
A MULTIRESOLUTION ENHANCEMENT TO GENERIC CLASSIFIERS
OF SUBCELLULAR PROTEIN LOCATION IMAGES

Thomas Merryman1, Keridon Williams3, Gowri Srinivasa2, Amina Chebira2 and Jelena Kovačević2,1
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ABSTRACT

We propose an algorithm for the classification of fluorescence mi-
croscopy images depicting the spatial distribution of proteins within
the cell. The problem is at the forefront of the current trend in bi-
ology towards understanding the role and function of all proteins.
The importance of protein subcellular location was pointed out by
Murphy, whose group produced the first automated system for clas-
sification of images depicting these locations, based on diverse fea-
ture sets and combinations of classifiers. With the addition of the
simplest multiresolution features, the same group obtained the high-
est reported accuracy of 91.5% for the denoised 2D HeLa data set.
Here, we aim to improve upon that system by adding the true power
of multiresolution—adaptivity. In the process, we build a system
able to work with any feature sets and any classifiers, which we de-
note as a Generic Classification System (GCS). Our system consists
of multiresolution (MR) decomposition in the front, followed by fea-
ture computation and classification in each subband, yielding local
decisions. This is followed by the crucial step of combining all those
local decisions into a global one, while at the same time ensuring
that the resulting system does no worse than a no-decomposition
one. On a nondenoised data set and a much smaller number of fea-
tures (a combination of texture and Zernicke moment features) and
a neural network classifier, we obtain a high accuracy of 89.8%, ef-
fectively proving that the space-frequency localized information in
the subbands adds to the discriminative power of the system.

1. LOCATION PROTEOMICS AND
MULTIRESOLUTION ANALYSIS

Among the most important goals in biological sciences today is to
understand the role and function of all proteins. One of the criti-
cal aspects of a protein’s activity and function is its subcellular lo-
cation (PSL), that is, the spatial distribution of proteins within the
cell. Today’s method of choice to determine PSL is fluorescence mi-
croscopy, its success due in part to the advent of a range of new flu-
orescent probes used to tag proteins or molecules of interest, includ-
ing the nontoxic, green fluorescent protein (GFP). Once successfully
tagged, the cells are imaged using one of many models of fluores-
cence microscopes to produce a multidimensional data set—a bioim-
age. These bioimages can be just 2D slices or 3D cell/tissue vol-
umes (z-stacks). Acquiring bioimages at multiple time instants re-
sults in 3D movies (2D time series) or 4D data sets (z-stacks tracked
in time). Finally, these microscopes allow for imaging of multiple
fluorescence channels, bringing the possible dimensionality of the
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Fig. 1. MR enhancement to a generic classification system.

data set to 5D. With the enormous volume of such high-dimensional
data sets being generated, human analysis becomes time-consuming,
prone to error and ultimately, impractical, leading to the “holy grail”
for PSL bioimage interpretation and analysis: develop a system for
fast, automatic, and accurate recognition of proteins based on their
subcellular location images.

Murphy et al. pioneered automated PSL interpretation and anal-
ysis, resulting in a system that can classify protein location patterns
with well-characterized reliability and better sensitivity than human
observers [1, 2]. This work was followed by [3, 4]. With the addition
of the simplest multiresolution features, in [1], the authors obtained
the highest reported accuracy of 91.5% for the denoised 2D HeLa
data set.

Problem Statement. The problem we are addressing is that
of classifying the spatial distribution patterns of selected proteins
within the cell. The challenge in this data set is that images from
the same class look different while those from different classes look
very similar (see Fig. 2). In the data sets we use, the proteins were
labeled using immunofluorescence. So we know the ground truth,
that is, which proteins were labeled and subsequently imaged. This
is useful for algorithm development as we can test the accuracy of
our classification scheme.

Methodology. As the introduction of the simplest multiresolu-
tion features produced a statistically significant jump in classificia-
tion accuracy, our aim is to explore more sophisticated multriresolu-
tion techniques. In particular, the following are the three character-
istics of multiresolution we wish to explore:

(a) Localization: Fluorescence microscopy images have highly
localized features both in space and frequency. This leads us to MR
tools, as they have been found to be the most appropriate tools for
computing and isolating such localized features [5].

(b) Adaptivity: Given that we are designing a system to distin-
guish between classes of proteins, it is clear that an ideal solution is
adaptive, a property provided by MR techniques.

(c) Fast and Efficient Computation: It is well known that wavelets
have a computational cost of the order O(n), where n is the input
size, as opposed to O(n log n) typical for other linear transforms
including the FFT.
Our Philosophy. Based on the above arguments, we would like
to extract discriminative features within space-frequency localized
subspaces. These are obtained by MR decomposition; thus, instead
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Fig. 2. (a) Intra-class variation: The three images show the spatial distribution of Tubulin within a cell. (b) Interclass similarity: The first
image shows the spatial distribution of Giantin and the second image shows the spatial distribution of Gpp130. Both are Golgi-proteins.

of adding MR features as in [1], we compute features in the MR-
decomposed subspaces. Thus, our system is a generic system with
an MR decomposition block in front (see Fig. 1), so there is feature
computation and classification in each of the subspaces. These are
combined through a weighting process.

2. BACKGROUND AND PREVIOUS WORK

Automated System for Location Classification. The heart of the
previously-developed system is a set of numerical features—termed
Subcellular Location Features (SLF)—to describe the spatial distri-
bution of proteins (protein location patterns) in each cell image. The
SLFs are drawn from various categories of image analysis methods,
including texture analysis, decomposition methods, and morphologi-
cal image processing. In [1], the previous system was enhanced with
the simplest, off-the-shelf, multiresolution (MR) features—wavelet
and Gabor. From this feature set, a discriminating subset (SLF15)
was chosen using stepwise discriminant analysis. The results were
very encouraging: With a mixture of expert classifiers, this set can
produce an average accuracy of 91.5% on single-cell images. This
is compared to the previous best result of 89.4%, a statistically sig-
nificant jump. This improved performance with the addition of the
simplest, standard MR features, was the impetus behind our hypoth-
esis that adding the true power of MR— adaptivity, should result in
improved performance.
MR Techniques. We argued in Section 1 that the nature of our data
sets requires tools which offer localization in space and frequency
as well as adaptivity, and we further argued that those tools are MR
in nature. MR transforms are many; we now give a brief overview.
The basic idea behind MR is that we can look at a signal at different
scales or resolutions and at different points in time. This should give
us information about hidden structures in the signal, with a particular
behavior across scales.

The main building block of any MR transform is a filter bank [6];
it is a device that splits the signal into subbands, where each subband
contains one part of the signal’s spectrum. In Fig. 3, a 2D filter bank
is given. On both rows and columns, the signal is filtered, followed
by downsampling (discarding every other sample, allowed because
there is filtering beforehand). In the simplest case, this produces 4
subbands; one extracting lowpass information in both directions, one
extracting highpass information in both direction and the remaining
two extracting lowpass information in one direction and the highpass
information in the other.

Adaptivity of MR transforms manifests itself differently; many
popular transforms are subsumed in this scenario, such as: (a) Grow-
ing a full tree to L levels with filters the same length as the down-
sampling factor yields the Discrete Fourier Transform (DFT) of size
2L. (b) Growing a full tree to L levels but allowing the filters to
be longer, leads to the Short-Time Fourier Transform, or, the Ga-
bor Transform. (c) Growing the tree only on the lowpass branch to

Average Accuracy [%]

Morphological Texture Morhphological

only only and Texture

No MR 53.6 71.8 69.4

MR 68.9 82.2 80.2

Table 1. The average accuracy per class from [8]. If no multires-
olution is used, the texture features outperform morphological, and
together they achieve the accuracy of 69.4%, lower than texture fea-
tures only. Adding MR improves the accuracy for each set and yields
the accuracy for the combined features of 80.2%, lower then for tex-
ture features only.

L levels leads to the Discrete Wavelet Transform (DWT) of L lev-
els. (d) Growing an arbitrary tree leads to Wavelet Packets (WP). (e)
Splitting the signal into more than two channels, allowing filters in
the above transforms to be orthogonal and/or linear phase, etc., leads
to even more degrees of freedom.

The wavelet packets mentioned above [7], adapt themselves to
the signal at hand. However, this is possible only if a suitable cost
function is available. Given that we had no natural cost function
available, we decided to first test whether the space-frequency adap-
tivity offered by the MR transform help, and, if it does, embark on
the search for a suitable cost function.
Adaptive MR Maximum-Likelihood Classifier. Our first step was
the algorithm developed in [8]; we summarize it here briefly. We
started with a simple classification system consisting of Haralick tex-
ture feature computation followed by a maximum-likelihood classi-
fier, and demonstrated that, by adding an MR block in front, we are
able to raise the average classification accuracy by roughly 10% (see
Table 1). This fits within our generic framework as in Fig. 1, where
the feature computation block uses Haralick texture features and the
classification block is maximum likelihood. We concluded that se-
lecting features in MR subspaces allows us to custom-build discrim-
inative feature sets for fluorescence microscopy images of protein
subcellular locations. We then added morphological features and
found that, while MR increases accuracy considerably in all cases,
our classifier is probably not powerful enough as combining mor-
phological and texture features did not raise the accuracy, and even
lowered it by 2%. Our aim is to improve upon this result.

3. PROPOSED ALGORITHM

As we just discussed, although in [8] we demonstrated the power of
adaptive MR techniques, problems still remain, mostly due to the
classifier we used (maximum likelihood). The algorithm adjusts the
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Fig. 3. (a) An image of Actin. (b) Two channel analysis filter bank for 2D signals. The filter h is a highpass filter and g is a lowpass filter.
(c) A 2-level MR filter bank decomposition of Actin. The upper left image is the coarse representation. The other images are the detailed
representations.

weights trying to maximize the overall classification accuracy; how-
ever, the previous best is not kept. We want to try to rectify that.
Moreover, we would like to incorporate MR techniques to enhance a
generic classifier. We define a generic classifier as one that takes as
input a vector of features, and outputs a decision vector that matches
the length of the number of classes.

There is no reason why our approach in [8] would not work
if we viewed each of the subbands as an individual classification
branch and applied a generic classifier to it. This would enable us
to come up with individual classification decisions at each particu-
lar subband. What we propose to do is consolidate all of the de-
composed subband decisions into one decision we believe will be
of higher accuracy than each of the individual decisions. We aim to
achieve this result by using an adaptive weighting algorithm.

Fig. 4 shows a graphical representation of the process of con-
catenating all of the subband decisions into one. We use weights
at each subband to weigh the importance that a particular subband
has on the overall decision made by the classification system. If the
weights are chosen such that the no decomposition weight is equal to
1, and all other weights are 0, we will achieve the same output vec-
tor as we will without the adaptive MR system in place. With this
information, we know that there is a weight combination that will do
at least as well as the generic classifier. Our goal is to decide how to
find the weight vector that achieves the highest overall classification
accuracy to the data set. The algorithms for both the training and the
testing phases are given in Algorithms 1 and 2.

4. EXPERIMENTAL RESULTS

Data Sets. We used the 2D HeLa collection of cervical cancer cells
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Fig. 4. MR enhancement to generic classifiers. The image is first de-
composed using a level-L filter bank. Classification is ran on each of
the subbands leading to a probability vector which are then weighed
and combined to give a final probability vector.

Algorithm 1 [Training Phase] Input: D (local decision vectors).
Output: W (weight vector).

TrainingPhase(D)
initialize w1,s to classification accuracy of subband (Ds)
initialize w2,s to emphasize the 0th subband
initialize w3,s to positive random entries
for all weight vectors, a = 1 to 3 do

normalize wa, initialize counter, c = 0
compute classification accuracy with wa and store in pa

while c < maxEpochs do
increment counter, c = c + 1
for all images, n = 1 to N do

set d = the image is classified correctly with wa

if d is incorrect then
for all subbands, s = 0 to S − 1 do

set t = subband classified correctly
if t is correct then

wa,s = wa,s · (1 + ε)
else

wa,s = wa,s · (1 − ε)
end if

end for
end if

end for
compute classification accuracy with wa and store in pnew

a

if pnew
a > pa then
set pa = pnew

a , save wa as wbest
a , reset counter, c = 0

end if
end while

end for
set W to the wbest

a with the greatest pa

return W

Algorithm 2 [Testing Phase] Input: D (local decision vectors),
W (weight vector). Output: G (global decision vector), A (classi-
fication accuracy).

TestingPhase(D, W )
set G =

∑S−1
s=0 Ds · Ws

set A equal to the classification accuracy of G
return G and A

with 50 single-cell images of size 512×512, in each class, courtesy
of the MurphyLab [9]. There were 10 classes of subcellular loca-
tion patterns obtained by marking the endoplasmic reticular protein,
Giantin and Gpp130, two golgi proteins, a lysosomal protein, a mito-
chondrial protein, Nucleolin (nucleolar protein) Actin, Tfr (endoso-
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mal protein) Tubulin and the DNA was also labeled. It is important to
note that this data set was not put through some of the pre-processing
steps such as background thresholding and rotation of the images to
a common reference point, while the results reported in [1] were on
the pre-processed data set. In future work, we will try to access the
the original set and intend to conduct experiments that will allow us
to compare to our algorithms. For now we can only speculate on
the effects of the preprocessing. One hypothesis is that since the
data is denoised, it is easier to classify as the classifier does not get
confused by extra noise. On the other hand, it is possible that the pre-
processing removes parts important for classification and thus makes
it harder to classify. In our future work, we also hope to address the
problems associated with translation and rotation sensitivity of our
classification system.

MR Decomposition. We decompose our images using a simple,
separable, 2D filter bank with Haar filters (see Fig. 3), up to 2 levels,
yielding a total of 21 subbands, corresponding to all the nodes in the
decomposition (1 node at level 0, 4 nodes at level 1 and 16 nodes at
level 2, for a total of 21).

Feature Computation. As in [1], we use Haralick texture fea-
tures (13), morphological (16) and Zernicke moments (49). Unlike
in [1], we do not use wavelet/Gabor features as the MR advantage
brought by those has been taken over by our MR decomposition.
Therefore, our total number of features is 78, as opposed to 180
in [1]. Instead of combining all features in a single probability vec-
tor, we allow each feature set its own probability vector per subband;
effectively, this brings the number of subbands to 3 · 21 = 63. Note
that while we have decreased the number of features significantly,
we have increased the number of classifiers, as now we have a clas-
sifier per subband. Understanding the computational trade-off is a
task for future work.

Classification. We used a two-layer neural network classifier.
The first layer contains a node for each of the input features, each
node using the Tan-Sigmoid transfer function. The second layer
contains a node for each output and uses a linear transfer function.
With this layout, there is an input for each feature and an output
for each class. We then train the neural network using a one-hot de-
sign. Since each output from the second layer corresponds to a class,
when training, each training image will have an output of 1 for the
class of which it is a member and a 0 for all other classes. To max-
imize the use of our data, our training process uses five-fold cross
validation. This ensures that we have an ample amount of training
data without sacrificing the use of all of the images in our adaptive
weighting phase. We train for 25 epochs. We also perform ten-fold
cross validation on the weight calculation.

Results. We ran our algorithm with and without the MR block,
for each feature set, for combinations of two feature sets, as well
as all feature sets together. There were two schemes to weighting:
(1) As we explained above, we have 21 subbands/feature set, giving
a total of 63 subbands which are then weighted all together. (2)
Perform weighting on each individual feature set and then weight
the resulting three numbers. As the second scheme gives slightly
higher accuracies, this is the one we will be using.

We see that, without fail, MR block increases the classification
accuracy in each case; the increase is the largest for single feature
sets (Z and M). This brings another trade-off into the game; instead
of increasing the accuracy by adding more features, increase it by
adding the MR block. It is worth noting that the best result of almost
90% is obtained by combining texture and Zernicke features; adding
morphological features reduces accuracy slightly (for MR).

We conclude that with a much smaller number of features than
in [1], we obtain an accuracy of close to 90%. This number may

Average Accuracy [%]

Z M T M,Z T,M T,Z All

No MR 51.4 69.6 86.6 74.8 86.6 86.6 87.4

MR 62.8 81.0 89.2 83.8 89.2 89.8 89.2

Table 2. The average accuracy per class. Z, M and T stand for
Zernicke, morphological and texture features.

change when we gain access to the exact same data set as in [1]; that
set was denoised while ours was not. There are a number of other
issues to be explored: For example, our system effectively builds an
adapted MR decomposition (via subband weights) for the whole data
set; we need to adapt that decomposition to each class. We also need
to test the robustness of the system to other data sets. Computational
burden is also an issue; we will address it in an upcoming paper.

In summary, to explore space-frequency localized information
in our data, we have built a flexible add-on to a generic classification
system in the form of MR decomposition and voting. The system
performs well and adds to the accuracy of a nondecomposed system.
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J. Kovačević, “Adaptive multiresolution techniques for subcel-
lular protein location image classification,” in Proc. IEEE Int.
Conf. Acoust., Speech, and Signal Proc., Toulouse, France, May
2006, Invited paper.

[9] The Murphy Lab at Carnegie Mellon University:
http://murphylab.web.cmu.edu, 1998.

573


