications) the frame force
is conservative when the points are constricted to lie on a sphere.

3. THE FRAME POTENTIAL

Since we need our vectors to lie on possibly different spheres, we need a corresponding weighted frame force
(potential). This makes the physical systems much more difficult to understand intuitively. That is, visualizing
the movements of M charged particles restricted to M concentric spheres can challenge the imagination. However,
this can be greatly simplified by “projecting” the dynamics down onto the unit sphere.

Consider two points, each of whose movement is restricted to a sphere of a given, yet arbitrary radius. That
is, given am, an > 0, consider φm with ‖φm‖ = am and φn with ‖φn‖ = an. Note that

‖φm − φn‖2 = ‖φm‖2 − 2〈φm, φn〉 + ‖φn‖2,

= a2
m − 2〈φm, φn〉 + a2

n,

and so we may rewrite the frame force between these points as

FF (φm, φn) = 2〈φm, φn〉(φm − φn),
= (a2

m + a2
n − ‖φm − φn‖2)(φm − φn).

As in the Columb case, the pairwise potential between these points may be found by integrating the “magnitude”
of this central force,

p(x) = −
∫

(a2
m + a2

n − x2)xdx =
1
4
x2[x2 − 2(a2

m + a2
n)],



and evaluating at x = ‖φm − φn‖,

P (φm, φn) = p(‖φm − φn‖) = 〈φm, φn〉2 −
1
4
(a2

m + a2
n)2.

The total potential contained within the physical system is the sum of all pairwise potentials,

TP ({φm}M
m=1) =

∑
m,n

|〈φm, φn〉|2 −
1
4

∑
m,n

(a2
m + a2

n)2

However, we may disregard the additive constant, as it has no physical significance. This then leads to the frame
potential definition of Benedetto and Fickus.1

Definition 3.1. The frame potential of a sequence {φm}M
m=1 ⊆ HN is

FP ({φm}M
m=1) =

M∑
m=1

M∑
n=1

|〈φm, φn〉|2.

Remark 3.2. Given two sequences {φm}M
m=1 and {ψm}M

m=1 in R
N with ‖φm‖ = am = ‖ψm‖ for all m,

FP ({ψm}M
m=1) − FP ({φm}M

m=1) is the work required to transform {φm}M
m=1 into {ψm}M

m=1 while remaining on
the spheres of radii {am}M

m=1.

The frame potential is measuring how close a frame is to being orthogonal.

For any frame {ϕn}M
n=1 for HN with frame bounds A, B, and frame operator S we have

A‖ϕn‖2 ≤
M∑

m=1

|〈ϕn, ϕm〉|2 ≤ B‖ϕn‖2.

Hence,

A

M∑
n=1

‖ϕn‖2 ≤ FP ({ϕn}M
n=1) ≤ B

M∑
n=1

‖ϕ‖2.

It is known that

TraceS =
M∑

n=1

‖ϕn‖2.

In particular:
ATraceS ≤ FP ({ϕn}M

n=1) ≤ BTraceS.

For a tight frame, S = AI so TraceS = NA and

FP ({ϕn}M
n=1) = NA2.

So for a Parseval frame (and hence for an orthonormal basis)

FP ({ϕn}M
n=1) = N.

4. MINIMIZERS OF THE FRAME POTENTIAL

The frame potential is measuring how close a frame is to being orthogonal. In particular, we will see that if F is
the family of frames with lower frame bound λ then the λ-tight frames are the minimizers of the frame potential
over F . This theorem gives us a way to identify tight frames. i.e. They are the minimizers of the frame potential
on certain families of frames. Our goal is to identify those families of frames which have minimizers of the frame
potential and for which these minimizers must be tight.



The important point here is the fact that the minimizers of the frame potential are tight frames1 (the proof
below is new).

Proposition 4.1. Let HN be an N -dimensional Hilbert space, 0 < λ and let

W =

{
{φm}M

m=1|
M∑

m=1

‖φm‖2 = λ

}
.

1. If M ≤ N , the minimum value of the frame potential on W is λ2/M and the minimizers are orthogonal
sequences of vectors all with the same norm

√
λ/M .

2. If M ≥ N , the minimum value of the frame potential on W is λ2/N and the minimizers are the tight
frames with tight frame bound λ/N .

Proof.

1. We compute:

FP ({φm}M
m=1) =

m∑
n,m=1

|〈φn, φm〉|2

=
M∑

m=1

‖φm‖4 +
∑
n �=m

|〈φn, φm〉|

≥
M∑

m=1

‖φm‖4.

Since we assumed that
∑M

m=1 ‖φm‖2 = λ , by a standard application of Lagrange multipliers, the right-hand
side of (1) is minimized when

‖φm‖2 = ‖φn‖2, for all 1 ≤ m, n ≤ M.

In this case ‖φm‖2 = λ/M , for all 1 ≤ m ≤ M and so

M∑
m=1

‖φm‖4 =
λ2

M
.

This minimum is achieved when we have equality in (1), and hence∑
n �=m

|〈φn, φm〉|2 = 0,

showing that {φm}M
m=1 is an orthogonal sequence.

2. When M > N , we cannot use the same approach, since we cannot find M mutually orthogonal vectors
φm. By (1), minimizing the frame potential under our constraint means minimizing

∑n
n=1 λ2

n under the
constraint

∑N
n=1 λn =

∑M
m=1 ‖φm‖2 = λ. Again, a standard application of Lagrange multipliers yields that

the minimizers satisfy λn = λ/N , for all 1 ≤ n ≤ N . Hence, the frame operator for {φm}M
m=1 is (λ/N)I.

That is, a minimizer of the frame potential is a tight frame with the tight frame bound λ/N . Since there
always exist such tight frames and these are clearly minimizers of the frame potential, we have the proof.

We have immediately:



Corollary 4.2. Given {φm}M
m=1 ⊆ HN ,

FP ({φm}) =
M∑

m=1

M∑
n=1

|〈φn, φm〉|2 ≥

(∑M
m=1 ‖φm‖2

)2

N

with equality if and only if {φm}M
m=1 is a tight frame.

An important result of Benedetto and Fickus1 is that local minimizers of the frame potential for unit norm
frames are also global minimizers. We present here a generalization of this.

Proposition 4.3. Let {ϕm}M
m=1 be a frame for HN with frame operator S and eigenspaces {Eλi}L

i=1 and
λ1 > λ2 > · · ·λL. Define

F : SK
N → R,

(where K is either R or C) by

F (Φ) =
M∑

m=1

|〈Φ, φm〉|2.

Then the sphere of EλL
is the set of local minimizers of F . Hence, the local minimizers of F are global minimizers.

Proof. We will do the real case since it is quite illuminating. The complex case follows from the same proof
with notational changes. Since F is continuous and non zero and {ϕm}M

m=1 spans K
N , by Lagrange Multipliers,

there is a λ 	= 0 so that the minimizers of F satisfy:

∇F = λ∇G,

where for Φ = (Φ1,Φ2 · · · , · · · ,Φn) we have

G(Φ) =
N∑

i=1

Φ2
i − 1.

Hence,
∂iλG = 2λΦi, for all 1 ≤ i ≤ N.

Also,

F (Φ) =
M∑

m=1

[
N∑

k=1

Φk〈ϕm, ek〉
]2

.

Hence,

∂iF =
M∑

m=1

2

[
N∑

k=1

Φk〈ϕm, ek〉
]
〈ϕm, ei〉 = 2

M∑
m=1

〈Φ, ϕm〉〈ϕm, ei〉.

Finally,

Φi = (2λ)−1
M∑

m=1

〈Φ, ϕm〉〈ϕm, ei〉 = (2λ)−1

〈(
M∑

m=1

〈Φ, ϕm〉ϕm

)
, ei

〉
.

Hence,

Φ = (2λ)−1
M∑

m=1

〈Φ, ϕm〉ϕm.

We now have that a minimizer of F is an eigenvector of S. Next we show that these eigenvectors are all in EλL
.

We proceed by way of contradiction. If Φ is a local minimizer of F and Φ ∈ Eλi for some 1 ≤ i < L, choose
e1 ∈ EλL

with ‖e1‖ = 1. Fix 0 < ε < 1 and let

Ψ = εΦ +
√

(1 − ε2)e1.



So ‖Ψ‖ = 1 and

F (ψ) =
M∑

m=1

|〈Ψ, ϕm〉|2 = ε2λi + (1 − ε2)λL < λi = F (Φ).

This contradiction completes the proof.

Definition 4.4. A frame {ϕm}M
m=1 for HN with frame operator S is called a FF-critical sequence if each φm is

an eigenvector for S.

We now have,

Proposition 4.5. If {ϕm}M
m=1, M ≥ N is a sequence of vectors in HN with frame operator S over its span, and

φi is a local minimizer for the frame potential over the set:

Ω = {{ϕm}m�=i ∪ {Φ} | Φ ∈ HN and ‖Φ‖ = ‖ϕi‖},

then ϕi is an eigenvector for S. Hence, any locally minimal sequence for the frame potential over Ω is an
FF-critical sequence. Moreover, any minimizer for the frame potential over Ω must span HN .

Proof. An obvious compactness argument guarantees that there is some sequence {ϕm}M
m=1 ∈ Ω which

minimizes the frame potential. It is not clear, and will be addressed at the end of the proof, that the minimizers
span the space HN . We note that:

FP ({{ϕm}m�=i ∪ {Φ}) =
∑

n,m �=i

|〈ϕn, ϕm〉|2 + |〈Φ,Φ〉|2 + 2
∑
m�=i

|〈Φ, ϕn〉|2

= FP ({ϕm}m�=i) + 2F ({Φ}) − ‖ϕi‖4,

where
F ({Φ}) =

∑
m�=i

|〈Φ, ϕm〉|2.

It follows that the minimizers of FP over Ω are the minimizers of F . By Proposition 4.3, ϕi is an eigenvector
for {ϕm}m�=i with eigenvalue say λ. Now,

M∑
m=1

〈ϕi, ϕm〉ϕm =
∑
m�=i

〈ϕi, ϕm〉ϕm + 〈ϕi, ϕi〉ϕi

= λϕi + ‖ϕi‖2ϕi = (λ + ‖ϕi‖2)ϕi.

Suppose {ϕm}M
m=1 ∈ Ω is a minimizer for the frame potential over Ω. We proceed by way of contradiction.

Suppose span {ϕm}M
m=1 	= HN . Let S be the frame operator for {ϕm}M

m=1 over its span with eigenspaces {Eλi
}L

i=1.
By the first part of the proof, the vectors φm sit in the Eλi . For every 1 ≤ j ≤ L let Ij = {m | φm ∈ Eλi}. If
{ψm}M

m=1 is a λ-tight frame, it is known (and a simple calculation to verify) that ‖ψi‖2 ≤ λ and ‖ψi‖2 = λ if and
only if ψi⊥ span {ψm}m�=i. Now, since M ≥ N and span {ϕm}M

m=1 	= HN , it follows that there is a 1 ≤ j ≤ L
so that |Ij | > dimEλj

. Hence, there is some i ∈ Ij with ‖ϕi‖2 < λj . Now choose e1 ∈ HN with ‖e1‖ = 1 and
e1⊥{ϕm}M

m=1. Define {ψm}M
m=1 ∈ Ω by: ψm = φm for all 1 ≤ m 	= i ≤ M and let ψi = ‖ϕi‖e1. We will obtain a

contradiction by showing that FP ({ψm}M
m=1) < FP ({ϕm}M

m=1).

FP ({ψm}M
m=1) = FP ({ψm}m�=i + ‖ψi‖4

= FP ({ϕm}m�=i) + ‖ϕi‖4

=
∑

n,m �=i

|〈ϕn, ϕm〉|2 + ‖ϕi‖4

=
M∑

n,m=1

|〈ϕn, ϕm〉|2 + ‖ϕi‖4 − 2
M∑

n=1

|〈ϕi, ϕn〉|2 + ‖ϕi‖4

= FP ({ϕm}M
m=1) + 2‖ϕi‖4 − 2λj‖ϕi‖2

= FP ({ϕm}M
m=1) + 2‖ϕi‖2(‖ϕi‖2 − λj) < FP ({ϕm}M

m=1).



This contradiction completes the proof of the Theorem.

The previous proposition gives a fairly exact form for local minimizers of the frame potential.

5. THE WEIGHTED FRAME FORCE (POTENTIAL)

Though the frame potential is the potential energy contained within a system of points of equal weight on spheres
of varying radii, we form an equivalent situation by considering points of varying weight all lying on a common
sphere.

Definition 5.1. Let S denote the unit sphere in R
N .

• The weighted frame force is

WFF : [0,∞) × [0,∞) × S × S → R
N ,

WFF (wm, wn, ψm, ψn) = 2wmwn〈ψm, ψn〉(ψm − ψn).

• The weighted frame potential is

WFP ({wm}M
m=1, {ψm}M

m=1) =
M∑

m=1

M∑
n=1

wmwn|〈ψm, ψn〉|2.

We write,
WFP ({a2

m}M
m=1, {ψm}M

m=1) = FP ({φm}M
m=1)

Thus, we shall no longer view the frame potential as the total potential energy of a system of points of mass
1 restricted to spheres of radius am. Rather, it shall be perceived more naturally as the energy of a system of
points of masses a2

m restricted to a single sphere of radius 1.

In our situation, the points experiencing the frame force are constrained to move upon spheres. Therefore,
only the components of the frame force acting upon a point which are tangent to the surface of the sphere at
that point make a contribution to the frame potential. Thus, given φm, φn ∈ R

N with ‖φm‖ = am, we wish to
explicitly find the component of FF (φm, φn) which lies tangent to the sphere of radius am at φm. Of course,
to find the tangential component, we need only subtract the normal component from the whole. And since the
surface in question is a sphere, the normal component of the force is simply the projection of the force onto the
line passing through φm, i.e.

〈FF (φm, φn), φm〉
〈φm, φm〉 φm.

We therefore simplify

FF (φm, φn) − 〈FF (φm, φn), φm〉
〈φm, φm〉 φm

= 〈φm, φn〉(φm − φn) − 〈φm, φn〉
(φm, φm〉 − 〈φm, φn〉

〈φm, φm〉 φm

= 〈φm, φn〉
( 〈φm, φn〉
〈φm, φm〉φm − φn

)
.

This leads us to:

Proposition 5.2. Given a sequence {φm}M
m=1 ⊆ R

N with ‖φm‖ = am, the following are equivalent

1. {φm}M
m=1 is a tight frame for R

N ,

2.
∑M

m=1 FF (φ, φm) = 0 for φ ∈ R
N ,

3.
∑M

m=1 FF (w, a2
m, φ, φm) = 0 for all φ ∈ S(N−1).



6. MINIMIZERS OF THE WEIGHTED FRAME POTENTIAL

To identify the minimizers of the weighted frame potential, we need an observation about decreasing sequences
of positive numbers. Basically, this result compares the terms of the sequence to the dimensional average of the
following terms.

Proposition 6.1. Given any sequence {am}M
m=1 ⊂ R with a1 ≥ · · · ≥ aM ≥ 0, and any N ≤ M , there is a

unique index N0 with 1 ≤ N0 ≤ N , such that the inequality

an >

∑M
m=n+1 am

N − n
(1)

holds for 1 ≤ m < N0, while the opposite inequality

an ≤
∑M

m=n+1 am

N − n
(2)

holds for N0 ≤ m ≤ N .

Proof. Let I = {n : (N − n)an ≤ ∑M
m=n+1 am}. Now N ∈ I 	= φ. Also, if n ∈ I then n + 1 ∈ I as the

following shows:

[N − (n + 1)]an+1 = −an+1 + (N − n)an+1

≤ −an+1 + (N − n)an

≤ −an+1 +
M∑

m=n+1

aM

=
M∑

m=n+2

am

Letting N0 be the minimum index in I completes the proof.

Corollary 6.2. Let a1 ≤ a2 ≥ · · · ≥ aM > 0 and N ≤ M . The following are equivalent:

1. For all 1 ≤ d < N ,

a2
d ≤

∑M
m=d+1 a2

m

N − d

2.
∑M

m=1 a2
n ≥ Na2

1

3. If λ =
√

N∑ M
m=1 a2

m

,then λam ≤ 1, for all 1 ≤ m ≤ M .

Moreover, if {φm}M
m=1 is a tight frame for HN with ‖φ1‖ ≥ ‖φ2‖ ≥ · · · ≥ ‖φM‖, then {‖φm‖2}M

m=1 satisfies
1-3 above.

Proof. For 1 implies 2, let d = 1 in 1. 2 implies 1 follows from Proposition 4.1 since 2 implies that N0 = 1.
The equivalence of 1 and 3 is immediate.

For the moreover part, let {en}M
n=1 be an orthonormal basis for HN with φ1 = a1e1. Then

‖φ1‖2 ≤
M∑

m=1

|〈φm, e1〉|2 =
TrS
N

=
∑M

m=1 ‖φm‖2

N

We call 1 in the above proposition the fundamental inequality for tight frames.



The proof of the next theorem is a serious piece of work relying heavily on a deep intuitive understanding of
the frame potential, and so we refer the reader to2 for the details.

We will denote by S(a1, · · · , am) the product of spheres in R
N of radii {a1, · · · , am}.

Theorem 6.3. Given a sequence a1 ≥ a2 ≥ · · · ≥ aM > 0 and any N ≤ M , let N0 be the smallest index n for
which

a2
n ≤

∑M
m=n+1 a2

m

N − n

holds. Then any local minimizer of the frame potential

FP : S(a1, · · · , am) → R

is of the form
{φm}M

m=1 = {φm}N0−1
m=1 ∪ {φm}M

m=N0

where {φm}N0=1
m=1 is an orthogonal set for whose orthogonal complement {φm}M

m=N0
forms a tight frame.

An important consequence of Theorem 6.3 is that we can only get tight frames for HN when N0 = 1. This
case can be summarized as:

Corollary 6.4. Fix N ≤ M and a1 ≥ a2 ≥ · · · ≥ aM > 0. The following are equivalent:

1. There is tight frame {φm}M
m=1 for Hn satisfying ‖φm‖ = am, for all 1 ≤ m ≤ M .

2. {am}M
m=1 satisfies the fundamental inequality for tight frames.

As we discussed earlier, local minimizers of the Columb potential are not necessarily global minimizers. How-
ever, for the frame potential, we do have that local minimizers are global minimizers. Hence, the characterization
of Theorem 6.3 applies to all minimizers and yields the following result from.2

Corollary 6.5. Given a sequence {am}M
m=1 ⊂ R with a1 ≥ · · · ≥ aM > 0, and any N ≤ M , let N0 denote the

smallest index n such that

a2
n ≤

∑M
m=n+1 a2

n

N − n

holds. Then, for the frame potential FP : S(a1, · · · , aM ) → R,

1. The minimal value is
∑N0−1

m=1 a4
m +

(
∑ M

m=N0
a2

m)2

N−N0+1 .

2. Any local minimizer is a global minimizer.

3. The minimizers are precisely those sequences where {φm}N0−1
m=1 is an orthogonal set for whose orthogonal

complement {φm}M
m=N0

forms a tight frame.

7. CONCLUDING REMARKS

Finite tight frames are fundamental for a broad spectrum of frame applications. Until now it was thought that
such frames were sparse and they could not be constructed for many applications. This paper,2 combined with a
considerable number of recent refinements3–8 shows that actually tight frames are everywhere and can be custom
built for most applications.
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