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1 Dept. of BME and Center for Bioimage Informatics, 2 Dept. of ECE, 3 Dept. of Biol. Sci.
Carnegie Mellon University, Pittsburgh, PA

ABSTRACT
We build an image analysis toolbox for high-throughput Drosophila
embryo RNAi screens. The goal is to tag the embryo as normal,
developmentally delayed or abnormal based on the ventral furrow
formation. We break the problem into two parts: in the first, we
detect the developmental stage based on the progress of the ven-
tral furrow formation, and in the second, we tag the embryo as nor-
mal/developmentally delayed/abnormal based on the stage detected
and the elapsed time. The crux of the algorithm is the multiresolu-
tion classifier, and we show that, by classifying in multiresolution
spaces, we obtain better results than by classifying the embryo im-
age alone. The final 2D accuracy obtained was 93.17%, while by
using 3D information, it increased to 98.35%.

Index Terms— High-throughput, screening, Drosophila, classi-
fication, multiresolution

1. STUDY OF DROSOPHILA EMBRYOS

The genome projects have brought unprecedented opportunities to
understand molecular mechanisms of development and disease. The
Drosophila sequences are of special interest because the fly serves
as an important model organism for developmental and cellular pro-
cesses common to higher eukaryotes, including humans. Compar-
ative genomics studies have revealed that D. melanogaster, for ex-
ample, has orthologs to 177 out of 289 examined human disease
genes [1]. The genome sequence of D. melanogaster was published
in 2000 [2], followed by the sequence of Drosophila pseudoobscura
in 2005 [3].

While the Drosophila genome projects provide us with a wealth
of data, the determination of the functions of the genes that are
inferred from these sequences (approximately 13,600 genes for D.
melanogaster) requires novel, highly efficient and high-throughput
screening methods [4] and methods for automated phenotype analy-
sis [5].

RNA interference (RNAi) is one such method that can be used
to silence a specific gene in a cell or an organism [6]. Analysis of a
change in phenotype due to gene silencing indicates the function of
the silenced gene. Silencing a gene in an entire fly embryo through
RNAi requires injection of embryos with designed, double-stranded
RNA (dsRNA) early in embryonic development, prior to the forma-
tion of the syncytial blastoderm. A powerful MEMS-based system
for automated, high-throughput injection of Drosophila embryos has
been recently proposed [7]. Phenotype analysis after gene silenc-
ing is greatly facilitated through genetic engineering of Drosophila
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embryos that express, for example, green fluorescent protein (GFP)
in a tissue of interest [8]. Modern confocal laser scanning fluores-
cence microscopes are capable of automatically acquiring image z-
stacks of entire embryos with acceptable resolution within seconds,
enabling time-lapse recording of fluorescently marked features of a
large number of embryos. However, manual interpretation of the
huge amount of generated 4D image data is impractical and error-
prone. Fast, reliable, flexible, and efficient algorithms for automated
4D image analysis and phenotype detection are needed to enable
high-throughput functional genomics screens.

To demonstrate the feasibility of automated image data analysis
in Drosophila embryo RNAi screens, we have developed an algo-
rithm for screening during early embryonic development based on
ventral furrow formation. Ventral furrow formation is a key mor-
phogenetic event during Drosophila gastrulation that leads to the in-
ternalization of mesodermal precursors [9]. We have trained image
analysis algorithms to recognize the beginning, a middle stage and
the end of ventral furrow formation of wildtype embryos. In subse-
quent experiments, we have then silenced specific genes, known to
be implicated in ventral furrow formation, through the RNAi mech-
anisms. Our algorithms were able to detect phenotypes due to gene
silencing based on deviations from the normal occurrence of ventral
furrow formation stages over time.

2. AUTOMATED DETERMINATION OF
DEVELOPMENTAL STAGE

2.1. Problem Statement

The problem we are addressing is that of labeling an image as nor-
mal/developmentally delayed/abnormal, given as input the image it-
self and the time stamp. We do this by first detecting the devel-
opmental stage based on the progress of the ventral furrow forma-
tion, and then, tagging the embryo as normal/developmentally de-
layed/abnormal based on the stage detected and the elapsed time.

2.2. Algorithm Details

We approach the first part of the problem, that of detecting the de-
velopmental stage as a classification problem. That is, we aim to
design a map from the signal space of embryo images X ⊂ RN×N ,
(N × N is the image size) to a response space Y ⊆ {stage 1, stage
2, stage 3} of class labels. Thus, decision d is the map, d : X �→ Y
that associates an input image with a class label [10]. To reduce
the dimensionality of the problem, one sets up a feature space F ⊂
Rk, k ≤ N2, between the input space and the response space. The
feature extractor θ is the map θ : X �→ F , and the classifier ψ is the
map ψ : F �→ Y . The goal is to find a (θ, ψ) pair that maximizes the
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Fig. 1. The generic classification system (GCS) consists of feature
extraction followed by classification (inside the dashed box). We add
an MR block in front of GCS and compute features in MR subspaces
(subbands). Classification is then performed on each of the subbands
yielding local decisions which are then weighed and combined to
give a final decision.

classification accuracy. A generic classification system (GCS) thus
first computes the features and then classifies, as in the dashed box
in Figure 1.

In [11], we introduced a concept of multiresolution (MR) clas-
sification for classification of protein subcellular location images,
arguing that the nature of such images requires tools which offer lo-
calization in space and frequency as well as adaptivity. Thus, we
classify in MR subspaces as opposed on the original image itself
with the idea is that certain features will react well at a certain scale
but not at another. We add an MR Block in front of the GCS, as in
Figure 1. Given that now each subspace voices an opinion, these
opinions are combined via a weighting algorithm.

MR Block. The basic MR block is the so-called two-channel fil-
ter bank. It, and its extensions, can be used to build decompositions,
wavelet packets [12], custom-tailored to the image at hand. This is
done by using this filter bank in a tree, iterating on any of the two-
channels and its children. Moreover, the filter bank can have more
then two channels, and can have more channels than the sampling
factor (leading to redundant representations), etc.

Amongst the possible trees that one can use to analyze an im-
age, the wavelet packets mentioned previously adapt themselves to
the image at hand. However, this is possible only if a suitable cost
function is available. That is, in order to adaptively build the tree,
we need to find a suitable measure that will indicate whether a sub-
band (a node in the tree) contains useful information or not. If it
does, then we keep the node, otherwise, we prune it. Adaptive fla-
vors of MR have been explored for their utility in classification in
various domains [13]. These studies have used the transform do-
main coefficients themselves as features and so had a natural cost
function in selecting the tree most adapted to the signal. In [14], we
used wavelet packets for fingerprint identification and verification
with remarkable results. As we do not have a natural cost measure,
we simulate wavelet packets by decomposing fully and using all the
nodes in the classification by attaching weights to each node, as de-
scribed shortly. This process builds a decomposition adapted to the
data set as it weighs higher the subbands with the high discriminative
power, and lower those with the low discriminative power.

Feature Extraction Block. If using more than one feature set,
we allow each one its own decision vector per subband. For exam-
ple, for 2 levels this effectively brings the number of subbands to
q · 21 = 63, where q is the number of feature sets. Note that al-
though we have decreased the number of features significantly, we
have also increased the number of classifiers, because now we have
one classifier per subband. Evaluating this computational trade-off
is a task for future work.

Feature sets we considered are those originally used in [15] (with-
out wavelet and Gabor features, which are MR): texture (T1), mor-

phological (M ) and Zernicke moments (Z).
Texture Features. In our previous work [11] [16], we found that

texture features are the most discriminative. We modified the stan-
dard Haralick texture features we call T1 [17] into a new set T3, by
separating vertical/horizontal from diagonal features, as follows:

f
(T3)
i =

fH,i + fV,i

2
, f

(T3)
i+13 =

fLD,i + fRD,i

2
, (1)

where fi are the original Haralick texture features in horizontal (H),
vertical (V) and diagonal directions (LD, RD) and i = 1, . . . , 13,
yielding a total of 26 features in the set T3.

Weighting Algorithm. The weighting part combines all of the
subband decisions into one. We use weights for each subband to
adjust the impact that a particular subband has on the overall decision
made by the classification system. If the weights are chosen such
that the no decomposition weight is equal to 1, and all other weights
are 0, we will achieve the same output vector as we would have
without using the adaptive MR system. Therefore, we know that
there is a weight combination that will do at least as well as the
generic classifier (when no MR is involved) in the training phase.
Our goal is to decide how to find the weight vector that achieves the
highest overall classification accuracy on the data set.

We developed two versions of the weighting algorithm: open-
form and closed-form. The difference between the open and closed-
form algorithms is that in the open-form version we optimize clas-
sification accuracy on the training set as opposed to the closed-form
where we look for the least-squares solution.

The classification block in Figure 1 consists of a neural network.
It outputs a series of decision vectors for each subband of each train-
ing image. Each decision vector Ds contains 3 numbers (because
we have 3 classes) that correspond to the “local” decisions made by
subband s for a specific image.

If using the open-form algorithm, we initialize all the weights,
and a global decision vector is computed using a weighted sum of
the local decisions. An initial class label will be given to an image
using this global decision vector. If that class label is correct, we go
to the next image. If it is incorrect, we look at the local decisions of
each subband and adjust the weights of each subband as follows:

witer
s =

{
witer−1

s · (1 + ε) if subband s is correct,
witer−1

s · (1 − ε) otherwise,

where iter is the iteration number and ε is a small positive con-
stant. This can be viewed as a reward/punishment method where
the subbands taking the correct decisions will have their weights in-
creased, while those taking wrong decisions will have their weights
decreased. We continue cycling through the images until there is
no increase in classification accuracy on the training set for a given
number of iterations.

The closed-form solution does not use an iterative algorithm.
Instead, it concatenates all the decision vectors of all the images into
a matrix Γ where each column represents one image. We can then
solve for the vector of weights W using least squares in the following
system:

ΓW = T (2)

where Γ is of size 3R × S, R is the number of training images, S is
the number of subbands, and the vector T is the target vector.

Screening. For each time-lapse series, we consider slices at
three time points; the first is during the time when Stage 1 is ex-
pected to occur, the second is during the time Stage 2 is expected to
occur, and likewise for the third time point (these times are known).
We then determine normal/delayed/abnormal tags by comparing the
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Tagging Chart

(1,2,3) (1,1,2) (1,2,2) (1,1,1) (1,3,3)

Tag normal delayed delayed abnormal abnormal

Table 1. Tagging chart. All combinations starting with 2 or 3 will
be assumed to be a classifier mistake. Those combinations should be
converted to (1,x,y) where x and y are the original stage determina-
tion. Any combination starting with 1 and not in the above chart is
assumed to be abnormal.

Fig. 2. Representative examples of each stage. Top: Stage 1, no
ventral furrow, for normal (t=30min), delayed (t=60min) and ab-
normal (t=20min) embryos. Middle: Stage 2, ventral furrow start,
for normal (t=60min), delayed (t=110min) and abnormal (t=72min)
embryos. Bottom: Stage 3, ventral furrow closed, for normal
(t=75min), delayed (t=140min) and abnormal (t=82min) embryos.

expected stages with what the classifier outputs for each set of time
points. For example, if the three time points are classified as (1,2,3)
(numbers refer to stages), then this is a normal image series. If the
classifier labels the images as (1,1,2), then this is a delayed image
series. If the classification is (1,1,1), then this is abnormal because
it means development did not occur at all. For each combination,
we assign a normal/delayed/abnormal tag. Our current assignment
is given in Table 1. Of course, it is possible that the sequence (1,1,1)
is the correct classification in the first case and incorrect in the last
two, leading to an incorrect tag. We will assume that any combi-
nation starting with 2 or 3, that is, (2,x,y) or (3,x,y), is a classifier
mistake and will convert it into (1,x,y). The combinations starting
with 1 not shown in Table 1 are assumed to lead to abnormal tags.

3. EXPERIMENTAL RESULTS

3.1. Data Set

The data set consists of 60 time-lapse z-stacks (3D volumes in time).
The stacks are acquired roughly every 10 minutes. The number of
slices per stack varies; it is 5 slices for normal sets and 7 slices for
delayed/abnormal. The number of time points is typically 15 for

normal/abnormal and around 30 for delayed. All the slices have been
tagged by a human expert so we have reliable ground truth.

3.2. Experimental Setup and Results

Base System (NMR). We denote the base system without the mul-
tiresolution block as no MR (NMR). We used a two-layer neural net-
work classifier. The first layer contains a node for each of the input
features, each node using the Tan-Sigmoid transfer function. The
second layer contains a node for each output and uses a linear trans-
fer function. With this layout, there is an input for each feature and
an output for each class. We then train the neural network using
a one-hot design. Since each output from the second layer corre-
sponds to a class, when training, each training image will have an
output of 1 for the class of which it is a member and a 0 for all other
classes. To maximize the use of our data, our training process of the
neural network block uses five-fold cross validation. We train for
25 epochs, that is, the entire training set is presented 25 times to the
neural network.

We ran the classifier on the combinations of T1, T3, M feature
sets. We did not use the set Z as in previous experiments it did not
show great promise, and is expensive to compute. The results are
given in the first row of Table 2. As expected, T3 outperforms T1.
However, adding the set M did not yield an improvement in accuracy,
and even decreased it.

MR Basis Classification (MRB). We now implement our main
idea of adding an MR block in front of feature computation and clas-
sification, as in Figure 1. We start with the MR decomposition being
a basis expansion, and thus, we term this MR basis classification
(MRB). We grow a full MR tree with 2 levels. The classification sys-
tem uses all the subspaces from the root (the original image) to the
leaves of the tree. Hence, the total number of subbands used is 21
(1+4+42). We used the simplest, Haar filters in the decomposition,
where the lowpass is given by g = (1, 1)/

√
2 whereas the highpass

is h = (1,−1)/
√

2. This is done first in the horizontal direction and
then in the vertical one, producing 16 outputs (subbands) on the sec-
ond level of the decomposition. There are many other MRB blocks
possible, the investigation of other ones is left for future work.

We grow a full tree to two levels with Haar filters. We then test
the system with T1, T3 and M combinations of feature sets, a neu-
ral network classifier and the weighting algorithm (open form (OF)
or closed form (CF)). The classifier is evaluated using nested cross
validations (five-fold cross validation in the neural networks block
and ten-fold during the weighting process). One problem with this
technique is that the initial ordering of the images determines which
images are grouped together for training and testing in each fold
of the cross validation. A different original ordering of the images
would result in different groupings, and thus a different overall re-
sult. We solve this problem by running multiple trials, each with a
random initial ordering of the images. The mean result of these trials
is taken as our true classification accuracy.

The second and third rows of Table 2 show the results of this
experiment. The second row gives the results for the open-form
weighting algorithm (OF), while the third row gives the same re-
sults the closed-form one (CF). For the OF (second row), we see that
by adding MR, we achieve significant improvement on the NMR (no
multiresolution) in all cases, achieving the best accuracy of 89.89%
for the (T3, M) combination. For the CF (third row), we conclude
that the CF outperforms OF in each case, achieving the best accuracy
of 92.78% for the (T3, M) combination.

MR Frame Classification (MRF). In our work with images of
subcellular protein location, we found that adding redundancy in the
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Classification Accuracy [%]

2D Weight T1 T3 T3, M

NMR NW 82.94 88.39 78.33

MRB OF 88.11 91.06 89.89

CF 90.94 92.22 92.78

MRF OF 83.44 89.95 90.51

CF 84.83 91.06 93.17

3D Majority rule on 2D 98.35

Table 2. Classification accuracy for 2D slices. We use these in ma-
jority voting classification for 3D stacks yielding the accuracy of
98.35%. NMR stands for no multiresolution, MRB for MR bases
and MRF for MR frames. OF denotes open-form weighting algo-
rithm while CF denotes closed-form weighting algorithm. NW de-
notes no weighting as there is no MR block in front.

MR transform helped, that is, when we used frames instead of bases,
accuracy increased. We postulated this was the case because the
MRB were shift variant. Here, the results with frames (à trous MR
block), are given in the fourth and fifth rows of the table, for the OF
and the CF weighting algorithms, respectively. Interestingly enough,
for T1 and T3 alone, frames did not improve the accuracy. However,
for the best-performing combination from before, (T3, M), frames
improve the performance, reaching a high accuracy of 93.17%.

3D Classification. The above classification system classifies 2D
slices. Since we have access to 3D stacks, we make use of those, by
classifying three slices out of each stack and then making a decision
using a majority rule. The classification results for adjacent slices
were 92.38% and 91.64% using (T3, M) features and closed-form
weighting. Using the majority rule process, the classification accu-
racy reaches 98.35%. We can use the same process in time to im-
prove the screening, but since we do not have enough slices in time
and need to acquire time-lapse series with better time resolution, this
is left for future work. Note that using the majority rule assumes the
slices in a 3D stack to be independent. We have not verified this
assumption and will leave it for future work.

4. CONCLUSIONS AND FURTHER WORK

We presented an algorithm for automated screening of Drosophila
embryos based on ventral furrow formation. The algorithm achieves
an accuracy of 98.35% with a potential for even higher numbers once
higher time-resolution time-lapse series are acquired. We build this
as part of an image analysis/processing toolbox for high-throughput
Drosophila embryo RNAi screens. Future work involves both im-
proving the present algorithm as well as adding toolbox functional-
ities by developing algorithms for other problems within the screen
(acquisition, segmentation, etc.).
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