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ABSTRACT

It is a challenging task to design orthogonal filter banks, especially multidimensional (MD) ones. In the one-
dimensional (1D) two-channel finite impulse response (FIR) filter bank case, several design methods exist. Among
them, designs based on spectral factorizations (by Smith and Barnwell) and designs based on lattice factorizations
(by Vaidyanathan and Hoang) are the most effective and widely used. The 1D two-channel infinite impulse
response (IIR) filter banks and associated wavelets were considered by Herley and Vetterli. All of these design
methods are based on spectral factorization. Since in multiple dimensions, there is no factorization theorem,
traditional 1D design methods fail to generalize. Tensor products can be used to construct MD orthogonal filter
banks from 1D orthogonal filter banks, yielding separable filter banks. In contrast to separable filter banks,
nonseparable filter banks are designed directly, and result in more freedom and better frequency selectivity. In
the FIR case, Kovačević and Vetterli designed specific two-dimensional and three-dimensional nonseparable FIR
orthogonal filter banks. In the IIR case, there are few design results (if any) for MD orthogonal IIR filter banks.

To design orthogonal filter banks, we must design paraunitary matrices, which leads to solving sets of nonlinear
equations. The Cayley transform establishes a one-to-one mapping between paraunitary matrices and para-skew-
Hermitian matrices. In contrast to nonlinear equations, the para-skew-Hermitian condition amounts to linear
constraints on the matrix entries which are much easier to solve. We present the complete characterization of
both paraunitary FIR matrices and paraunitary IIR matrices in the Cayley domain. We also propose efficient
design methods for MD orthogonal filter banks and corresponding methods to impose the vanishing-moment
condition.

Keywords: O rthogonal Filter Banks, Cayley Transform, Nonseparable Multidimensional Filter Design, Parau-

nitary Matrix.

1. INTRODUCTION

Over the last decade, the theory and applications of filter banks have grown rapidly [1], [2], [3], [4], [5], [6]. Among
them, orthogonal filter banks received attention due to their useful properties [7], [8], [9]. First, orthogonality
implies energy preservation, which guarantees that the energy of errors generated by transmission or quantiza-
tion will not be amplified. Second, under certain conditions, orthogonal filter banks can be used to construct
orthonormal wavelet bases [10]. The vanishing-moment condition plays a crucial role in the construction of
orthonormal wavelet bases from orthogonal filter banks. An orthogonal lowpass filter is said to satisfy the N -th
order vanishing-moment condition if it has an N -th order zero at aliasing frequencies.

There are two types of orthogonal filter banks: finite impulse response (FIR) filter banks and infinite impulse
response (IIR) filter banks. FIR filters are more efficient to implement and hence more popular. In the 1D
two-channel filter bank case, there exist several filter design methods. Among them, designs based on spectral
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factorizations [11] and designs based on lattice factorizations [12] are the most effective and widely used. The first
method, which was proposed by Smith and Barnwell [11], designs the autocorrelation sequence of a filter and then
obtains that filter via spectral factorization. This method was used by Daubechies to construct celebrated family
of orthogonal compactly supported wavelets [10]. However, as the size of the filter grows, spectral factorization
becomes numerically ill-conditioned. Moreover, due to the lack of an MD factorization theorem, this method
cannot be extended to higher dimensions. The second method, which was proposed by Vaidyanathan and
Hoang [12], formulates the filter design problem as that of a polyphase transform matrix U(z) which has to be
a paraunitary∗ FIR matrix, i.e.

U(z)UT (z−1) = I, for real coefficients. (1)

These authors provided a complete characterization of paraunitary matrices for 1D filter banks via a lattice
factorization. However, it is difficult to impose the vanishing-moment condition in a lattice factorization. As for
spectral factorization methods, the lattice factorization design method cannot be extended to higher dimensions.

Although more complex, orthogonal IIR filter banks have greater design freedom, compared to FIR case.
Moreover, IIR filter banks generally offer better frequency selectivity. The 1D two-channel orthogonal IIR filter
banks and associated wavelets were considered by Herley and Vetterli [13]. The design method in [13] also needs
spectral factorization and cannot be extended to higher dimensions.

In multiple dimensions, there are two types of orthogonal filter banks: separable and nonseparable orthogonal
filter banks. For a separable filter bank, its transfer functions are products of multiple 1D orthogonal filters.
Therefore, tensor products can be used to construct separable orthogonal filter banks from 1D orthogonal filter
banks. In contrast to separable filter banks, nonseparable orthogonal filter banks are designed based on the MD
structure directly, resulting in more freedom and better frequency selectivity. Therefore, nonseparable orthogonal
filter banks have received more interest in recent years. However, due to complexity, it is a challenging task to
design nonseparable orthogonal FIR and IIR filter banks. In the FIR case, Kovačević and Vetterli successfully
designed specific two-dimensional (2D) and three-dimensional (3D) nonseparable orthogonal FIR filter banks [9].
However, their method could not give complete solutions and it is difficult to apply to filters with larger size. In
the IIR case, there is no existing literature addressing the design problem.

In this work, we propose a novel design method for both orthogonal FIR filter banks and orthogonal IIR filter
banks using the Cayley transform (CT) [14]. Designing orthogonal filter banks amounts to designing paraunitary
matrices. The main feature of the CT is that it maps a paraunitary matrix U(z) to a para-skew-Hermitian †

(PSH) matrix H(z) that satisfies
H(z−1) = −HT (z). (2)

Conversely, the CT maps a PSH matrix to a paraunitary matrix. Therefore, the CT establishes a one-to-one
mapping between a nonlinear Stiefel manifold of paraunitary matrices and the linear space of PSH matrices, as
shown in Fig. 1. Our key observation is that in contrast to solving for the nonlinear paraunitary condition in (1),
the PSH condition amounts to linear constraints on the matrix entries in (2), leading to an easier design problem.
The basic idea is that we first design a PSH matrix and then map it back to a paraunitary matrix by the CT.
However, there are two challenges in this design approach. The first is how to impose the vanishing-moment
condition in the Cayley domain. Since the vanishing-moment condition requires that the lowpass filter has a zero
of specific order at aliasing frequencies, it is difficult to impose the vanishing-moment condition on the polyphase
transform matrix and its CT. The second challenge is that the CT is a nonlinear operator and it destroys the
FIR property, that is, the CT of an FIR matrix is no longer FIR. Thus, the CT maps a paraunitary FIR matrix
to a PSH IIR matrix. We need to find a complete characterization of these PSH matrices such that their inverse
CTs are FIR. In this paper, we address these issues, which lead us to a novel design method for MD orthogonal
filter banks and wavelets.

∗A paraunitary matrix is an extension of a unitary matrix when the matrix entries are polynomials. Paraunitary
matrices are unitary on the unit circle.

†A para-skew-Hermitian matrix is an extension of a skew-Hermitian matrix when the matrix entries are polynomials.
Para-skew-Hermitian matrices are skew-Hermitian on the unit circle.
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Figure 1. One to one mapping between paraunitary matrices and para-skew-Hermitian matrices via the Cayley transform.
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Figure 2. An MD N -channel filter bank.

The paper is organized as follows: In Section 2, we give a brief introduction to orthogonal filter banks and
the Cayley transform. We introduce the special paraunitary matrix and its property in Section 3. The theory
and design of orthogonal FIR filter banks, including the general multiple-channel case and the two-channel case
are given in Section 4 and Section 5, respectively. The theory and design of orthogonal IIR filter banks is given
in Section 6. We conclude in Section 7. Due to the space limitation, we only present the results in this paper.
Please refer to [15] for proofs and design examples.

2. ORTHOGONAL FILTER BANKS AND THE CAYLEY TRANSFORM

We start with notation. In MD, z stands for an M -dimensional variable z = [z1, z2, . . . , zM ]T . For an M -
dimensional integer k = [k1, k2, . . . , kM ]T , an MD power is written as z

k = [zk1

1 , zk2

2 , . . . , zkM

M ]T . Specifically, z
−1

stands for [z−1
1 , z−1

2 , . . . , z−1
M ]T . We will refer to a Laurent polynomial matrix as FIR or FIR matrix if all of its

entries are finite length Laurent polynomials. Otherwise, it is an IIR matrix.

Consider an MD N -channel filter bank as shown in Fig. 2. In the filter bank, the input X(z) is fed to the
N subband filters, H0(z) to HN−1(z). After filtering, each output is downsampled by an M × M sampling
matrix D with the sampling rate |detD|. The N branch outputs of the analysis part are upsampled with the
same sampling matrix and subsequently filtered by a bank of subband filters, G0(z) to GN−1(z). Finally, all
the N branches are added together to generate a single output X̂(z). The whole system can be divided into
two parts, analysis part and synthesis part. The analysis part consists of subband filtering and downsampling,
while the synthesis part consists of upsampling and subband filtering. In the analysis and design of filter banks,
polyphase representation is often used as it allows for time-invariant analysis in the polyphase domain. In the
polyphase domain, the analysis part and synthesis part can be represented by N ×N matrices Hp(z) and Gp(z)
respectively. We are interested in the critically sampled filter bank in which the sampling rate is equal to the
number of channels, i.e., |detD| = N . Also, perfect reconstruction is a desirable property of a system so that the
output X̂(z) is always equal to the input X(z). Under these assumptions, the perfect reconstruction condition is
equivalent to Hp(z)Gp(z) = I. For orthogonal filter banks, Gp(z) = HT

p (z
−1), and thus Hp(z) is a paraunitary

matrix. Throughout the paper, we will always refer to M as the number of dimensions; N as the number of
channels.

The complex nonlinear paraunitary constraint leads to a difficult nonlinear spectral factorization problem.
The Cayley transform is a powerful tool to convert a nonlinear problem into a linear one. It is widely used in
control theory and Lie groups [14]. The Cayley transform of a matrix U(z) is defined as

H(z) =
(

I + U(z)
)−1(

I−U(z)
)

. (3)



The inverse of the CT is
U(z) =

(

I + H(z)
)−1(

I−H(z)
)

. (4)

By definition, the CT is formulated as the product of two matrices. Actually, it can also be expressed in an
alternative way:

Proposition 1. Suppose that U(z) is a matrix and H(z) is its CT. Then

H(z) = 2
(

I + U(z)
)−1 − I and U(z) = 2

(

I + H(z)
)−1 − I.

The Cayley transform is a matrix generalization of the bilinear transform [16](pp. 415–417), which is defined
as s = (1 + z)−1(1 + z). The bilinear transform maps the imaginary axis of the complex s-plane onto the unit
circle in the complex z-plane. It is widely used in signal processing theory, for example, to map continuous-time
systems to discrete-time systems. Similarly to the bilinear transform, the Cayley transform maps paraunitary
matrices to PSH matrices.

Proposition 2. The Cayley transform of a paraunitary matrix is a para-skew-Hermitian matrix. Conversely,
the Cayley transform of a para-skew-Hermitian matrix is a paraunitary matrix.

Based on Proposition 2, the CT establishes a one-to-one mapping between paraunitary matrices and PSH
matrices. It maps the nonlinear Stiefel manifold of paraunitary matrices to the linear space of PSH matrices. In
contrast to solving for the nonlinear paraunitary condition, the PSH condition amounts to linear constraints on
the matrix entries.

To illustrate this, consider the two-channel case. Let U(z) be a 2× 2 paraunitary matrix with

U(z) =

(

U00(z) U01(z)
U10(z) U11(z)

)

,

then it satisfies U(z)UT (z−1) = I. Specifically,

U00(z)U00(z
−1) + U01(z)U01(z

−1) = 1, (5)

U00(z)U10(z
−1) + U01(z)U11(z

−1) = 0,

U10(z)U10(z
−1) + U11(z)U11(z

−1) = 1.

Solving the system involves solving three nonlinear equations with respect to coefficients of U(z). In contrast,
let H(z) be a 2× 2 PSH matrix with

H(z) =

(

H00(z) H01(z)
H10(z) H11(z)

)

,

then it satisfies H(z−1) = −HT (z). Specifically,

H00(z
−1) = −H00(z), H11(z

−1) = −H11(z), and H01(z
−1) = −H10(z). (6)

Here, solving the system involves solving only three independent linear equations with respect to coefficients of
H(z). Moreover, we do not need to solve these three equations in the design. Instead, we only need to design two
anti-symmetric linear phase filters independently, H00(z) and H11(z), choose one arbitrary filter H10(z) leading
to H01(z) as in (6).



3. THE SPECIAL PARAUNITARY MATRIX

Using the CT, the design problem of paraunitary matrices is simplified to that of PSH matrices. However, it still
involves too many equations, especially when the number of channels is large. The special paraunitary matrix is
prosperous to simplify the design.

Special paraunitary matrices are a special class of paraunitary matrices.

Definition. 1. A paraunitary matrix U(z) is said to be a special paraunitary (SP) matrix ‡ if its determinant
equals to 1.

SP matrices satisfy all the property of paraunitary matrices. The product of two SP matrices is also SP.
Therefore, the set of SP matrices is also a Stiefel manifold. Moreover, it is easier to design SP matrices than
paraunitary matrices.

Proposition 3. Suppose U(z) is a matrix and its determinant equals to 1. Then U(z) is SP if and only if

Ui,j(z
−1) = minorUi,j(z), (7)

where Ui,j(z) is the entry of U(z) at (i, j).

By Proposition 3, the design of SP matrix amounts to the determinant condition and (7). By (7), we can get
rid of some nonlinear equations. To illustrate this, consider the two-channel case. Suppose U(z) is a 2 × 2 SP
matrix, then (7) becomes

U10(z) = −U01(z
−1) and U11(z) = U00(z

−1),

and the determinant condition becomes:

U00(z)U00(z
−1) + U01(z)U01(z

−1) = 1. (8)

Therefore the complete characterization of U(z) is

U(z) =

(

U00(z) U01(z)
−U01(z

−1) U00(z
−1)

)

, (9)

where U00(z) and U01(z) satisfies the power complementary property given in (8). Note that (8) is the same as
(5). Therefore, for 2× 2 SP matrices, we need to solve only one equation of the three equations required by the
general 2× 2 paraunitary matrices.

One useful property of the SP matrix is that every paraunitary matrix can be represented as the product of
an SP matrix and a diagonal paraunitary matrix:

Theorem 1. Suppose U(z) is a paraunitary matrix. Then U(z) can be written as U(z) = Us(z)Ud(z), where
both Us(z) and Ud(z) are paraunitary, and

detUs(z) = 1 and Ud(z) = diag
(

1, · · · , 1,detU(z)
)

.

Moreover, if U(z) is FIR, then detU(z) is a pure delay.

By Theorem 1, a paraunitary matrix can be “normalized” as an SP matrix, where the first N − 1 columns of
the matrix are kept the same and the last column is multiplied with the allpass filter (detU(z))−1. It means that
the first N − 1 filters of the corresponding orthogonal filter bank are kept the same and the last filter is changed
only in the phase. In the FIR case, the change is just a pure delay. SP matrices can be used to simplify our
design problem. To illustrate this, consider the two-channel case. By Theorem 1 and (9), the characterization
of the 2× 2 paraunitary matrix is

U(z) = Us(z)

(

1 0
0 ∆(z)

)

=

(

U00(z) U01(z)∆(z)
−U01(z

−1) U00(z
−1)∆(z)

)

,

‡The concept of the special paraunitary matrix is similar to that of the special orthogonal matrix. An orthogonal
matrix is said to be a special orthogonal matrix if its determinant equals to 1.
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Figure 3. One-to-one mapping between SP matrices and SPSH matrices

where U00(z) and U01(z) satisfy the power complementary property. Herley and Vetterli showed the similar
result for the 1D case in [13].

By Proposition 2, the characterization of paraunitary matrices in the Cayley domain is PSH matrices. For
an SP matrix U(z), detU(z) = 1. Let H(z) be the CT of U(z), then

U(z) = (I + H(z))−1(I−H(z)).

Therefore, the necessary and sufficient condition for the CT of H(z) to be SP is

det
(

I + H(z)
)

= det
(

I−H(z)
)

. (10)

Accordingly, if a PSH matrix satisfies (10), it is said to be a special PSH (SPSH) matrix. Thus, the characteri-
zation of SP matrices in the Cayley domain is SPSH matrices.

For the two-channel case, the characterization is simple.

Proposition 4. Suppose H(z) is a 2× 2 PSH matrix. Then it is SPSH if and only if its trace equals to 0.

It is clear that the set of 2× 2 SPSH matrices is also a linear space. Therefore, the CT maps the complicated
nonlinear Stiefel manifold of 2× 2 SP matrices to the linear space of 2× 2 SPSH matrices as shown in Fig. 3.

4. ORTHOGONAL FIR FILTER BANKS

To design orthogonal FIR filter banks, we need to design paraunitary FIR matrices. By Theorem 1, any parau-
nitary FIR matrix can be “normalized” as an SP FIR matrix and the only difference between two corresponding
filter banks is a pure delay in the last highpass filter. Therefore, the design problem of paraunitary FIR matrices
is equivalent to that of SP FIR matrices. In this section, unless explicitly stated otherwise, assume that U(z) is
an N ×N SP FIR matrix, and H(z) is its CT.

As mentioned in Section 1, the FIR property is destroyed by the CT because of the matrix inversion operation

in (3). Specifically, U(z) is an FIR matrix, but
(

I + U(z)
)−1

is in general not an FIR matrix, neither does
H(z). Thus, we need to find a complete characterization of these SPSH matrices such that their CTs are FIR.

The CT of U(z) is H(z) =
(

I+U(z)
)−1(

I−U(z)
)

, where
(

I+U(z)
)−1

can be IIR. Note that the inverse of a
nonsingular matrix A can be expressed as A−1 = (detA)−1adjA, where adjA is the adjoint of A. Therefore,

H(z) =
(

I + U(z)
)−1(

I−U(z)
)

=
adj
(

I + U(z)
) (

I−U(z)
)

det
(

I + U(z)
) .

The essential observation is that H(z) can be represented as the quotient of an FIR matrix, adj
(

I+U(z)
) (

I−
U(z)

)

, and an FIR filter, det
(

I + U(z)
)

. Let D(z) and H′(z) be the scaled denominator and numerator
respectively, i.e.,

D(z)
def
= 2−N+1 det

(

I + U(z)
)

, (11)

H′(z)
def
= 2−N+1adj

(

I + U(z)
) (

I−U(z)
)

, (12)



where the scalar 2−N+1 is introduced for later convenience. Then H(z) can be expressed as

H(z) =
H′(z)

D(z)
. (13)

From Proposition 1,

det
(

I + U(z)
)

= 2N det
(

I + H(z)
)−1

. (14)

From (11), we have an alternative expression for D(z):

D(z) = 2 det
(

I + H(z)
)−1

. (15)

Our task now is to obtain the characterization of both D(z) and H′(z).

Lemma 1. Suppose U(z) is an SP FIR matrix. Then the Cayley transform of U(z), H(z), can be written as
D(z)−1H′(z), where D(z) is a symmetric FIR filter and H′(z) is a PSH FIR matrix. Moreover, if D(z) and
H′(z) are coprime, then they are unique for each SP FIR matrix U(z).

According to Lemma 1, the problem of designing H(z) is converted into that of designing a symmetric FIR
filter D(z) and a PSH FIR matrix H′(z). However, they are not independent of each other, as shown in the
following Lemma:

Lemma 2. Suppose that U(z) is an SP matrix, and D(z) and H′(z) are given by (11) and (12), respectively.
Then

2D(z)N−1 = det
(

D(z) I + H′(z)
)

. (16)

We are now in a position to formulate the complete characterization of paraunitary FIR matrices in the
Cayley domain.

Theorem 2. The CT of a matrix H(z) is an SP FIR matrix if and only if it can be written as H(z) =
D(z)−1H′(z), where D(z) is a symmetric FIR filter and H′(z) is a PSH FIR matrix, and they satisfy the
following two conditions:

1. 2D(z)N−1 = det
(

D(z) I + H′(z)
)

;

2. DN−2(z) is a common factor of all minors of D(z) I + H′(z).

Moreover, the CT of H(z) can be written as

U(z) =
adj
(

D(z) I + H′(z)
)

D(z)N−2
− I. (17)

Therefore, our problem of designing an SP FIR matrix U(z) is converted to a problem of designing a
symmetric FIR filter D(z) and a PSH FIR matrix H′(z), and they satisfy the two conditions given in Theorem 2.
The first condition guarantees that U(z) is SP and the second condition guarantees that U(z) is FIR. In the
two-channel case, the second condition holds automatically. Thus, we can design D(z) and H′(z) first, then
compute the CT of H(z) = D(z)−1H′(z) by a simple formula without matrix inversion manipulation given in
(17).



5. TWO-CHANNEL ORTHOGONAL FIR FILTER BANKS

Among MD orthogonal filter banks, two-channel ones are the simplest and most popular. Also, this is the case
of most interest to us. In this special case, we can simplify our design method. In this section, suppose D(z)
is a symmetric FIR filter and H′(z) is a 2 × 2 PSH FIR matrix, as defined in (11) and (12). The goal here is
to express U(z) directly as an FIR matrix using the terms from D(z) and H′(z) so that we can impose further
conditions on them (e.g., vanishing-moment condition).

The characterization of SP matrices in the Cayley domain is SPSH matrices. Therefore, H(z) is a 2 × 2
SPSH matrix. By Proposition 4, trH(z) = 0. From (15), H′(z) can be written as

H′(z) = D(z)H(z) =
2H(z)

det
(

I + H(z)
) . (18)

Therefore, trH′(z) = 0, i.e., H′(z) is also an SPSH matrix. One interesting observation is that H′(z) is an
SPSH FIR matrix, while H(z) is an SPSH (generally IIR) matrix. Therefore, (18) can be regarded as a mapping
from the SPSH IIR matrix to the SPSH FIR matrix. The CT destroys the FIR property from U(z) to H(z).
Here this mapping “restores” the the FIR property from H(z) to H′(z). Put them together, we can map the
SP FIR matrix to the SPSH FIR matrix! To further our discussion, a formal definition of the mapping given in
(18) is necessary:

Definition. 2. The post-Cayley transform (PCT) of a rational matrix H(z) is defined as

H′(z) =
2H(z)

det
(

I + H(z)
) .

Using the CT, we map the SP FIR matrix to SPSH IIR matrix. Using the PCT, we can map the SPSH IIR
matrix to the SPSH FIR matrix. We called this sequence of mappings the FIR-Cayley transform (FCT). The
FCT of an SP FIR matrix U(z) can be obtained by (3) and (14):

H′(z) =
2H(z)

det
(

I + H(z)
) = 2−1 det

(

I + U(z)
)(

I + U(z)
)−1(

I−U(z)
)

= 2−1 adj
(

I + U(z)
) (

I−U(z)
)

.

To use the FCT in our design, we need to compute its inverse mapping. For the CT, we know its inverse is
itself. How about the PCT? First, is the PCT a one-to-one mapping?

Proposition 5. Suppose that H1(z) and H2(z) are two 2×2 rational matrices such that their PCT’s are equal.
Then they are equal or

H2(z) =
H1(z)

det
(

H1(z)
) . (19)

By Proposition 5, if the determinant of H(z) is 1, then the mapping is one-to-one. Otherwise, the mapping is
two-to-one.

Secondly, what’s the inverse transform of the PCT? By Theorem 2,

2D(z) = det
(

D(z) I + H′(z)
)

.

Since H′(z) is SPSH,

D2(z)− 2D(z) + detH′(z) = 0. (20)

Then we can obtain the inverse mapping of the PCT in the following proposition:

Proposition 6. Suppose H′(z) is a 2× 2 SPSH FIR matrix. Then the inverse PCT transform of H′(z) exists

if and only if
√

1− det
(

H′(z)
)

is FIR. If it exists, it is given by

H(z) =
H′(z)

1±
√

1− det
(

H′(z)
)

.
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Figure 4. Mapping from SP FIR matrices to SPSH FIR matrices

By Proposition 6, the characterization of SP FIR matrices in the FCT domain is a subset of SPSH FIR
matrices and they satisfy the condition given in Proposition 6. The FCT establishes a two-to-one mapping
between SP FIR matrices and SPSH FIR matrices, as shown in Fig. 4.

Now we can find the inverse transform of the FCT and formulate an explicit formula for U(z). Suppose
H′(z) is a 2× 2 SPSH FIR matrix with

H′(z) =

(

H ′
00(z) H ′

01(z)
−H ′

01(z
−1) −H ′

00(z)

)

,

where H ′
00(z) is an antisymmetric filter and H ′

01(z) is an arbitrarily filter. By Theorem 2, the CT of H(z) can
be written as

U(z) = adj
(

D(z) I + H′(z)
)

− I =

(

D(z)−H ′
00(z)− 1 −H ′

01(z)
H ′

01(z
−1) D(z) + H ′

00(z)− 1

)

. (21)

We summarize our results in the FCT domain in the following Theorem:

Theorem 3. Suppose H′(z) is a 2 × 2 SPSH FIR matrix. Then the inverse FIR-Cayley transform of H′(z)

exists if and only if
√

1− det
(

H′(z)
)

is FIR. If it exists, it is given by

U(z) = ±
√

1− det
(

H′(z)
)

I−H′(z).

Theorem 3 provides the characterization of 2× 2 SP matrices in the Cayley domain. However, the condition
for H′(z) is complex. For implementation, we will design D(z) and H′(z) simultaneously in terms of (20), and
D(z) is symmetric and H′(z) is SPSH. Then we can compute the SP FIR matrix by (21).

5.1. Vanishing-Moment Condition and 2D Quincunx Orthogonal Filter Banks Design

Quincunx sampling is density-2 sampling, leading thus again to the two-channel case. Of all MD sampling
patterns, the quincunx one is the most common. However, since the sampling is nonseparable, it offers challenges.

In the context of wavelet design, the vanishing-moment condition plays an essential role. This condition
requires the lowpass filter to have L-th order zero derivatives at z = [−1,−1]T . By Theorem 3, the lowpass filer
will be

F (z1, z2) = z−1
1 H ′

01(z
−1
1 z−1

2 , z−1
1 z2) + D(z1z2, z1z

−1
2 )−H ′

00(z1z2, z1z
−1
2 )− 1. (22)

Therefore, the vanishing-moment condition imposes the values on the derivatives of D(z), H ′
00(z) and H ′

01(z)
at z = [−1,−1]T . If we parameterizes these 3 filters, then the vanishing-moment condition amounts to linear
equations, which can be solved easily.

The design process is as follows: First, we parameterize the filters. Second, we compute the lowpass fil-
ter. Third, we impose the vanishing-moment condition on the lowpass filter. Finally, we solve the spectral
factorization problem. The specific design procedure is given as follows.

1. Parameterize the symmetric FIR filter D(z1, z2) and anti-symmetric FIR filter H ′
00(z1, z2).



2. Parameterize an FIR filter H ′
01(z1, z2) of the same size.

3. Impose the L-th order vanishing moment on the lowpass filter given in (22):

∂nF (z1, z2)

∂iz1∂n−iz2
|(−1,−1) = 0, for n = 0, 1, . . . , L; i = 0, 1, . . . , n. (23)

It amounts to linear equations.

4. Solve the spectral factorization equation by comparing the coefficients of z:

D2(z1, z2)− 2D(z1, z2) + H ′
01(z1, z2)H

′
01(z

−1
1 , z−1

2 )−H ′2
00(z1, z2) = 0. (24)

It amounts to quadratic equations.

5. Compute U(z1, z2) by (21).

6. ORTHOGONAL IIR FILTER BANKS

As we said, designing orthogonal IIR filter banks is more complex than designing FIR orthogonal ones, although
it has greater freedom. For implementation purposes, we only consider recursive filters, z-transforms of which
are rational functions. It is straightforward to design an orthogonal filter bank in the Cayley domain via a PSH
matrix, and then map it back to a paraunitary polyphase matrix. Therefore, the range of paraunitary matrices
in the Cayley domain is the set of all PSH matrices. In this section, unless explicitly stated otherwise, assume
that U(z) is an N ×N paraunitary IIR matrix and H(z) is its CT.

Theorem 4. The range of paraunitary IIR matrices in the Cayley domain is a linear space.

Take the two-channel case as an example. For the multiple-channel case, we have similar results. Let H(z)
be a PSH matrix

H(z) =

(

H00(z) H01(z)
H10(z) H11(z)

)

.

Then the PSH condition implies

H00(z
−1) = −H00(z), H11(z

−1) = −H11(z), and H10(z
−1) = −H01(z).

We can select antidiagonal entries arbitrarily (under the constraint H10(z
−1) = −H01(z)). For the diagonal

entries, we just need to find anti-symmetric IIR filters. Then the problem of designing H(z) converts to that of
designing anti-symmetric IIR filters.

Proposition 7. Suppose w(z) be an IIR filter with a rational function: W (z) = a(z)/b(z), where a(z) and
b(z) are coprime polynomials. If w(z−1) = −w(z), then

a(z−1) = czka(z) and b(z−1) = −czkb(z),

where k is an arbitrary integer.

6.1. Vanishing-Moment Condition and Simplifications

The CT has a simple form for the design of orthogonal IIR filter banks. It avoids the problem of spectral
factorization, which is difficult (if possible) in the MD case. As in the orthogonal FIR case, the vanishing-
moment condition plays an essential role in the context of wavelet design. This condition requires the lowpass
filter to have specific order zero derivatives at z = [−1,−1,−1, . . . ,−1]T . However, it is difficult to impose the
vanishing-moment condition on MD orthogonal IIR filters because it involves rational functions in the design.
First, many parameters are required. For each filter in H(z), not only the numerator but also the denominator
requires parameters. Second, to impose the vanishing-moment condition on the IIR filter, we need to solve
nonlinear equations with respect to those parameters (as opposed to the linear equations in the FIR case).
Therefore, we need to simplify the design of orthogonal IIR filter banks.



As mentioned in Section 3, SP matrices are simplified paraunitary matrices and each paraunitary matrix can
be “normalized” as a paraunitary matrix with only a phase change in one highpass filter. This does not affect
the vanishing-moment condition. Therefore, we can simplify our design by SP matrices. In this subsection, we
only consider the two-channel case.

In the polyphase domain, the characterization of MD orthogonal IIR filter banks is SP matrices. The
characterization of MD SP matrices in the Cayley domain is SPSH matrices. By Proposition 4, a 2 × 2 SPSH
matrix, H(z), can be formulated as

H(z) =

(

f(z) g(z)
−g(z−1) −f(z)

)

,

where f(z) is an anti-symmetric filter, and g(z) is an arbitrary filter.

The set of SPSH matrices is a linear space. Obviously, every SPSH matrix can be represented as the sum of
a diagonal matrix and an anti-diagonal matrix, i.e.,

H(z) =

(

f(z) 0
0 −f(z)

)

+

(

0 g(z)
−g(z−1) 0

)

.

Note they are independent and both of them are SPSH matrices with simple structures. The first one is
called the diagonal SPSH (DSPSH) matrix and the second one is called anti-diagonal SPSH (ASPSH) matrix.
Correspondingly, their CT’s also have simple structures. The CT of a DSPSH matrix is

U(z) =

(

1−f(z)
1+f(z) 0

0 1+f(z)
1−f(z)

)

. (25)

The CT of ASPSH matrix is

U(z) =
1

1 + g(z)g(z−1)

(

1− g(z)g(z−1) −2g(z)
2g(z−1) 1− g(z)g(z−1)

)

. (26)

In the sequel, we only consider 1D case. For a 1D orthogonal IIR filter of the N -th order vanishing-moment, it
can be factored as (1+ z−1)NR(z)/D(z), where R(z) and D(z) are FIR, and D(−1) 6= 0. Moreover, if R(z) ≡ 1
and D(z) has the lowest order, then it is called a Butterworth filter. Otherwise, it is an intermediate filter.

First consider DSPSH matrices. From (25), the lowpass filer is U0(z) = (1+ f(z2))−1(1− f(z2)). Impose the
N -th vanishing-moment condition, then 1 − f(z2) = (1 + z−1)NR(z). Note f(z−1) = −f(z), then 1 + f(z2) =
1 − f(z−2) = (1 + z)NR(z−1) and U0(z) = z−NR(z)/R(z−1). Hence, the corresponding low-pass filter cannot
have vanishing moments.

Now consider ASPSH matrices. To simplify the problem, we make one assumption: g(z)g(z−1) = c2, where c
is a nonzero constant. Even with this simplification, we still have many design results. The following proposition
gives the characterization of filters under such assumption.

Proposition 8. Suppose g(z) is a rational filter with the form g(z2) = p(z)/q(z), where p(z) and q(z) are
coprime FIR filters. Then g(z)g(z−1) equals to a constant if and only if p(z) = c zkq(z−1), where c is a nonzero
constant, and k is an integer.

By this simplification, the low-pass filter can be represented as U0(z) = (1 + c2)−1
(

1− c2 − 2z−1g(z2)
)

. By
Proposition 8, it can be further formulated as

U0(z) =
(1− c2)q(z)− 2c zk−1q(z−1)

(1 + c2)q(z)
.

Now consider the N -th vanishing-moment condition, and then (1 − c2)q(z) − 2c zk−1q(z−1) = (1 + z−1)NR(z),
where both q(z) and R(z) are FIR and q(−1) 6= 0, R(−1) 6= 0. Solutions are given in the following Theorem:

Proposition 9. A low-pass filter U0(z) generated by an ASPSH matrix is an orthogonal filter with the N -th
order vanishing-moment if and only if one of the following conditions holds:



1. (1− c2)2 6= 4c2, and

q(z) =
1

(1− c2)2 − 4c2

(

2czk−1(1 + z)NR(z−1) + (1− c2)(1 + z−1)NR(z)
)

.

2. c = 1±
√
2, R(z−1) = z1−k−NR(z), and

q(z) = s(z)− 1

4c
(1 + z−1)NR(z),

where s(z) is an arbitrary nonzero antisymmetric filter such that s(z−1) = −z1−ks(z).

3. c = −1±
√
2, R(z−1) = −z1−k−NR(z), and

q(z) = s(z) +
1

4c
(1 + z−1)NR(z),

where s(z) is an arbitrary nonzero symmetric filter such that s(z−1) = z1−ks(z).

If we let R(z) be 1 in Proposition 9, then we generate Butterworth filters. Herley and Vetterli also got the
close solutions for 1D N -th order Butterworth filters in [13].

7. CONCLUSION

We presented the complete characterization of both paraunitary FIR matrices and paraunitary IIR matrices in
the Cayley domain and proposed efficient design methods for MD orthogonal filter banks and corresponding
methods to impose the vanishing-moment condition.
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