
Multiresolution Techniques for the Classification

of Bioimage and Biometric Datasets

Amina Chebira1 and Jelena Kovačević1,2
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ABSTRACT

We survey our work on adaptive multiresolution (MR) approaches to the classification of biological and fingerprint
images. The system adds MR decomposition in front of a generic classifier consisting of feature computation
and classification in each MR subspace, yielding local decisions, which are then combined into a global decision
using a weighting algorithm. The system is tested on four different datasets, subcellular protein location images,
drosophila embryo images, histological images and fingerprint images. Given the very high accuracies obtained for
all four datasets, we demonstrate that the space-frequency localized information in the multiresolution subspaces
adds significantly to the discriminative power of the system. Moreover, we show that a vastly reduced set of
features is sufficient. Finally, we prove that frames are the class of MR techniques that performs the best in this
context. This leads us to consider the construction of a new family of frames for classification, which we term
lapped tight frame transforms.

1. BACKGROUND AND MOTIVATION

In this work, we show that, by looking into four different biological/biometric applications, the underlying
problem is classification and thus, an accurate and efficient algorithm would be of great use. We proceed to give
a general background on classification and how it was used in the first problem, that of recognizing proteins based
on the images depicting their location within the cell. As in that attempt, the authors had great success with
the simplest of MR techniques, we postulate that using more sophisticated ones would lead to more accurate
classification. We thus proceed to review nonredundant MR tools—MR bases, and show how, in their adaptive
incarnation, they have been used with great success in fingerprint recognition. In the same problem, the authors
observed that the translation variance of these bases might pose a problem and suggest considering redundant
MR techniques—frames, which we then review.

1.1. Motivation: Classification Problems in Bioimaging and Biometrics

Systems biology entails the study of the interactions between the components of a biological system and the
mechanisms by which these interactions give rise to the function and behavior of that system. It can be viewed
as a “macro” approach that encompasses mathematical and computational modeling based on quantitative data
collected within each component of the biological system.

The Need for Automated Processing. Advances in biochemistry, probes, and microscopy gave the biologists the
opportunity to observe cells and cell processes at a level never seen before, which led to the collection of huge
amounts of 2D, 3D and even higher-dimensional data. As a result, visual inspection of these datasets, always
error-prone, nonreproducible and subjective, became impractical as well. Hence the need for automated, accurate
and efficient systems to extract knowledge contained in the collected data.

Classification of Biological and Biometrics Images. Such automated knowledge extraction requires the expertise
developed in signal processing, machine learning and mathematics. In the project of determination of protein
subcellular location patterns, Murphy et al. identified classification as the underlying problem [1]. Similarly, in
the project of determination of developmental stages in fly embryos [2], we realized that the problem is again
that of classification. Not surprisingly then, in several other projects, such as the development of teratomas in
stem cells, where multiple tissues are present and need to be recognized, as well as fingerprint recognition, the
need for classification emerged. Thus, an accurate and efficient algorithm for classification would be of great use
to biologists, motivating the developments in this work.



Determination of Protein Subcellular Location Patterns. The field of proteomics entails the study of
proteins and their role and function in various cellular mechanisms. One of the critical characteristics of a protein
is its subcellular location (PSL), that is, its spatial distribution within the cell. Knowledge of the location of all
proteins will be essential for building accurate models that capture and simulate cell behavior, and eventually
can be expected to be useful for early diagnosis of disease and/or monitoring of therapeutic effectiveness. Once
successfully tagged (using green fluorescent protein (GFP) for example), the cells are imaged using one of many
models of fluorescence microscopes to produce a multidimensional dataset. Murphy et al. pioneered the use of
automated systems for protein identification based on their subcellular location patterns [1].

The Need for Classification. Given that mammalian cells are believed to express tens of thousands of proteins,
comprehensive analysis of protein location requires acquisition of images whose numbers are beyond our ability
to analyze visually. Moreover, as today’s microscopes allow for imaging of high-dimensional datasets, both the
enormous volume as well as the high dimensionality of the data render human analysis time-consuming, prone
to error and ultimately, impractical, leading to the “holy grail” for PSL bioimage interpretation and analysis:
develop a system for fast, automatic, and accurate recognition of proteins based on their subcellular location.

Detection of Developmental Stages in Drosophila Embryos. Drosophila, also known as small fruit fly, is
an important model organism in developmental biology, as it shares cellular and molecular processes with higher
eukaryotes including humans. To fully comprehend such mechanisms, scientists study genome sequences provided
by the genome projects. The genome sequence of Drosophila melanogaster was published in 2000 [3]. In the
project led by Minden at CMU, the formation of the ventral furrow is observed in early embryonic development
as it is known to be a key morphogenic event. Once a gene is silenced using RNAi, the fly embryos are tagged
with GFP and imaged using a confocal laser fluorescence microscope. This acquisition process allows for the
collection of z-stack images of embryo volumes in time [2].

The Need for Classification. Drosophila gastrulation involves four major morphogenic events, the first one being
ventral furrow formation, which can be divided into three steps: (1) The initial stage when no ventral furrow is
formed yet. (2) During Stage 2, the entire ventral furrow collapses inward, bringing a band into the interior of the
embryo over a period of several minutes. (3) Stage 3 consists of having a closed and formed ventral furrow. To
study this process, Minden at al. acquire 3D volumes of the formation of the ventral furrow in time. As manual
processing of huge amounts of these 4D (space + time) datasets is impractical, cumbersome and error-prone,
we believe that reliable, accurate, and efficient algorithms for automated 4D image and phenotype analysis are
crucial to enable high-throughput functional genomics screens such as this one.

Classification of Histological Stem-Cell Teratomas. The study of stem cells is one of the most exciting
and promising research areas in the biomedical field. Stem cells are unspecialized cells that have the remarkable
ability to divide, renew for long periods of time and become specialized (differentiate). The mechanisms that
lead such cells to divide, remain undifferentiated or specialize are yet to be understood.

In the project led by Castro and Ozolek at the University of Pittsburgh Medical School, the aim is to answer
some of these questions using high-field magnetic resonance imaging (MRI) and histological staining methods.
First, stem cells are implanted in the testis of a rat. Then, with no control over the differentiation process, the
implanted stem cells develop into various tissue types such as muscle, epithelial and bone. This tissue-rich tumor
is then removed and imaged using MRI as well as stained with Hematoxylin and Eosin (H&E) and then imaged.
An important step towards understanding stem-cell division and differentiation would be to coregister cellular
class identifications from the highly-detailed histological images to the difficult-to-read MRI data. The goal here
is to enhance the diagnostic capabilities of MRI using histology images as ground truth.

The Need for Classification. Currently, the 2D MRI and histological images are acquired and manually interpreted
by experts. That is, each image is segmented into meaningful regions such as bones and muscle, and those regions
are appropriately labeled. A large amount of data begs for an automated and accurate system that will perform
these tasks efficiently. The process of labeling mentioned above is in fact a classification problem again.

Fingerprint Recognition. Personal identification has been a topic of interest for some time, with various
solutions proposed. Accessing buildings or facilities, withdrawing money or using a credit card, gaining access
to electronic information on a local computer or over the Internet, are all examples of situations which require
accurate and reliable methods of personal identification, and solutions vary greatly. Using human biometric



characteristics (fingerprints, irises, faces, etc) has great advantages over other modalities: the information cannot
be lost or forgotten, and forgery requires greater skill.

The Need for Classification. The most familiar and studied modality of biometric recognition is the fingerprint.
Because acquisition of fingerprint images is minimally invasive and requires little hardware (ink, paper and a
digital camera are the minimum requirements), fingerprint recognition is a highly researched field. By recognition
here we mean identification of a person (namely one individual corresponds to one class)—again a classification
problem. A crucial goal in processing this biometric data is to do so automatically, accurately and fast.

1.2. Classification

As we have seen above, the need for classification of biological datasets is pervasive, and ever better solutions
are needed. Thus, we start with a brief overview of classification methods.

Problem Statement. The problem we are addressing is that of classifying images from biological and biometric
datasets. Assume that the images are of size N × N and let R denote the set of intensities covered by all the
images in the given dataset. Thus, the classification problem can be formulated as designing a map from the
signal space of the examined images X ⊂ RN×N , to a response space Y ⊆ {1, 2, ..., C} of class labels. The
decision d is the map, d : X 7→ Y that associates an input image with a class label. To reduce the dimensionality
of the problem, one sets up a feature space F ⊂ Rf , f ≤ N2, between the input space and the response space.
The feature extractor θ is the map θ : X 7→ F , and the classifier ν is the map ν : F 7→ Y. The goal is to find a
(θ, ν) pair that maximizes the classification accuracy.

Feature Extraction. Features are numerical descriptors that characterize the input data, usually in a lower-
dimensional space. We focus on the following feature sets:

Haralick Texture Features (T1 with 13 features or T2 with 26 features), are calculated using four co-occurrence
matrices which are combined in various ways to give either 13 or 26 measures [4].

Morphological Features (M , 16 features), visually describe distinctive aspects of images as discerned by the
human eye.

Zernike Moment Features (Z, 49 features), computed for an image are similarity measures between the corre-
sponding Zernike polynomials and the image.

Classifiers. We focus here on a specific class of non linear classifiers: Neural networks (NNs), which are classifiers
based on grouping the input vectors (features) into intersections of clusters of one type while the union of all
such intersections yields the entire feature space.

Determination of Protein Subcellular Location Patterns: Use of Simple MR Techniques. The
heart of systems that can classify PSL patterns is a set of features (T1, T2,M, and Z) describing the spatial
distribution of proteins in each cell image. Of particular relevance to the work described here is the use of
simplest MR features such as wavelet (30 features) and Gabor (60 features) features, as the addition of these
resulted in a significant improvement of classification accuracy to 91.5% for the 2D HeLa dataset [1].

The Need for Multiresolution. As the introduction of the simplest MR features produced a statistically
significant jump in classification accuracy, our hypothesis is that more sophisticated MR techniques would result
in even more accurate classification. In particular, the three crucial characteristics of MR [5] we wish to explore
are: (a) localization, (b) adaptivity and (c) fast and efficient computation. These are some of the major reasons
for the phenomenal success of MR techniques in real applications and one of the reasons to incorporate MR
features into our system.

1.3. Multiresolution Techniques

We now give a brief overview of MR techniques, which have been extensively studied and used in signal and
image processing over the past two decades [5]. MR processing means analysis and processing of data at different
resolutions and/or scales. MR transforms decompose a signal into zooming spaces (coarse spaces and many detail
spaces called subbands) and are implemented by filter banks (FBs), through filtering and sampling.

Nonredundant Multiresolution Techniques: Bases. Most of MR techniques in use are nonredundant—
the underlying mathematical structures are bases (MRBs). Assume finite-dimensional spaces Rm or Cm. Given



a basis for such a space, Ψ = {ψi}
m−1
i=0 , we associate to it a matrix (operator) which we will also call Ψ, and which

has basis vectors as its columns (ψi,j is the jth element of the ith basis vector). Given a pair of biorthogonal

bases (Ψ, Ψ̃) dual to each other, a signal x belonging to Rm or Cm can be expressed as:

x = ΨX = ΨΨ̃∗x, (1)

where X is the vector from Rm or Cm of so-called transform coefficients (inner products), and Ψ̃∗ denotes the
Hermitian transpose of the dual basis Ψ̃. If the expansion is into an orthonormal basis (ONB), then Ψ = Ψ̃ and
the above becomes ΨΨ∗ = I, which further implies that Ψ is a unitary matrix.

Filter-Bank View of Bases. The only infinite-dimensional class of MR decompositions we discuss here are
those implemented by FBs, as these are bases used in applications and our only link to the real world. The vectors
(signals) live in the infinite-dimensional Hilbert space ℓ2(Z)∗. A FB is the basic signal processing structure used
to implement most MR transforms (Fig. 2 depicts a FB with m channels and sampling by n). When m = n, we
deal with critically-sampled FBs implementing bases. A thorough analysis of FB bases is given in [6].

A FB decomposition can be expressed as in (1) where x is now an infinite sequence belonging to ℓ2(Z), X
is an infinite sequence of transform coefficients (inner products) in ℓ1(Z), and Ψ is the basis expansion matrix
given in a setting with finite impulse response (FIR) filters. The matrix Ψ is used in the synthesis FB (the
reconstruction step) whereas its dual, Ψ̃, is used in the analysis FB (the decomposition step). Assume that the
nonzero support of the filter ψi, or, its length is l = km (if not, we can always pad with zeros), and write the
basis operator as

Ψ =
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 , (2)

where r = 0, . . . , k − 1 and each block Ψr is of size m × m. We can rephrase the basis decomposition in the
z-domain as well using polyphase analysis. A polyphase matrix Ψp(z) collects the subsequences modulo n. For
bases, Ψp(z) is of size m×m and can be written as:

Ψp(z) =

k−1∑

r=0

Ψrz
−r, (3)

with Ψr as in (2). A paraunitary polyphase matrix (representing an ONB) satisfies Ψp(z)Ψ
∗
p(z) = cI, where c

is a constant.

Block Transforms. When the filter length l is equal to the sampling factor m, we have a block transform.
Then, in (2), only Ψ0 is nonzero, making Ψ block-diagonal. In effect, since there is no overlap between processed
blocks, this can be analyzed as a finite-dimensional case, where both the input and the output are m-dimensional
vectors. This shows how finite-dimensional bases can be analyzed in the FB context.

Lapped Orthogonal Transforms. In practice, the use of block transforms can produce artifacts known as
“blocking effects” (since there is no overlap between the basis functions—processed blocks), and thus solutions
were sought with longer basis functions. One such solution is the Lapped Orthogonal Transform (LOT). The
LOTs can be seen as a class of m-channel FBs implementing bases, originally developed for filters of length
l = 2m and later generalized to arbitrary integer multiples of m [7]. Compared to block transforms, the LOT

∗In fact, we can investigate finite-dimensional MR decompositions within the FB framework as well.



keeps the same number of filters but doubles their length, which means that the basis functions of adjacent
blocks overlap by half their size, thus removing the blocking effects. However, LOTs are not solely determined
by their length, but by the specific form of their basis vectors as well.

In general, for a FB with filter length l = 2m, the time-domain matrix Ψ has a double diagonal, that is, in
(2), only Ψ0 and Ψ1 exist. Thus, (3) reduces to

Ψp(z) = Ψ0 + z−1Ψ1, (4)

where Ψr, r = 0, 1, are m×m matrices with (Ψr)j,i = ψi,j for i = 0, . . . ,m− 1 and j = mr, . . .mr+m− 1. Since
the LOT is a unitary transform, that is, ΨΨ∗ = Ψ∗Ψ = I the following must be satisfied:

Ψ0Ψ
∗

0 + Ψ1Ψ
∗

1 = Ψ∗

0Ψ0 + Ψ∗

1Ψ1 = I, (5)

Ψ∗

0Ψ1 = Ψ∗

1Ψ0 = 0, Ψ0Ψ
∗

1 = Ψ1Ψ
∗

0 = 0. (6)

Two main classes of LOTs exist distinguished by whether they use cosines or complex exponentials in their
basis functions. We concentrate here on a particular family that uses cosine basis functions:

The Princen-Johnson-Bradley LOT (PJB-LOT). [8] The PJB-LOT basis functions are given by:

ψi,j =

√

1

m
cos(

π(2i+ 1)(2j −m+ 1)

4m
), i = 0, . . . ,m− 1 and j = 0, . . . , 2m− 1. (7)

With J and anti-diagonal matrix, and thanks to the particular structure of the cosines:

Ψ0Ψ
∗

0 =
1

2
(I − J), Ψ1Ψ

∗

1 =
1

2
(I + J). (8)

With this construction, we will have, similarly to the Discrete Fourier Transform (DFT), fixed basis functions
allowing no freedom in design. To allow for better designs, one can add a window that multiplies each filter
resulting in a modulated FB over the frequency band. This modulated FB can be modeled as WΨ, where the
window W = diag{wj}

2m−1
j=0 is symmetric wj = w2m−1−j , j = 0, . . . 2m− 1. Now, (5) becomes

WΨ0Ψ
∗

0W + JWJΨ1Ψ
∗

1JWJ = I. (9)

Substituting (8) into (9), we obtain
1

2
(W 2 + JW 2J) = I, (10)

implying that the window has to satisfy w2
j + w2

m−1−j = 2, for j = 0, . . . ,m− 1.

Discrete Wavelet Transform and Wavelet Packets. The Discrete Wavelet Transform (DWT), a famous
MR tool, is a basis expansion and as such nonredundant (critically sampled). The dyadic DWT is built by
iterating a two-channel FB with sampling factor n = m = 2 on the lowpass channel. One can also build trees by,
at each level, iterating on any subset of the branches of the FB. This is knows as Wavelet Packets (WP). Both
DWTs and WPs can be block transform or not depending on the length of the filters.

1.3.1. Fingerprint Recognition: Use of Nonredundant MR Bases

Due to the nature of fingerprint images, Hennings et al. [9] used an adaptive wavelet packet (WP) approach
in combination with correlation filters to solve the recognition problem. The idea was to design a scheme that
could adapt itself to the class at hand across multiple scales and resolutions where localized features might be
found, clearly calling for the use of WPs. Thus, instead of designing a single correlation filter for a pattern class,
a correlation filter was designed for each leaf in the best WP tree found for that class. Finally, if the image
belongs to the pattern class of the filter, the correlation plane output contains a sharp peak; if not, no such
peak exists. A measure of performance that measures the peak-to-correlation energy (PCE), called match score,
was designed to discriminate between true and impostor classes. A significant improvement in all classes was
achieved by using WPs (98.32% accuracy) compared to the use of correlation filters (81.59% accuracy).



Figure 1. Periodic translation invariance of match scores in a fingerprint recognition system (from [9]).

The Need for Redundant Multiresolution Techniques. Although correlation filters are translation invari-
ant in the image intensity domain, they are not translation invariant in the wavelet domain, as the WPs involve
downsampling. The authors in [9] translated images from a difficult and an easy class and computed a match
score for each translation. For the easy class, there was still complete separation between authentic scores and
the range of impostor scores, despite the translations. When this separation is not as wide, the impostor scores
overlap with the match scores, thereby reducing the accuracy of the system (see Fig. 1). This clearly calls for
the use of translation-invariant transforms: Redundant MR transforms.

1.3.2. Redundant Multiresolution Techniques: Frames

We start with a brief account of redundant MR techniques which are called frames (MRFs), first in finite
dimensions and then follow up with how signals are represented using frames in infinite dimensions via FBs. An
introductory account on frames was written by us [6, 10].

In a finite-dimensional space (Rn or Cn), a frame is defined as a set Φ of m frame vectors Φ = {ϕ0, . . . , ϕm−1}
where m is larger than n. As for bases, we associate to the frame a rectangular matrix of size n×m, also called
Φ, that has the frame vectors as its columns.

Similarly to bases, one can check that frames expand signals in Rn with x = ΦX = ΦΦ̃∗x, where Φ̃ represents
the dual frame. If Φ = Φ̃, then we have what is called a tight frame (TF), and the expansion becomes ΦΦ∗ = I.
If all frame vectors have the same norm, the frame is termed an equal-norm frame (ENF), while if all the norms
are equal to 1, this is a unit-norm frame (UNF). By combining this with the requirement of tightness, we can
have equal-norm tight frames (ENTFs), as well as unit-norm tight frames (UNTFs).

Filter-Bank View of Frames. In an m-channel FB with sampling factor n, if m > n, we deal with an
oversampled FB implementing a frame (see Fig. 2).

For a TF, ϕ̃i = ϕi. The FB frame decomposition can be expressed as in (1) (substituting Φ for Ψ), where
x is an infinite sequence belonging to ℓ2(Z), X is an infinite sequence of transform coefficients (inner products),
and Φ is the frame expansion matrix.

Assuming again that the nonzero support of the filters (frame vectors) length is l = kn, we can write the
frame operator Φ as in (2), with matrices Φr, r = 0, . . . , k − 1, being rectangular of size n×m.

x
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b
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Figure 2. An FB implementation of a frame expansion: It is an m-channel FB with sampling by n.



We can rephrase the frame decomposition in the z-domain as well, where a FB implements a TF decomposition
in ℓ2(Z) if and only if its polyphase matrix Φp(z) is paraunitary [11]. For frames, the polyphase matrix Φp(z)
is of size n×m and can be written as in (3) (substituting Φ for Ψ), where Φr are of size n×m as in (2).

Seeding. In an ever-continuing search for new frame families, an appealing option is the process of obtaining
TFs from ONBs in larger dimensions, known as the Naimark Theorem or seeding [12].

Definition 1.1. We say that a frame Φ is obtained by seeding from a basis Ψ by deleting a suitable set of
columns of Ψ. We write Φ∗ = Ψ[J] where J is the index set of the retained columns.

All tight frames can be obtained this way. One of the most famous frame families, the Harmonic Tight
Frames (HTFs) is obtained by seeding the DFT. In FB parlance, seeding is done on the polyphase matrix. Given
Ψp(z), the m×m polyphase matrix associated with a basis of size m, then Ψp(z) = Ψ0, and

Φ∗

p(z) = Φ∗

0 = Ψp[J] (11)

is the transpose of the frame polyphase matrix.

Block Transforms. When l = n, that is, the length of the frame vectors equals the sampling factor, we obtain
a block transform. One example of block transform with frames is HTFs.

2. MULTIRESOLUTION CLASSIFICATION ALGORITHM

In the last section, we saw that the classification problem is ubiquitous in biology and biometrics, and that MR
techniques might make classification more accurate. The results obtained in [9] seem to indicate that adaptive
MR techniques, frames in particular, might be needed. Having motivated the use of adaptive MR in classification
as well as the need for redundant MR transforms, we now test that hypothesis.

2.1. Multiresolution Classification

We now describe the adaptive MR classification algorithm developed; details and results are described in [13–16].

Main Idea. As argued in Section 1.2, we would like to extract discriminative features within space-frequency
localized subspaces. These are obtained by MR decomposition; that is, instead of adding MR features as in [1],
we compute features in the MR-decomposed subspaces.

Our initial idea was to use WPs since they

MR
Weighting
Algorithm

Generic Classification System

Feature
Extraction

Classification

Figure 3. Our proposed adaptive MR classification system [13].

adapt themselves to the signal at hand,
and just as in the fingerprint case, prove
that adaptivity significantly improves the
recognition system. So, ideally, we would
characterize each class by the best wavelet
packet tree that represents it. However,
this is possible only if a suitable cost func-
tion can be found. Given that we have no
natural cost function available, we decided to mimic a wavelet-packet like system by adding a weighting proce-
dure at the end of our system, allowing us to weigh the decisions of each subband in a fully grown tree. This way,
a very low weight emulates a pruned branch in the tree. Thus, we propose a system with an MR decomposition
block in front (see Fig. 3), followed by feature computation and classification in each of the subspaces, which are
then combined through a weighting process, providing adaptivity.

Multiresolution Block. In our classification system, any MR transform can be used. In particular, amongst
the MRBs, we used the DWT, DFT, Discrete Cosine Transform (DCT) and others, while amongst the MRFs,
we used the Double-Density DWT (DD-DWT), Dual-Tree Complex Wavelet Transform (DT-CWT) and the
Stationary Wavelet Transform (SWT), which is the most redundant transform. Note that here, we use all the
subbands of the decomposition tree, not only the leaves. Thus, it might be abuse of language to call a transform
a DWT. For example, for 2 levels, we have a total of S = 21 subbands (original image + 4 subbands at the first
level + 16 subbands at the second level).



Feature Extraction and Classifier. We start with the feature sets used in [1]: Haralick texture features (set
T1, 13 features), morphological (set M , 16 features) and Zernike moments (set Z, 49 features). Unlike in [1],
we do not use wavelet/Gabor features because the MR advantage given by these will be achieved by our MR
decomposition. Therefore, our total number of features is 78, as opposed to 174 in [1].

Instead of combining all features into a single feature vector, we allow each feature set its own feature vector
per subband effectively bringing the number of subbands to 3 · S = 63 when using two levels of decomposition
and all three feature sets. Note that although we have decreased the number of features significantly, we
have also increased the number of classifiers, because we now have one classifier per subband. Evaluating this
computational trade-off is a task for future work.

New Texture Feature Set T3. As we will show later on, the Haralick texture features seem to possess the most
discriminative power, so we looked more closely into these. We changed the way that Haralick combines the initial
four sets of features. We note that horizontal and vertical co-occurrence matrices are fundamentally different
from the diagonal ones because adjacent neighboring pixels are spatially closer than diagonal neighboring pixels.
Therefore, instead of averaging the features from all four sets, we create our first set of 13 features by averaging
horizontal and vertical measures, and a second set of 13 features by averaging diagonal measures. Thus, we end
up with a new feature set T3 of 26 features [13].

Neural Networks. We decided to use a two-layer NN classifier. The first layer contains a node for each of the
input features, each node using the Tan-Sigmoid transfer function. The second layer contains a node for each
output and uses a linear transfer function (no hidden layers are used). In our design, when training, each output
from the second layer corresponds to a class, and each training image will have an output of 1 for the class of
which it is a member and a 0 for all other classes.

Weighting Procedure. Fig. 3 shows a graphical representation of a generic MR classification system, including
the process of combining all of the subband decisions into one. We use weights for each subband to adjust the
importance that a particular subband has on the overall decision made by the classification system. If the weights
are chosen such that the no-decomposition weight is equal to 1, and all other weights are 0, we will achieve the
same output vector as we would have without using the adaptive MR system. Therefore, we know that there
exists a weight combination that will do at least as well as the generic classifier (when no MR is involved)
in the training phase. Our goal is to decide how to find the weight vector that achieves the highest overall
classification accuracy on a given dataset. We developed three versions of the weighting algorithm: open-form
(OF), per-dataset closed-form (PD-CF) )and per class closed-form (PC-CF). The PD-CF algorithm assigns one
weight vector for the entire dataset, whereas the PC-CF assigns a weight vector for each class in the dataset.
The latter goes back to our original idea of having a wavelet packet tree characterizing each class, only in this
case, we do not necessarily obtain a tree.

The NN block outputs a series of decision vectors for each subband of each training image. Each decision

vector d
(r)
s contains C numbers (where C denotes number of classes) that correspond to the “local” decisions

made by the subband s for a specific image r.

The classifier is evaluated using nested cross validations (five-fold cross validation in the NN block and ten-
fold during the weighting process). One problem with this technique is that the initial ordering of the images
determines which images are grouped together for training and testing in each fold of the cross validation. We
solve this problem by running multiple trials, each with a random initial ordering of the images.

Open-Form Algorithm (OF). If using the OF algorithm, we initialize all the weights, and a global decision vector
is computed using a weighted sum of the local decisions. An initial class label will be given to an image using
this global decision vector. If that class label is correct, we go to the next image. If it is incorrect, we look at
the local decisions of each subband and adjust the weights of each subband s as follows:

witer
s =

{
witer−1

s · (1 + ǫ) if subband s is correct,
witer−1

s · (1 − ǫ) otherwise,

where iter is the iteration number and ǫ is a small positive constant. This can be viewed as a reward/punishment
method where the subbands taking the correct decisions will have their weights increased, and those taking wrong



decisions will have their weights decreased. We continue cycling through the images until there is no increase in
classification accuracy on the training set for a given number of iterations.

Per-Dataset Closed-Form Algorithm (PD-CF). The CF solution does not use an iterative algorithm; rather, it
finds the weight vector by solving a minimization problem in the least-square sense.

Assume we have R training images. For each training image r = 1, . . . , R, the vector d
(r)
s = (d

(r)
s,c)T for classes

c = 1, . . . , C, is the C × 1 decision vector at the output of each subband classifier s, where d
(r)
s,c indicates the

confidence of subband s that the training image r belongs to class c. For each training image r, the weighting

block takes as input the subband (local) decision vectors d
(r)
s and combines them into a single output decision

vector as follows:
S∑

s=1

wsd
(r)
s . (12)

We can rewrite the above by, for each training image r, forming a matrix D(r) of size C ×S, where each element

D
(r)
c,s is the value at position c of the decision vector d

(r)
s of subband classifier s. We can now compute D(r)w,

where w = (w1, . . . , wS)T is of size S×1. Thus, we want to find a weight vector w common to all training images
r = 1, . . . , R.

A possible solution for w is the one that minimizes the error in the least-square sense:

wwin = argmin
w

R∑

r=1

‖d(r) −D(r)w‖2, (13)

where d(r) is the desired target decision vector of size C × 1, with 1 in the position of the true class, and 0
elsewhere. We need to rewrite the above in a direct error-minimization form. We thus define a target output
vector d of size CR× 1, as a vector which concatenates all the target decision vectors d(r) as follows:

d =






d
(1)
1 , d

(1)
2 , . . . , d

(1)
C

︸ ︷︷ ︸

training image 1

, . . . , d
(R)
1 , . . . , d

(R)
C

︸ ︷︷ ︸

training image R







T

,

and a CR×S matrix D consisting of the all the decision matrices D(r) of all the training data stacked on top of

each other. That is, (D)cr,s = D
(r)
c,s for c = 1, . . . , C, r = 1, . . . , R and s = 1, . . . , S. We can now rewrite (13) as:

wwin = argmin
w

‖d−Dw‖, (14)

which possesses a CF solution and can be computed efficiently.

Then, for a testing image t, we compute its decision vector δ = (δ1, δ2, . . . , δC) as follows:

δ =

S∑

s=1

wwin,sd
(t)
s ,

where d
(t)
s are the local decision vectors for t. The classification decision is then made as cwin = argmaxc δc,

that is, the winning class corresponds to the index of the highest coefficient in δ.

Per-Class Closed-Form Algorithm (PC-CF). To make the system truly adaptive, it is reasonable to assume that
different classes require different weight vectors. Thus, we propose a system where, instead of a single weight
vector w for the whole training dataset, each class c has its own weight vector wc [16]. As opposed to (12), the
entries in the output decision vector are now computed as:

D(r)wc, c = 1, . . . , C. (15)



Now, the weights can be grouped together to form an S × C matrix W so that each column represents a class-
specific weight vector. Equation (15) can be rewritten as diag

(
D(r)W

)
. Recall that D(r) is of size C × S and

thus d is of size C ×C (compare this to (12)). To learn these weights, we again use the training set and look for
a solution that minimizes the squared error:

Wwin = argmin
W

R∑

r=1

‖d(r) − diag
(

D(r)W (r)
)

‖2. (16)

To obtain an expression analogous to (14) and be able to apply standard methods, we have to define v as the
vector concatenating all class-specific weight vectors:

v = (W1,1,W1,2 . . .W1,C , . . . ,WS,1, . . . ,WS,C)⊤ . (17)

We now define D as the CR× CS block matrix (D)rc,sc = d
(r)
c , where d

(r)
c is the vector (D

(r)
c,1 , D

(r)
c,2 , . . . , D

(r)
c,S)

and r = 1, . . . , R. We can now write a minimization problem equivalent to the one in (16), and which we can
solve using standard techniques:

vwin = arg min
v

‖d−Dv‖. (18)

Decomposition Tree Pruning. Our long-term goal in developing an adaptive MR classification system was to find
a WP-like decomposition, where each class would induce a different MR subtree. While the authors have done
just that in [9], we needed a cost function which is specific to the dataset used. Our goal is thus to have a more
generic system and to achieve a WP-like system but without the need for a cost function. We come close to this
goal here, where we identify the set of discriminative subbands for each class (not necessarily a subtree).

Once the weight vectors are computed (using any version of the CF weighting algorithm), we use the values
of the weights to regulate the MR decomposition. In particular, subbands with low weight can be pruned as
long as the remaining subbands are still sufficient to classify the image correctly. This way, the pruned subbands
and their associated features need not be computed, resulting in computational savings (although not increased
accuracy). We propose to keep the high-weight subbands, so that at least a certain ratio, defined as the fraction
of the sum of kept weights over the sum of all the weights, of subbands are kept.

3. CLASSIFICATION PROBLEMS IN BIOIMAGING AND BIOMETRICS

While we have developed the current algorithm by learning from each application as we went along, we decided
to first present all algorithmic accomplishments and then discuss results in various application domains. We do
that now and use different instantiations of the MR classification algorithm depending on the dataset at hand.

Determination of Protein Subcellular Location Patterns. To evaluate our MR approach, we use the 2D
HeLa set depicting PSL described previously [1]. The proteins in the dataset were labeled using immunofluo-
rescence, and thus, we know the ground truth, that is, which protein was labeled in each cell and subsequently
imaged. The details of our results in this area can be found in [13].

The challenge in this dataset is that images from the same class may look different while those from different
classes may look very similar (see Fig. 4(a)). This dataset is publicly available [17] and contains 50 single-cell
images of size 512× 512, in each of C = 10 classes. The 10 classes of subcellular location patterns were obtained
by labeling an endoplasmic reticulum protein, two Golgi proteins (giantin and gpp130), a lysosomal protein, a
mitochondrial protein, a nucleolar protein, two cytoskeletal proteins (actin and tubulin), an endosomal protein,
and DNA. The best previously described overall classification accuracy on this dataset is 91.5% [1]. We achieve
the best classification accuracy of 95.40% using MRFs (see Fig. 5(a)) [13].

Detection of Developmental Stages in Drosophila Embryos. The details of our results in this area can
be found in [14]. The dataset consists of 60 time-lapse, fluorescence microscopy z-stacks (3D volumes in time) of
developmental stages of Drosophila embryos (see Fig. 4(b)). The stacks are acquired roughly every 10 minutes.
The number of slices per stack varies; it is 5 slices for normal sets and 7 slices for delayed/abnormal. The number
of time points is typically 15 for normal/abnormal and around 30 for delayed. All the slices have been tagged by
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Figure 4. (a) Top: Intra-class variation. The three images show the spatial distribution of Tubulin within a cell; Bottom:
Interclass similarity. The first image shows the spatial distribution of Giantin and the second image shows the spatial
distribution of Gpp130. Both are Golgi-proteins. (Images courtesy of [17].). (b) Representative examples of each stage.
Top: Stage 1, no ventral furrow, for normal (t=30min), delayed (t=60min) and abnormal (t=20min) embryos. Middle:
Stage 2, ventral furrow opening, for normal (t=60min), delayed (t=110min) and abnormal (t=72min) embryos. Bottom:
Stage 3, ventral furrow closed, for normal (t=75min), delayed (t=140min) and abnormal (t=82min) embryos [2]. (c)
Examples of histological images depicting stem cells differentiating into bronchus (top), skin (bottom left) and bone
(bottom right) [15]. (d) Example fingerprint images from a difficult class (top) and an easy class (bottom) [18].

(c)
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Figure 5. Classification results for all four datasets. We indicate in bold the highest accuracy achieved by each transform.
(a) Pictorial representation of classification accuracy for 2D HeLa images depicting PSL patterns [13]. (b) Classification
accuracy for 2D slices of Drosophila embryos. We use these in majority voting classification for 3D stacks yielding the
accuracy of 98.35% [14]. (c) Classification accuracy for stem cell teratomas [15]. (d) Classification accuracies for fingerprint
images obtained with different MR transforms using two weighting algorithms and a pruning procedure [16].



a human expert so we have reliable ground truth. As depicted in Fig. 5(b), the highest classification accuracy
achieved by our system is 93.35% (see details in [14]).

Classification of Histological Stem-Cell Teratomas. Here, we first populate the dataset with a fair amount
of single-class images. We start with H&E images (at 10x magnification, see Fig.4(c)) that depict multiple tissues
(classes) contained in the teratomas. These are hand segmented by an expert to separate the classes. Then, the
segmentation masks are used to generate single-class images. Because the set of multi-class images available to
us is small (only 23 images), we decided to take advantage of their large size (1600 × 1200), and use a window
to extract single-class images of size 200 × 200. We thus obtain 45 images per class. We use six classes for this
experiment: mesenchyme (embryonic connective tissue), skin, myenteric plexus, bone, necrotic (dying or dead
tissue), and striated muscle. The best classification accuracy of 83.40% is achieved by MRFs (see Fig. 5(c)) [15].

Fingerprint Recognition. To test our system we used images from a subset of the NIST 24 fingerprint
database [18]. The dataset contains 10 classes with 50 512 × 512 images each (45 images are used to train
the system). The images were acquired while individuals were rolling their thumbs, inducing different plastic
distortions making the dataset realistic and challenging (see Fig. 4(d)). As shown in Fig. 5, we achieve the
highest accuracy of 99.50% by using the SWT along with the PD-CF weighting algorithm [16].

3.1. Results and Discussion

All the results are shown in Fig. 5. By observing the results for all applications, we can draw the following
conclusions (note that NMR denotes the version of the algorithm where no MR transform is used):

• In all cases, MR significantly outperforms NMR, thus demonstrating that classifying in MR subspaces indeed
improves classification accuracy.

• The redundant transforms (MR frames) do better than nonredundant ones (MR bases). In all cases, the SWT
achieves the best classification accuracy.

• While a slightly higher classification accuracy is obtained by using all three feature sets as well as both T
and M , the larger number of features and additional complexity of using M and Z features do not justify the
slight improvement in accuracy This “flat” trend (see Fig. 5(a)) is good news as we can use a significantly
reduced feature set and still obtain a fairly high classification accuracy.

• The closed-form version of the weighting process gives slightly better results than the open-form.
• As expected, when used, while pruning does not improve the accuracy of the system, it does make the system

more efficient.
• In general, the class-adaptive method seems to do better than the dataset-adaptive one.

4. DESIGN OF NEW FRAME FAMILIES

Examining the results we obtained with our MR classification system, we found the trends to be similar: MR
significantly outperforms NMR and the best results are invariably obtained by frames. Whether it is classifying
biological or biometric images, frames and in particular the SWT always outperformed any other transform.
Taking into consideration the computational cost, it is important to have a system that is efficient in addition
to being accurate. The SWT is the most accurate here but also the most redundant. Therefore, to allow for a
trade-off between accuracy and cost, we would like to create new redundant transforms that are less redundant
but still afford very good accuracies when it comes to classification.

A known issue with MRBs is that they are not translation invariant (rather, they are periodically translation
invariant). This is due to downsampling being used and can create problems as translated versions of data can
lead to different features in MR subspaces. As for the fingerprint dataset, we conducted an experiment on the
PSL images to test the sensitivity of our classification system to translations. We used T3 features, trained the
algorithm on the original data and tested on translated PSL images. As expected, the classification accuracy
dropped by 0.22%. Both experiments for fingerprints and PSL strongly indicate the use of MR techniques which
are translation invariant (or almost translation invariant).

These considerations lead us to believe that properties provided by frames, on top of the MR ones, are crucial
requirements in some applications. Motivated by the need of having frame families dedicated to a spectrum of
applications not considered before, we seek to design new classes of frames. Details can be found in [19].



finite-dimensional infinite-dimensional

(block transforms) (overlapped transforms)

ONBs DFT → LOT

↓ ↓

TFs HTF → LTFT

The question now is: How do we go about constructing new families and what do we look for? Most of the
known frame families (though not all) are block ones (finite dimensional) leading to blocking effects. We want
to have efficient implementations as well as be able to flexibly decide on the requisite amount of redundancy.
These requirements made us think of LOTs: As mentioned in Section 1.3, on top of being computationally
efficient, the LOTs have the advantage of processing blocks of overlapping data and hence eliminate blocking
artifacts. So the question is: Could we construct a similar transform with frames? Our idea is to seed LOTs
to obtain a new class of frames we name Lapped Tight Frame Transforms (LTFTs). That is, we want to find
filter-bank frames seeded from the LOTs in the hope they will inherit all the good properties LOTs possess.
Obtained by seeding, the LTFTs could thus be seen both as the frame counterpart of LOT bases as well as the
infinite-dimensional, filter-bank counterpart of the most famous frame family—Harmonic Tight Frames (HTFs,
seeded from the DFT). These relationships are illustrated in the table.

An effort to derive overlapped frame transforms (not with seeding) can be found in [20]. These are not
obtained by seeding (they start from a frame) and while are in spirit similar to what we are proposing, they lead
to a completely different family. The same authors have already proposed a 2D nonseparable frame family.

4.1. Lapped Tight Frame Transforms.

We propose a host of new frame families we denote as Lapped Tight Frame Transforms (LTFTs) (details about
this part of our work are given in [19]):

Definition 4.1. A lapped tight frame is a frame transform (LTFT) seeded from an LOT.

Let us start with Ψp(z) being the m ×m polyphase matrix associated with the LOT of size m. Then (4)
holds and we seed the LOT to get:

Φ∗

p(z) = Φ∗

0 + z−1Φ∗

1 = Ψp[J]. (19)

The matrices Φ∗
r are now rectangular of size n×m. For r = 0, 1, we have (Φr)i,j = ψ∗

i,mr+j , with i = 0, . . . , n−1
and j = 0, . . . ,m−1. By Naimark Theorem, we know that this family is a TF, which implies that Φp(z)Φ

∗
p(z) = cI

(c is a constant). Note that as opposed to the LOT case, the matrix products do not commute anymore.

Princen-Johnson-Bradley LTFTs. All of the above is general and can be applied to any type of LOT. Let
us now see through an example what happens when the obtained LTFT has been seeded by the PJB-LOT in
(7). We will call these Princen-Johnson-Bradley LTFTs (PJB-LTFTs).

Seeding. From the Naimark theorem, we know that any general seeding will result in a TF. However, if we
want more than tightness (equal-norm, for instance), in general, there is no guarantee that we will obtain such a
property. One needs to carefully choose the set of retained columns to preserve those properties. Indeed, seeding
the DFT leads to HTFs only if the set of eliminated columns is contiguous. Choosing non contiguous columns
leads to tight but not equal-norm frames. In the PJB case, it turns out that we can have a general seeding
and any subset of columns (not necessarily contiguous) can be retained to obtain an ENTF. We summarize this
result in the following (the proof is technical and not included here):

Lemma 4.2. The PJB-LTFTs obtained by any seeding of the PJB-LOTs are ENTFs. That is, Φ∗
p(z) = Ψp[J]

for any subset J of columns is an ENTF, with norm
√

n/m.

For PJB-LOTs we can compute diag(Φ∗
0Φ0 + Φ∗

1Φ1)i = ‖ϕi‖
2. From Lemma 4.2, we know that without loss

of generality we can assume that J = 0, . . . , n− 1. Note that

‖ϕi‖
2 =

n−1∑

j=0

ψ∗2
j,i + ψ∗2

j,i+m.
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Figure 6. Window solution to (24)-(25) for n = 7, 8 (left to right).

In fact, we can find the equal norm as ‖ϕi‖
2 = n/m, for i = 0, · · · ,m − 1. That is, the LTFT obtained is

equal-norm.

Window Design. If we start with the PJB-LOT with a window, and seed WΨ, the TF obtained would loose its
equal-norm property since ‖ϕi‖

2 = (n/m)w2
i . To preserve equal norm, we have to modulate directly the LTFT

after seeding the LOT. In the PJB-LOTs, the window chosen was symmetric, that is, wi = w2m−1−i. We lift
this restriction initially and assume a general window represented by a matrix D, a 2n × 2n diagonal matrix.
We can write D = (D0 D1) and Dr is a n×n diagonal matrix. Unlike for the LOTs, the matrix product Φ0Φ

∗
0

has no particular structure, in fact,

(Φ0Φ
∗

0)i,j = ai,j =
1

2m

sin(π(i+j+1)
2 )

sin(π(i+j+1)
2m

)
+

1

2m

sin(π(i−j)
2 )

sin(π(i−j)
2m

)
.

Substituting this into (5), we obtain the following:

aj,jd
2
j + (1 − aj,j)d

2
n+j = 1, (20)

djds = dn+jdn+s, s = 0, · · · , n− 1, s 6= j. (21)

The set of solutions to (20)-(21) is infinite. Of course, the constant window with dj = 1, for j = 0, . . . , 2n− 1 is
also a solution to the above. If the window is symmetric, then (5) becomes:

D0Φ0Φ
∗

0D0 + JD0JΦ1Φ
∗

1JD0J = I (22)

with Φ0Φ
∗

0 + Φ1Φ
∗

1 = I. (23)

Using (22), we derive the following conditions on D:

aj,jd
2
j + (1 − aj,j)d

2
n−j−1 = 1, (24)

djds = dn−j−1dn−s−1, s = 0, · · · , n− 1, s 6= j. (25)

Fixing d0 = −1, we have dn−1 = ±1 and ds = −dn−1dn−s−1 for s = 1, . . . , n− 2. Note that the same conditions
hold for an anti-symmetric window, that is, the half-windows can only be symmetric or antisymmetric. For a
symmetric window, a possible solution, depicted in Fig. 6, is given by

dj =

{

cos( jπ

n−1 + π) if n is even,

cos( 2jπ

n−1 + π) if n is odd,
j = 0, . . . , n− 1.

One of our first tasks in future work will be to use these symmetric windows in the PJB-LTFTs and study their
effect. We also need to investigate window design techniques to obtain optimized windows that will modulate
the PJB-LTFT and hence lead to better localization in the frequency band of the frame vectors.
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