
WAVELET PACKET CORRELATION METHODS IN BIOMETRICS

Jason Thornton†, Pablo Hennings†, Jelena Kovačević†‡, B.V.K. Vijaya Kumar†
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ABSTRACT

We introduce wavelet packet correlation filter classifiers.
Correlation filters are traditionally designed in the image
domain by minimizing some criterion function of the image
training set. Instead we perform classification in wavelet
spaces that have training set representations which provide
better solutions to the optimization problem in the filter de-
sign. We propose a pruning algorithm to find these wavelet
spaces using a correlation energy cost function, and we de-
scribe a match score fusion algorithm for applying the fil-
ters trained across the packet tree. The proposed classifi-
cation algorithm is suitable for any object recognition task.
We present results by implementing a biometric recognition
system using the NIST 24 fingerprint database, and show
that applying correlation filters in the wavelet domain re-
sults in considerable improvement of the standard correla-
tion filter algorithm.

1. INTRODUCTION

The theory of advanced correlation filters has evolved from
the literature of optical pattern recognition in the last two
decades [1]; they have proved effective classifiers in a num-
ber of applications, among them biometric recognition and
automatic target recognition [2].

Correlation filter designs use the image intensity domain
of training examples to compute a class template that pro-
duces characteristic correlation outputs to distinguish be-
tween authentic users and impostors. When applying the
filter for testing the authenticity of a new target image, the
output plane is expected to have a shape containing a corre-
lation peak if the image is authentic, but no such peak if the
image belongs to another class. Properties of correlation fil-
ter classifiers include graceful degradation, shift invariance
and closed-form solutions [1].
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Advanced correlation filter designs control properties of
the training output planes, by solving optimization func-
tions related to quantities such as peak sharpness or noise
tolerance [3]. The effectiveness of correlation filter design
relies on the structural and geometric characteristics of the
images available for training; the collection of examples
must be representative of expected within-class variations.
In this work, we aim to find better design spaces in the
sense of the optimization problem of correlation filters. We
present an algorithm that finds a specific wavelet packet de-
composition of the training images where the image’s wavelet
coefficients allow a better solution to the optimization prob-
lem posed.

In the case of correlation filter classifiers, we have spe-
cific interest in the wavelet packet trees where the average
output plane of its leaf subspaces yields the smallest amount
of energy possible for the decompositions of the images in
the training set. We refer to the set of correlation filters de-
signed in this tree structure as wavelet packet correlation fil-
ters. We propose a pruning algorithm to find these wavelet
spaces, and a fusion method for combining the subspace
match scores in the testing stage. In addition, since wavelet
transforms are not shift invariant, we present a method for
computing match scores approximately invariant to target
image shifts.

The rest of this paper is organized as follows. Section 2
describes correlation filter classifiers, and Section 3 presents
the proposed classification algorithm. We explain the exper-
iment specifications and results in Section 4, and Section 5
gives conclusions.

2. CORRELATION FILTER RECOGNITION

A correlation filter is designed specifically for the recogni-
tion of one pattern class, represented by a set of training
images. Applying the filter to any image produces a corre-
lation plane output, which measures the correlation between
the image and translated versions of the (space-reversed) fil-
ter. The objective is to build a filter which outputs strong
correlation peaks when applied to any authentic image (i.e.,
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Fig. 1. Left: an authentic correlation plane output. Right:
an imposter correlation plane output.

containing the filter’s pattern class). To achieve this, corre-
lation filters are designed to produce a peak for all authentic
training images, with the expectation that this response will
generalize to the entire class of authentic images.

We label the response of a correlation filter to an im-
age as correlation plane C. Figure 1 shows typical values
for C when there exists a match, and when there exists no
match. To obtain a match metric, the presence of a sharp
peak in C must be quantified. To do this, we use the peak-
to-correlation energy (PCE) metric, defined as

PCE(C) =
max(|C|) − mean(|C|)

std.dev.(|C|) . (1)

The PCE match metric, like the filtering operation, is
shift-invariant. Therefore, correlation filter recognition is
invariant to translations of the input image. Note that we do
filtering in the Fourier domain.

Filter Design. Let h be the correlation filter values,
formed by appending all columns of the transfer function
into one vector. Let xi represent the transform of the ith
training image, vectorized in the same way. Then filter h is
designed as some function of matrix X, where the columns
of X hold the training images, i.e. X = [x1 · · · xi · · · xN ].

The simplest filter design is a linear combination of the
training images, h = Xw, where the weight vector w is cal-
culated as some function of the training data. Although it
may be intuitive to build a filter template as a weighted av-
erage of the training images, the recognition performance of
such filters is less than optimal [3][4]. Since good discrim-
ination depends on the sharpness of the correlation peaks,
more advanced filter designs address this problem directly.

MACE Filter. The Minimum Average Correlation En-
ergy (MACE) filter design suppresses the sidelobes of the
correlation planes by minimizing their energy. First, we as-
sume the training images are centered and constrain the ori-
gin of their correlation planes to have value 1; these will be
the correlation peaks. Subject to this constraint, we wish
to minimize the average energy E of the correlation planes.
Let D be a diagonal matrix that carries the average power

spectrum of the training images on its diagonal. Then given
a filter h, E may be expressed as the quadratic term E =
h+Dh, where + denotes conjugate transpose. This con-
strained minimization problem has a closed-form solution,
yielding the MACE filter design

h = D−1X(X+D−1X)−1u, (2)

with vector u containing the peak constraints (a vector of
ones). Note that lower values for correlation energy E are
related to sharper peaks and better discrimination. We will
extend our optimization of this term in the following sec-
tion. The correlation filter design which we implement for
testing is the Optimal Trade-off Synthetic Discriminant Func-
tion (OTSDF) filter [3]. This may be considered a general-
ization of the MACE filter, which allows us to adjust for
noise tolerance.

3. WAVELET SUBSPACE FILTERS

Wavelet packet analysis provides a family of wavelet repre-
sentations using an iterative filter bank algorithm [5]. Specif-
ically, given an orthogonal low-pass filter g, and its comple-
mentary high-pass filter h, both of finite support, the single-
level expansion of a signal x(i) at level i is given by

x(i)[n] =
∑

k∈Z

x(i+1)
g [k]g[n−2k]+

∑

k∈Z

x
(i+1)
h [k]h[n−2k],

(3)
where

x(i+1)
g [n] =

∑

k∈Z

x(i)[k]g[k − 2n], (4)

and similarly for xh. Superscripts indicate the level of de-
composition signals belong to, and subscripts if a signal is
generated through the low-pass channel g or the high-pass
channel h. For separable wavelets, this operation is per-
formed along the rows of the image, and the resulting low-
pass and high-pass images undergo the same process op-
erating along their columns, producing four decomposition
signals denoted by xgg , xgh, xhg and xhh. A wavelet packet
transform iterates this process for a given tree structure.

Correlation filters are typically designed and applied in
the image intensity domain. However, we may extend corre-
lation filter recognition to any domain that maintains a con-
sistent spatial relationship, such as a wavelet subband. This
may improve filter performance, if the features contained in
wavelet subspaces better facilitate discrimination between
authentic and imposter images.

We propose to select the optimal wavelet subspaces in
which to design and apply correlation filters using wavelet
packets to define our subspace options. Let X̃ represent
the training images after projecting them into a particular
wavelet subspace; as before, the columns of X̃ are com-
posed of the vectorized image spectrums. To select the use-
ful subspaces, we need a way to measure the fitness of the
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Fig. 2. Wavelet packet decomposition for a sample image
class, after pruning for correlation filter fitness.

subspace data X̃ for correlation filter recognition. To do
this, we use the minimum possible correlation energy we
can achieve in this subspace, computed by substituting (2)
into E = h+Dh. For transformed images X̃, the minimized
energy Ẽ simplifies to

Ẽ = uT (X̃
+

D̃
−1

X̃)−1u. (5)

Now we can further optimize our correlation planes, by find-
ing transformations that yield lower values for Ẽ. We define
our fitness metric F as

F = 1
/
Ẽ (6)

so that higher fitness scores correspond to better expected
filter performance. Conceptually, this metric tells us how
sharp we can make the correlation peaks for our training
images in this subspace. For more details, see [6].

Wavelet Packet Pruning. We select a wavelet packet
tree for each image class by pruning the full tree according
to the fitness metric (6). First, we choose a wavelet type and
fully decompose the training images (although we restrict
the number of levels of the decomposition tree). Then we
prune the tree from the bottom up, using the following rule:
If V0 represents a parent space to four child subspaces V1,
W1, W2, W3, evaluate the inequality

F (V0) > F (V1) + F (W1) + F (W2) + F (W3), (7)

where operator F (·) computes the fitness metric of the space.
Here V1, W1, W2, W3 are the spaces of signals x

(i+1)
gg ,

x
(i+1)
gh , x

(i+1)
hg and x

(i+1)
hh , respectively. If the inequality

holds, we select the parent space instead of the child spaces;
if not, we select the child spaces and represent their collec-
tive fitness score as the sum of individual scores. (We use
the sum of scores because the fitness metric is a linear func-
tion of subspace size and wavelet packets are orthonormal).
At the end of the pruning process, we are left with a tree

Fig. 3. Sample images from one fingerprint class.

of wavelet spaces that are most useful for the recognition
of the pattern class represented by the training images. Fig-
ure 2 shows an example of a packet decomposition resulting
from this algorithm. In each of these subspaces, we use the
transformed training data to build an OTSDF correlation fil-
ter. Once we have stored the wavelet packet tree structure
and the subspace filters, we are finished with the training
process for this class.

Shift-Invariance. To apply subspace correlation filters
to an image, we must first decompose the image accord-
ing to the correct wavelet packet tree. Then we may ap-
ply each of the subspace filters, and compute PCE match
scores for each. These scores are summed to obtain the fi-
nal match score. However, wavelet decomposition is not a
shift-invariant operation, because of the downsampling in-
volved. A shift in the original image will only periodically
correspond to a shift in the wavelet subspaces. As a result,
the performance of subspace correlation filters is no longer
shift-invariant; instead, it peaks and decreases periodically
as the input image is shifted.

To solve this problem, we design one further correlation
filter in the original image domain. This filter is applied to
the image first in order to align it; i.e., we observe the lo-
cation of the correlation peak in the output and correct for
any translation. Then we continue with the decomposition
and the use of subspace filters, which allow for superior dis-
crimination. This technique restores shift invariance with-
out adding to the computational complexity.

4. RESULTS

For testing, we used a subset of the NIST 24 fingerprint
dataset [7]. We used 10 classes, each containing 100 im-
ages of a rolling fingerprint. The images are often challeng-
ing because of the deformations and partial prints that result
from the rolling finger movement. Figure 3 shows sample
images from one fingerprint class.

Fingerprint recognition can be accomplished with zero
or very near zero error using standard correlation filter recog-
nition, if the training set is large enough. Here, we limited
our training set size to 5 authentic images along with 7 im-
poster images, making the task more difficult. Our reason
for restricting the available training data is to demonstrate
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Fig. 4. EERs for every class for the standard correlation
filters and the wavelet packet correlation filter classifier.
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Fig. 5. PCE values for a range of possible horizontal shifts
for a sample authentic image. A continuous line is used
for the WPCF with pre-filtering, and a dashed line for the
WPCF without pre-filtering.

the improvement offered by the proposed algorithm in dif-
ficult conditions.

We compared the standard correlation filter algorithm,
using OTSDF filters, to the proposed WPCF algorithm (also
using OTSDF filters in the wavelet subspaces). For our
wavelet packet decompositions, we experimented with the
Daubechies family of wavelets and selected the length-2
wavelet, equivalent to Haar, for the decompositions.

For each fingerprint class, we sequestered an arbitrarily
chosen training set of images to train both types of classi-
fiers. Then we applied the classifiers to all other images
from that class to generate authentic scores, as well as the
remaining images from the data set to generate imposter
scores. We chose a score threshold for recognition which
gave equivalent rates of false acceptance and false rejection,
and recorded this error as the Equal Error Rate (EER) for
that image classifier. The results are displayed in Figure 4.

The proposed WPCF algorithm performs better than the
standard correlation filter, decreasing error in most image
classes where improvement is possible. Average EER across
all classes improves from 7.38 to 2.46; the difference is
especially noticeable for classes 9 and 10, which exhibit

markedly high levels of noise and deformation.
To demonstrate the approximate shift invariance of our

proposed algorithm, we selected a sample test image from
class 8 and shifted it horizontally across a range of 20 pix-
els (including interpolated sub-pixel shifts). We applied the
WPCF algorithm with and without using pre-filtering for
alignment, and the resulting match scores are plotted in Fig-
ure 5; shift-invariance is restored by using pre-filtering.

5. CONCLUSIONS

We proposed to extend the optimization of correlation fil-
ter design to wavelet packet subspaces, where they may be
applied while still performing valid cross-correlations (in
separate frequency subbands). We may think of the sub-
space coefficients as texture features, which may represent
more consistent or more discriminatory features for our im-
age classes; as a result, the optimization can be more suc-
cessful. Comparing the proposed wavelet packet filters to
standard filters, we see a significant improvement in accu-
racy, especially for difficult recognition problems. In addi-
tion, we do not have to sacrifice shift-invariance as long as
we pre-filter in the image domain for alignment.
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