
Active Contour-Based Multiresolution Transforms for the
Segmentation of Fluorescence Microscope Images

Gowri Srinivasa1, Matthew Fickus3 and Jelena Kovačević1,2
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ABSTRACT

In recent years, the focus in biological science has shifted to understanding complex systems at the cellular
and molecular levels, a task greatly facilitated by fluorescence microscopy. Segmentation, a fundamental yet
difficult problem, is often the first processing step following acquisition. We have previously demonstrated
that a stochastic active contour based algorithm together with the concept of topology preservation (TPSTACS)
successfully segments single cells from multicell images. In this paper we demonstrate that TPSTACS successfully
segments images from other imaging modalities such as DIC microscopy, MRI and fMRI. While this method is a
viable alternative to hand segmentation, it is not yet ready to be used for high-throughput applications due to its
large run time. Thus, we highlight some of the benefits of combining TPSTACS with the multiresolution approach
for the segmentation of fluorescence microscope images. Here we propose a multiscale active contour (MSAC)
transformation framework for developing a family of modular algorithms for the segmentation of fluorescence
microscope images in particular, and biomedical images in general. While this framework retains the flexibility
and the high quality of the segmentation provided by active contour-based algorithms, it offers a boost in the
efficiency as well as a framework to compute new features that further enhance the segmentation.

1. INTRODUCTION

Fluorescence microscopy is one of the main techniques used by biologists to observe processes in a living cell,
greatly facilitated by the advent of new fluorescent probes such as the green fluorescent protein. These probes are
introduced into the cell and then the cell is imaged using a florescence microscope. The fluorescence microscope
can be used to collect 2D slices and 3D volumes (2D slices along the z-axis) as well as image the cell at multiple
time points and using different parallel channels leading to a large number of multidimensional data sets.

1.1 Biological Motivation: Automating Knowledge Extraction in Fluorescence
Microscopy
Visual processing of such a large number of multidimensional images is inefficient, not reproducible, time-
consuming and error-prone, prompting the movement towards automated, efficient and robust processing of
such biological images. Moreover, some information hidden in the images may not be easily discerned by the
human eye. Thus, we strive towards automated processing, not only for speed and efficiency, but to generate
new knowledge through use of sophisticated algorithms as well. While such tools are widely present in clinical
(medical) imaging, their use is not as widespread in imaging of biological systems at cellular and molecular levels.

A Must: Automated Segmentation. Segmentation is often the first step after acquisition. It is a fundamental,
yet very difficult, problem in image processing, especially for microscope images which contain more than one
cell. The goal of segmentation is to separate objects of interest from other objects, as well as from the background
and is used, for example, in high-content screening to identify cellular structures. While it is desirable for all
tasks dealing with biological or biomedical images to be as automated as possible, this requirement is absolutely
crucial for segmentation. For example, it takes a skilled expert one hour to segment an image as in Fig. 1 and
almost three days for an image as in Fig. 5. Possibly the only automated algorithm currently used in fluorescence
microscopy is watershed segmentation (see Section 1.2.1), while state-of-the-art algorithms from image processing
have only begun to be applied (see Section 1.2.2).



In this section we introduce two biological problems that highlight the need for automated segmentation.
This is because hand segmentation of a sufficient number of images might not be feasible and does not ensure the
reproducibility and accuracy of results. While our focus is on segmentation of fluorescence microscope images,
we consider a wider range of modalities, including problems using differential interference contrast microscopy
(DIC), magnetic resonance imaging (MRI) and functional MRI (fMRI), to show the broader impact automated
segmentation would have.

1.1.1 Determining Protein Subcellular Location

Proteins are integral components of cells that impact their functioning. One of the crucial aspects of a protein’s
activity and function is its subcellular location. Today’s method of choice to determine protein subcellular loca-
tion is fluorescence microscopy. Murphy pioneered automated interpretation and analysis of protein subcellular
location images, resulting in systems that can classify protein location patterns with well-characterized reliability
and better sensitivity than human observers.1,2

In one of the data sets used in Ref. 3, the cells had been marked for a specific protein along with probes to
obtain parallel images of the total protein and total DNA. This data was segmented using the seeded watershed
algorithm on the total-protein channel, using the nuclei as seeds. As we will see in Section 1.2.1, the seeded
watershed algorithm suffers from both splits (one cell/object is split into more than one) as well as merges (more
than one cell/object are merged into a single one) forcing a large fraction (nearly 62%, see Section 2.1.1) of the
cells to be discarded thus wasting time and resources.4

1.1.2 The Influence of Golgi-Protein Expression on the Size of the Golgi Apparatus

The Golgi apparatus is an organelle that mediates the processing and sorting of proteins and lipids in the
final stages of their biosynthesis. The cytoplasmic surface of the Golgi apparatus is also a site for numerous
important signaling pathways. Defects in membrane trafficking are responsible for many human diseases. Since
an understanding of the molecular basis of these defects is paving the way to new therapeutics, a study of the
Golgi apparatus is of particular interest.

The research of Linstedt et. al. focuses on the aspects that influence and control the size of the Golgi appa-
ratus.5 These tests depend on a quantitative assay comparing Golgi size to cell size. The accurate segmentation
of the images obtained from a fluorescence microscope assay is the critical step in determining cell volume. In
the absence of an automated segmentation algorithm that works satisfactorily, the tests involve hand segmenting
the cell boundaries in each of as many as 20 optical slices. For this reason, the analysis has been limited to fewer
optical slices of the cells and to small numbers of cells.6 To extend their experimental findings, the analysis of
many more cells and much larger numbers of slices per cell is necessary. The automated segmentation algorithm
developed here will allow a rigorous, objective and efficient means of Golgi/cell volume determination.

1.1.3 Importance of Automated Segmentation on Other Modalities

While we focus on developing the tools needed for segmentation of fluorescence microscope images, due to their
flexibility, we believe these tools will allow the development of algorithms for automated segmentation on other
modalities as well. As representative examples, we discuss some of the projects for which our collaborators are
currently looking for segmentation solutions.

DIC Images of Yeast. The yeast organism has become one of the most often used eukaryotic microorganisms
for biological studies. One of the standard ways of imaging yeast is using differential interference contrast
(DIC) microscopy. It provides an excellent way for showing contrast in transparent specimens. One of the most
important uses of DIC microscopy is that it represents an optical view of the entire cell and some of its parts,
whereas any fluorescence label will exhibit a certain localization pattern (which may be restricted and could also
vary over time). DIC microscopy does not require UV illumination (which may damage cells) and it works well
on both live and fixed samples. Furthermore, it requires no special reagents (antibodies, cDNAs, dyes, etc.).
Segmentation is the first step in quantitative and automated studies of yeast. Due to the typically large number
of these cells in each image (see Fig. 3), hand segmentation is highly impractical and time consuming. Only
recently has an attempt been made to automate the segmentation of this data.7



MRI Images of the Heart. MRI has emerged as a powerful technique to noninvasively visualize biological
structures. Cardiac MRI is being used by Laine and his team to understand heart motion and quantify the left-
ventricular heart volume with the motivation of being able to realize more accurate ejection fraction measures.8

The segmentation of this type of images (see Fig. 4) can also drive techniques to detect abnormal wall motion due
to ischemia. A particular time-series of this data set has been successfully segmented by adapting the STACS
algorithm to this data (see Section 2.1.3). A challenge in this project is to extend the technique to work on the
peripheral volumes that have poorer signal quality and are beset with noise.

fMRI Images of the Brain. With the development of functional MRI techniques, it is now possible to directly
visualize neuronal activity in the brain by using the amount of oxygen in the surrounding blood flow as a proxy
for neuronal activity. This, in turn, can be used to study the development, structure and activity of the human
brain. In particular, the work of Wandell and his team focuses on using functional neuro-imaging to study
visual pathways.9 To generate meaningful visualizations of the data obtained from fMRI studies, however, it is
important to first obtain accurate topological maps of the area of the brain in which the neuronal activity is
being measured—the gray matter in the cerebral cortex. One way to create these topological maps is to segment
3D MRI images of the brain into three regions: gray matter, white matter and cerebral spinal fluid. Once the
3D topology of the gray matter region has been identified by segmentation, an equivalent 2D visualization can
be created by flattening out the 3D shape. The flattened 2D representation makes it easier to visualize the deep
furrows (sulcii) that exist in the gray matter.

1.2 Segmentation Algorithms

Problem Statement. As highlighted in the previous subsection, segmentation is a fundamental task in image
processing. Since we discuss the segmentation of real-valued discrete images of size M ×N (similarly for higher
dimensional data sets), segmentation may be defined as the mapping Ψ : f 7→ Ω, that is, a partitioning of the
pixels in image f ∈ RM×N to a mask Ω =

⋃
Ωi, with

⋂
Ωi = ∅. These masks, Ωi, are indicator functions

of an object of interest such that any pixel identified as an object in f belongs to one and only one Ωi. The
mask Ωc represents the background. Ω may be represented as a black and white mask of the same size as the
input image, such that the white regions correspond to the objects of interest and the black to the background.
Another representation of Ωi may be a multi-hued mask with a different color assigned to each object (member
of a distinct Ωi) and black to the background.

In case of segmentation of biological images, Ψ is a good mapping if the resulting Ωi are biologically meaningful
segments of the input image. The standard of comparison to quantify the quality of the mapping is normally
the output of manual segmentation.

1.2.1 Current Segmentation Method in Fluorescence Microscopy: Seeded Watershed

One of the most widely used algorithms for the segmentation of fluorescence microscope images is a region-based
segmentation algorithm known as the Seeded Watershed(SW).10 It works by interpreting the image as elevation
in a landscape splitting the image into regions, similar to the drainage regions of this landscape. To create the
watersheds, a gradient magnitude image is built, in which water will start to rise from minima representing
areas of low gradient (such as areas inside the cell or in the background regions), and the watershed borders
will be built at the maxima of the gradient magnitude. Thus, ideally, the borders will be at the edges of cells,
assuming those edges are well defined. However, as this is not the case for fluorescence microscope images, the
contour (watershed border) keeps evolving following gradual changes in the gradient, resulting in segmented
regions much larger than the true cell. Various modifications of the watershed algorithm have been extensively
used to segment single cells from multicell images.11

Problems with Watershed Segmentation. The problems with this algorithm are twofold. Firstly, many seg-
mented regions are discarded due to true cells being segmented into more than one region (splits), and more
than one cell being merged into the same region (merges, see Fig. 1(c)). Any postprocessing to deal with merges
would typically be manual. Secondly, by design, the seeded watershed algorithm splits the image into regions
and does not define a contour around the region of interest. The segmented regions are typically much larger
than the true cell (same figure), leading to a fair amount of background noise outside the cell being included
with the cell.



1.2.2 Active Contours: State-of-the-Art in Segmentation

Active contour algorithms are the state-of-the-art in segmentation. In particular, the Stochastic Active Contour
Scheme belongs to the class of geometric active contour algorithms and it was originally developed to segment
heart MR images.12

Given an image f(x, y), the level-set function φ(x, y, t) is positive inside the contour C, zero on C and negative
outside.13 To evolve the contour, we evolve the level-set function itself. To represent the templates of the image
pixels that are inside, outside or on the contour, we define masks using the regularized Heavyside function H(φ),
with value one well outside the contour (φ is positive and much larger than some small ε) and zero inside the
contour (where φ is negative and much larger then some small ε). Let δ(φ) = dH(φ)/dφ. We can now use the
functions H(φ), 1−H(φ) and δ(φ) to extract the pixels inside, outside and on C, respectively.12,13

As a key concept, the segmentation problem is mapped into an energy functional minimization problem,

minimize: J(C) =
N∑

i

λiJi(C), (1)

where λi is the weight of energy functional Ji. Thus, in this setting, we can have any number of energy functionals
chosen appropriately based on the application. For example, in the STACS algorithm N = 4. We have J1 is
the contour smoothing term, J2 incorporates the prior knowledge on the shape of the contour, J3 is called the
region-based term and J4 is an edge-based term, with corresponding weights, λI , λ2, λ3, and λ4, respectively,
that control the relative strength of the four terms. The minimum of the functional is found at a zero of its
first variation δJ(C) = 0, from which a partial differential is extracted of the form F (C) = 0, termed the
Euler-Lagrange equation. It is usually solved by introducing an artificial time parameter t into C(x, y, t), and
solving

∂C

∂t
= F (C). (2)

In steady state, ∂C/∂t = 0, leading to the solution of the Euler-Lagrange equation by introducing an explicit
parameter, t, as

∂

∂t
φ(x, y, t) =

∑

i

λiFi(x, y, t). (3)

For STACS, a specific form of the equation is obtained with F1 as the internal force, F2 the external force,
F3 a curvature force and F4 a shape-based force, with weights, λ1,...,λ4, respectively. Active contours have been
used extensively in medical imaging and are only recently finding their way into biological imaging.14,15

2. ACTIVE CONTOUR-BASED ALGORITHMS

In this section we review the algorithmic results that demonstrate our success in segmenting fluorescence mi-
croscope cell images as well as its flexibility in incorporating new forces for segmenting data from some other
modalities.

2.1 The bimagicLab STACS Segmentation Algorithms for Fluorescence Microscopy
2.1.1 TPSTACS: Algorithm for Segmentation of Protein Subcellular Location Images

Herein we present only the pertinent details of the algorithm we developed for segmentation of fluorescence
microscope images introduced in Section 1.1.1. Further details can be obtained from Ref. 4, 16.

Data Set. Two channels (total DNA and total protein) in HeLa cells expressing GFP-UCE were imaged using
confocal immunofluorescence microscopy.3 Serial sections in the z-axis through entire cells were taken with a
step size of 0.1628µm and a pixel size of 0.0977µm in the x and y dimensions (1024×1024 pixels per section).
The total number of images was 82 for 8 3D z-stacks. We were also provided the masks resulting from the seeded
watershed (SW) algorithm.

Modified STACS. While the original STACS uses four forces: region-based, edge, shape prior and contour
smoothness, given in (3), in our modified version, we use only two: an external, region-based force Fr and an



internal force Fc which depends on the curvature of the contour. We describe the evolution of the level set
function as

∂φ(x, t)
∂t

= λrFr(x) + λcFc(x, t), (4)

where λr and λc are scalar coefficients that weigh the region-based force and the curvature force, respectively.

The external or region-based force is based on the assumption that the pixels in the objects and the background
are drawn from two different statistical models: M1 and M2. Thus, a pixel lying inside the contour C should be
described by the model M1, while a pixel outside the contour should be described by M2.12 More specifically,
our external region-based force relies on the idea that the density of proteins should be higher inside the cell
than outside. The internal force is a smoothing force based on the curvature Fc of the contour. At each iteration
the magnitude of this force is computed from the level-set function as described in Ref. 13.

In (4), the coefficients λr and λc evolve in time: this is called an annealing, or, cooling schedule.12 (These
names come from a parallel problem in statistical mechanics and is different from the annealing commonly
referred to in optimization problems.) Experiments reveal that the region-based coefficient λr should decrease
with time, whereas the curvature coefficient λc should remain constant.

One of the important steps in the algorithm is the initialization of the contour. Equation (4) assumes that an
initial level set function is available. To obtain it, we perform an edge-based segmentation on the DNA channel
to develop initial contours. Then we initialize the level set function using the Euclidean distance transform.
Given a binary mask as input, for each pixel in the plane, we assign the shortest Euclidean distance between the
pixel and the nearest point on a contour as its value. Finally, we invert the sign of the distance for pixels outside
of the contour.

Evolution of the level set to obtain the final contour is done by introducing an artificial time parameter and
numerically solving the Euler-Lagrange equation as described in (3), with the appropriate forces for this data.
As the forces are computed only at the points on the contour, they must be extended to the entire domain in
order to suitably update the level set function. This is done for every pixel in the image by computing the closest
point to it on the contour and simply replicating the force at that point.13 The extent of evolution is controlled
by a parameter that specifies the number of iterations a priori.

We compare our results to those obtained by SW. We also have hand-segmented (HS) total-protein images
which we use as ground truth. As the edges in these images are poorly defined, there are many instances of
large areas of noise and hand segmentation is often imprecise and varies from person to person. Thus, although
we are comparing our results to HS contours, it is possible that the algorithm actually performs correctly while
disagreeing with the HS contours.

Results. The results of this algorithm are depicted in Fig. 1(d). The algorithm automatically produced
continuous smooth contours that appear to match well with the HS contours Fig. 1(b). However, we do encounter
problems; when cells are close together or linked by an area of noise, merges occur. This happens because
geometric active contours handle change in topology, that is, contours merging and splitting, gracefully. Since

(a) (b) (c) (d) (e)

Figure 1. Fluorescence microscope images used to determine protein subcellular location: (a) The DNA channel and the
cropped regions of the segmented total-protein image using (b) hand segmentation, (c) seeded watershed,3 (d) modified
STACS and (e) TPSTACS.4,16



we know the number of cells (given by the number of nuclei in the DNA channel), we want to impose a constant
number of contours on our algorithm (termed “topology preservation”).

Topology Preserving STACS. We conserve the topology or the number of contours obtained after initialization
(which correspond to the number of cells detected in the image) over the course of the evolution of the level-set
function by detecting and not changing the sign of the nonsimple points.17

Measures of Performance. To assess the performance of our algorithm, we use three common methods: area
overlap, area similarity and recall/precision. We compare SW and TPSTACS to the hand-segmented images
(HS), as well as DNA images.

Area Overlap (AO) detects how much of each cell overlaps with HS (or DNA). This measure will count the
splits although the resulting contour might be discarded. This measure is lenient towards algorithms producing
loose contours, such as SW.

Area Similarity (AS)18 compares the area of that mask with the area of any SW/TPSTACS mask which
overlaps with it and normalizes it by the total area of both masks (unlike area overlap). Thus, this measure
penalizes an algorithm if its contour is not tight, even though it might contain the entire hand-segmented contour.

The Recall/Precision (R/P ) method derives two quantities as percentages. They depend on a true positive,
T (+)—a mask designated by the algorithm as well as the HS mask, a false positive, F (+)—a mask designated as
a cell but which is not and, similarly, a false negative, F (−). R tells us how many of the contours were correctly
drawn and P tells us how many of the contours drawn were correct.

SW [%] TPSTACS [%]

Area Similarity (AS) 30.82 80.51

Area Overlap (AO) HS 62.15 82.14
DNA 62.29 99.80

Recall (R) HS (T=70%) 37.88 71.13
DNA (T=95%) 36.75 99.06

Precision (P) HS (T=70%) 39.99 76.82
DNA (T=95%) 36.28 99.06

Table 1. Segmentation results for the seeded watershed algorithm (SW) and TPSTACS. The algorithms were tested
against both hand-segmented images (HS) as well as the DNA ones (DNA). Note that R and P are given for the value of
threshold T = 70% for HS and T = 95% for DNA (from Ref. 4).

Results. We ran our algorithm on the above set of images and set the cooling parameters to experimentally
determined values. λc was constant and equal to one and λr decreased from 50 to 10 with the iteration. This
means that the region-based term dominates in the beginning, growing the contours to roughly divide the pixels
based on their statistical models, while the curvature term remains constant and grows in relative importance
towards the end, smoothing the contour. To assess the performance of our algorithm, we use AO, AS and R/P .
We compare SW and TPSTACS to the hand-segmented images HS, as well as the DNA images. Results for both
the seeded watershed and TPSTACS are given in Table 1 as well as Fig. 1(e). All measures have been averaged
over all cells and all images.4

The AS measure yielded 80.51% for TPSTACS versus 30.82% for SW; this was expected as TPSTACS
produces tight contours as opposed to SW ones (see Fig. 1(e) and (c), respectively). Area overlap yielded 82.14%
for TPSTACS versus 62.15% for SW (against HS). Looking at the area overlap against the DNA (as well as
recall and precision against the DNA), we see that essentially, almost 100% of our segmented cells are usable.
Therefore, by both objective measures of quality (recall/precision, area similarity and area overlap) as well as
subjective (visual inspection), we conclude that TPSTACS outperforms SW by a fair margin.

Discussion. Despite the impressive results, there are a few limitations to the applicability of TPSTACS. For
instance, in its present design it cannot work without an initial contour. Thus, in cases where there is no DNA
channel or any equivalent that affords an easy detection of the approximate location and number of cells, the
algorithm cannot segment the total-protein image.



Further, the algorithm is extremely time consuming with the complexity growing nonlinearly with the size
of the image. A profile of the implementation reveals that nearly 70% of the computation load comes from the
function that extends the values of the force (computed at the points on the contour) to the entire domain in
order to update the level-set function at each iteration. Optimization approaches to speed up the evolution of the
level set function include the narrow-band approach.17 Since our objects of interest—the cells—are not regular
in shape, it was computationally infeasible to create the narrow-band around the evolving contour.

LATPSTACS. We developed a local area version of the algorithm to restrict the region of level-set update to
a small rectangular neighborhood around the cell that retains an average AS=98% with the TPSTACS results.16

The savings in run time were not significant. Furthermore, when the density of cells is high, the local area
implementation very quickly degenerates to the original problem.

Towards Multiresolution. The issues of initialization and computational complexity point, at first blush, to
a method that is able to ideally work on a smaller version of the image (to reduce the computations of the
extension function). Such a requirement is consistent with the well-established and widely applied theory of
multiresolution.19 MR transformations are known to offer localization, adaptivity and speed. For example,
our team showed that using MR for classification of fluorescence microscope data significantly improves the
classification accuracy, demonstrating the presence of hidden information in multiresolution subspaces.2

One might imagine we could quickly perform some initial segmentation on a very coarse version of our image
and refine on the finer versions. Ideas along these lines have already appeared.20–23 The advantage of speed is
obtained from the fact that multiresolution transformations are computationally economical and the reduction
in the size of the image itself reduces the computational load imposed by the extension function described above.
The details of this method as applied to the total protein (HeLa-UCE) images is presented in Ref. 16. As a proof
of concept for the applicability of this method to cell images, we present the results on the data for which the
TPSTACS algorithm could not be used. The following subsection briefly describes this effort.

2.1.2 MRSTACS: Algorithm for Segmentation of Images to Study Golgi Proteins

Data Set. The images for this problem (which was introduced in Section 1.1.2) were acquired by the Linstedt
team and consist of 15 z-stacks of 40 images each of size 1024×1344. There is a Golgi-protein channel and a
parallel channel in which the cells’ membrane proteins are marked. In this data set, we do not have the DNA
channel.

As there may be multiple Golgi bodies in a cell, unlike the DNA which appears as a single unit (when the cell
is not undergoing mitotic division), the Golgi channel cannot be used in the same fashion as the DNA channel
for initialization. Thus the same algorithm developed for the subcellular protein location problem cannot be
used. Furthermore, while TPSTACS has been tested extensively on the total-protein channel, the images in this
data set have been stained with a dye targeting membrane proteins, so the signal can be expected to be sparser
than, or at least not as uniform as the protein subcellular location images.

MRSTACS. We used a 2D analysis filter bank with the simplest MR filters, the Haar basis, and performed a
3-level decomposition. We expect (a) the downsampling to greatly reduce the run time and (b) the smoothing to
offer cells easier to discern. To initialize the contours, we apply a threshold to detect the cells in the transformed
image, followed by morphological operators to refine that detection. With fair initial estimates, a few iterations
of the algorithm are sufficient to get a good coarse segmentation in the transform domain. We then interpolate
the contours and refine the results by iterating a few times at each higher level. We use topology preservation
to prevent any merges in the contour evolution stage.

Results. We use the same forces and values of the parameters λr and λc as TPSTACS and recompute the
model statistics only. Due to the subsampling and good initialization due to smoothing, both provided by MR,
the number of iterations required is much less. With this method (see an example in Fig. 2), we compute an
initial coarse segmentation in less than 10 seconds and the refined final contours in less than 30 minutes (on an
Intel Pentium M 1.6 GHz platform) as opposed to nearly 4-6 hours using the traditional TPSTACS method.

Discussion. Note that we currently interpolate the contour on the coarse level by replicating the nearest-
neighbor values in the evolving level set. This might result in jagged contours. Using a smoother interpolation
method such as bicubic interpolation runs the risk of merging contours at the interpolation stage despite the



(a) (b)

Figure 2. (a) Coarse segmentation at level three. The blue contour indicates the result of the blob detection and the red
contour the coarse segmentation obtained after iterating TPSTACS on the coarsest subspace. (b) Segmentation on the
original image.

topology preservation method that is applied at the curve evolution stage. Further venues of exploration are
studying the preservation of topology across the scales and understanding the effect of different filters on different
images and finding the optimal number of decomposition levels for a given data set.

2.1.3 xxSTACS: Algorithms for Segmentation on Other Modalities

We recognize that the segmentation demands posed by some of the images obtained from other imaging modalities
overlap enormously with those that underlie the design of TPSTACS. While TPSTACS was designed primarily
for the segmentation of fluorescence microscope images, as noted in Section 1.2.2, (1) allows us to include any
number of forces adapted to the data. Given below are some of the applications of the algorithm, with suitable
adaptations within the framework, to segment images from other modalities.

DIC Microscopy Images of Yeast. We now discuss segmentation of yeast images introduced in Section 1.1.3.

Data Set. We are given a set of closely spaced cells (yeast colonies) and are required to segment the individual
cells in the DIC channel (Fig. 3(a)). The data set also has a parallel DNA channel and a GFP labelled specific
protein channel.24

(a) (b) (c)

Figure 3. (a) A DIC microscope image of yeast cells, (b) segmentation results after automated initialization and (c)
segmentation result after a manual initialization.

Algorithm. As the information in the parallel DNA information is ambiguous and insufficient to yield an
initial contour we cannot use it to initialize the contour. Likewise the specific protein channel is of no avail to
us for initialization. We initialize the contour automatically by first distinguishing the clumps of cells from the
background by thresholding the gradient image. Next, we remove blobs with holes larger than a pre-determined
size as invalid objects as well as very small fragments that are unlikely to be cells. This results in clumps of cells
that are still mostly merged. Using a combination of k-means clustering and the watershed algorithm, we merge
the fragmented portions of a cell, while splitting spuriously merged cells.

Evolution of the contour is based on the region-based force and the edge-based force (3). While the intensity
difference between the foreground and background is usually weak, in the DIC channel, the edges are quite
pronounced. Thus, the influence of the edge force is designed to increase with the iteration number. The edge
maps can also be used as a stopping criterion to prevent the contours from finding the background. Further,
using topology preservation maintains the number of contours detected in the initialization stage, preventing
merges to which this data is highly prone.



Results. Experimentation reveals that the challenge in this data is the initialization itself as we tend to
get a good segmentation if we are able to first detect the presence of individual cells. Fig. 3(b), shows a
representative result of the segmentation with automated initialization. Since the procedure is highly dependent
on the initialization, Fig. 3(c) shows the result with a manual initialization.

Discussion. The automated initialization requires significant tuning before it can be robust and work accu-
rately. With a purely automated version, we often end up mistakenly splitting cells due to the high variation
in intensity, while failing to detect a few legitimate cells. Thus there is much scope for improvement in the
initialization phase. The accurate performance of the algorithm after manual initialization suggests that the
procedure would benefit immensely from a minimal user interaction (such as marking a single point in each cell).

MRI Images of the Heart. The task is to segment the heart walls—endocardium and epicardium—from a
2D time series of MR images of a human chest cavity, the problem we introduced in Section 1.1.3.

Data Set. We are given a set of 25 MRI images of the heart about 40ms apart and so correspond roughly to
one heartbeat of a clinically healthy volunteer.

Algorithm. The endocardium usually appears brighter than most structures in the chest cavity. Thus, the
initial contour for an image is obtained by thresholding the image. Mere thresholding, however, picks up some
other structures. To get rid of these spurious detections, we use the fact that the endocardium is the most
circular of these structures. During the course of evolving the contour, we use topology preservation as there is
only one endocardium (as well as only one epicardium). In fact, the region-based force and curvature force used
in TPSTACS, work successfully on this data. Since the initialization detects almost all of the endocardium, just
a few iterations of the modified TPSTACS algorithm are sufficient to refine the contour and add the missing
portions. The final contour obtained for the endocardium serves as the initial contour for the segmentation of
the epicardium. The same algorithm with the same parameters (but with appropriately tuned statistical models
for the region based force) is iterated a few times to segment the epicardium.

(a) (b) (c)

Figure 4. (a) Segmentation of the endocardium and (b) epicardium. (Red contour: TPSTACS. Blue contour: hand-
segmented ground truth.)(c) An example of a self-loop and nonsmooth contour in the hand-segmented ground truth.

Results. A representative image of the outcome of the endocardium segmentation is shown in Fig. 4(a). The
outcome of the epicardium segmentation is shown in Fig. 4(b). We observe that the algorithm works well even
when there is no edge information present. An entire frame of size 192×156 is completely segmented with a high
degree of accuracy in less than fifteen seconds. The average area similarity compared with the hand-segmented
ground truth is 93% for the endocardium and 94% for the epicardium.

Discussion. The higher accuracy for epicardium segmentation despite the relatively lower accuracy for its
initial contour—the endocardium segmentation—could be explained as follows. For a few of the frames, the
discrepancy between the contour from the algorithm and the ground truth is due to the inconsistency and/or
inaccuracy in the hand segmented contour (see Fig. 4(c)) rather than any inaccuracy on the part of the algorithm.
Though the ground truth is provided by an expert, such anomalies are expected as the process of hand segmenting
the images is a tedious one.

Some of the future directions include tuning the algorithm to be robust to noise in the data in peripheral
sectioning planes and also in case of data from high-speed MR imaging or in ultrasound images that are also
used in such studies. Further, we can also use the time series information and cyclic nature of the heartbeat to
our advantage in designing the algorithm.



fMRI Images of the Brain. In brain fMRI images (see Section 1.1.3), the functional activity under study is
detected in the gray matter, which is obtained by growing layers of it on top of segmented white matter.

Data Set. We report the results of testing our algorithm on the MRI images of a child brain made available
to us by the VISTA laboratory at Stanford University. It consists of 400 images—100 in the coronal plane, 140
in the sagittal and 160 in the axial sectioning planes—each of size 217×180 pixels. The VISTA lab also provided
us with human expert-based segmentation for the left hemisphere to evaluate our algorithm.

Algorithm. The challenge in segmenting such images stems from the highly convoluted nature of the gray
matter. While voxel-based classification methods that use image statistics and histogram-based thresholding
are partially successful, they are affected by intensity variations and the need to maintain distinct templates for
various brain pathologies.25 Active-contour-based methods, on the other hand, have considerable advantages due
to their topological flexibility.26 An automated initial segmentation used by the Stanford team results in several
anomalies which necessitate hours of involved manual postprocessing to clean up the results.27 The specific goal
of this project is to improve the accuracy of segmentation so as to significantly reduce, if not eliminate entirely,
the need for manual postprocessing, and thus reduce wasted resources both in terms of money and time.

We obtain an initial contour for the white matter segmentation by thresholding the image and the curve
evolution is based solely on the region-based force. To take advantage of the available 3D information, we
consider the 2D segmentation results for every voxel in three different planes—axial, coronal and sagittal and
segment by majority voting.

Figure 5. L to r: Results of segmenting the white matter of the left-hemisphere in the axial, coronal and sagittal planes.
The yellow/red/green labels correspond to true positives/false positives/false negatives, respectively.

Results. A qualitative assessment of the segmentation outcome is made by visual inspection. Fig. 5 shows
the segmentation along the three sectioning planes. Table 2 reports a quantitative assessment of four possible
implementations: voting-based segmentation (Voting), segmentation based on axial slices only (Axial), segmen-
tation based on coronal slices only (Coronal) and segmentation based on sagittal slices only (Sagittal). From the
table we note that the voting-based technique achieves the best performance on each performance measure.

T (+)(%) F (+)(%) AS(%)

Axial 86.26 2.32 82.83
Coronal 89.02 2.55 80.76
Sagittal 86.21 1.79 81.92
Voting 89.13 1.63 85.07

Table 2. Quantitative measures of the segmentation performance of Voting-Based STACS. T (+) indicates true positives
that is, pixels correctly identified as belonging to the white matter region, F (+) indicates false positives that is, pixels
incorrectly identified as white matter and AS denotes area similarity.

Discussion. Typically, an AS ≥ 70% is considered excellent agreement with the ground truth.28 Thus we
note that the outcome of the voting-based STACS algorithm for fMRI images is in good agreement with the
ground truth provided to us. It is noteworthy, however, that the algorithm takes nearly 36 hours to segment
nearly 600 images. While this is still faster and less tedious than three days of manual labor, which is what it
takes in the absence of an automated method, the run time is still quite high.



2.2 Towards Multiscale Active Contour Transforms
Examining what we have done so far, we can say that the active contour methods work on fluorescence microscope
data (as well as on MRI, fMRI and DIC microscopy) fairly well and certainly better than the watershed algorithm.
This success is primarily due to the flexibility they offer (choosing any combination of available forces) as well
as on the new, stochastic ideas.12 The stochastic (region-based) term in (3) is the only term that specifically
responds to the stochastic nature of fluorescence microscope data sets. The success we have had in applying one
of the simplest multiresolution ideas in this framework also demonstrates that bringing state-of-the-art methods
from image processing into fluorescence microscopy is a worthwhile and long overdue effort.

As the domain of the level-set function is the whole image, the algorithm is extremely slow. Even MR as
applied to this framework in Section 2.1.2 is not a solution to the expensive computation that is costly by
design. Though there have been some attempts in the recent past to introduce active contour algorithms to the
segmentation of biological images they are designed for the specific task on hand. Further, akin to the constraints
used in our own extension function for TPSTACS, there are a lot of rules that are defined to ensure the system
works. While they do perform satisfactorily, the rules—such as a particle once burnt cannot be resurrected to
avoid self intersections—are rather ad-hoc. There is no systematic way of coming up with such constraints for
every new data set encountered. Moreover, it is not even an elegant way of developing a concept that obviously
holds immense potential.

These considerations motivate us to revisit the mathematical set up underlying the design. We attempt to
get rid of the extension function (essentially a version of the all-pairs-shortest-path problem) which does not
have any obvious or truly beneficial optimization. Next, the huge advantage of the geometric embedding of the
active contour algorithm is its nonparametrization. In the present scenario, this benefit is all but lost as by
explicitly working on the points on the contour for the computation of the forces. Thus, as a first step, we recast
the computation of the forces as a multiscale transformation.

3. MSAC TRANSFORMATIONS FOR SEGMENTATION

While active contour methods are the state-of-the-art tool in the image segmentation community, the unique
speckled nature of fluorescence microscope images (see, for example, Fig 1 and Fig. 2) makes the direct application
of such techniques difficult. Multiscale methods, on the other hand, are well suited to smooth and extract the
significant features of such images.

While the nature of the fluorescence microscope images motivates us to explore the use of multiscale features
for their segmentation, our success with the active contour algorithms discussed in Section 2.1.1, encourages us
to continue to benefit from the advantages they afford. Recently, there has been an effort to formulate multiscale
active contours.23 Yet, our motivation as discussed in Section 2.2 stems from the need for an elegant framework
that has an efficient implementation. Further, the idea of computing forces at the points on the contour using
an FFT implementation has been proposed recently in the context of topology preserving flows.29 Yet, this
design does not get rid of the time consuming extension function itself. Thus, we come up with the novel idea
of using multiscale active contour (MSAC) transformations for segmentation that does not parameterize the
geometrically embedded contour.

3.1 Multiscale Active Contour Transformations
When confronted by speckled images, such as fluorescence microscope ones, one naturally seeks to connect the
dots, that is, to estimate the densities of bright pixels on local neighborhoods of various sizes. Mathematically
speaking, the computation of such local densities may be represented as a multiscale smoothing transformation
of the original image. To be precise, let f : RN → RM be a fluorescence microscope image, where N is
typically 2 or 3 and M is the number of channels, with each channel corresponding to a different fluorescent
probe. Although the proposed techniques will naturally extend to the case M > 1, for the sake of simplicity,
we assume M = 1 for the remainder of this section. Given a windowing function g of an appropriate degree of
smoothness, boundedness, and/or decay (for example, a Gaussian), the corresponding multiscale transformation
of f is Wf : RN × (0,∞) → R,

(Wf)(x; a) =
∫

RN

f(x)g(
x− y

a
) dy. (5)



(a) (b) (c) (d)

Figure 6. Multiscale blurs of a fluorescence microscope image. (a) The original image. (b) A slight blur begins to reveal
the cell’s edge. (c) With more blur, the edge of the cell becomes clearly defined. (d) With too much blur, the edges
become rounded.

As depicted in Fig. 6 for several particular scale parameters a, such a transformation has a blurring effect, with
the blur increasing with a. Although blurring is usually regarded as an unwanted artifact in image processing, we
see that for fluorescence microscope images, a moderate degree of blur is actually useful: edges and shapes become
more apparent as the blur resolves the speckled image. Indeed, more generally, if f were a distribution composed
of a weighted sum of Dirac measures, then for each a > 0, Wf(· ; a) would be the sum of translations of a dilated
version of g. Mathematically speaking, the above transformation (5) is relatively simple, being nothing more than
a convolutional operator whose kernel contains a scale parameter. Today, such transformations are commonly
called continuous wavelet transforms. Although trivial to prove, it is important to note that transformation (5)
preserves the action of the group of rigid transformations, and therefore preserves the underlying geometry of
the original image. As microscope images are, in general, taken directly from above, and the vertical axis is the
only axis along which we should expect the cells to be aligned, ideally, our algorithms should not be affected by
translations, dilations, and rotations.

Specifically, given x0 ∈ RN , a0 > 0 and an N × N orthogonal matrix Θ, the corresponding translation,
dilation and rotation operators are Tx0 , Da0 , Rθ : Lp(RN ) → Lp(RN ),

(Tx0f)(x) = f(x− x0), (Da0f)(x) = f(a−1
0 x), (RΘf)(x) = f(ΘTx).

The present day active contour methods are not sensitive to translations, dilations or rotations of the image.
Thus, the MSAC transform that we propose, should not introduce these defects and should at the least do no
worse than the existing algorithms. Indeed, for any windowing function g, the corresponding transformation (5)
is easily shown to preserve translations and dilations, according to the following rules:

(WTx0f)(x; a) = (Wf)(x− x0; a), (WDa0f)(x; a) = aN
0 (Wf)(a−1

0 x, a−1
0 a).

Transformation such as (5) will also preserve rotations, provided the windowing function g is itself radially
symmetric: g(x) = g̃(‖x‖) for some g̃ : [0,∞) → R. Then, (WRΘf)(x; a) = (Wf)(ΘTx; a).

Although multiscale transformations have only recently begun to be applied to segmentation problems,23

convolution transformations such as (5) (without the scale parameter) have been exploited by the segmentation
community for decades. We argue that the scale parameter is essential, as the resolutions of the cameras
used in the acquisition process will vary across biological research teams, and, more importantly, as any single
fluorescence microscope image will contain multiple regions in which the marked proteins appear with varying
density.

3.2 Segmentation with MSAC Transforms

The multiscale transform can be combined with the active contour method by suitably coding in the information
of the evolving masks. For example, in TPSTACS, the region based force for the fluorescence microscope image
is computed as the difference between the sum of the mean densities (or intensities) around a small neighborhood
of every point on the current contour and the sum of the precomputed mean models. This may be computed



(a) (b)

Figure 7. (a) The total protein image (HeLa-UCE data) after three iterations. (b) The membrane protein image (Golgi
data) after three iterations. The merges are due to random initialization and absence of topology preservation.

without looping over the number of points on the contour as follows:

Min =

∫
RN fin(x)g(x−y

a ) dy∫
RN Cin(x)g(x−y

a ) dy
,

Mout =

∫
RN fout(x)g(x−y

a ) dy∫
RN Cout(x)g(x−y

a ) dy
and

Fr = Min + Mout −Mmodel,

where Min and Mout represent the mean intensities inside and outside the current contour, Mmodel = M1 + M2

represents the sum of the model mean intensities M1 and M2, fin represents the portion of the image contained
in the current contour, fout represents the portion that is considered as the background by the current contour,
Cin and Cout are the binary masks of the regions inside and outside the contour, respectively, and finally, Fr

represents the region based force. The behavior of this algorithm at the points on the contour is by design
equivalent to the computations performed by TPSTACS. The difference is that instead of using the distance
transform and extending the forces thus computed, we actually compute the forces at every pixel in the image
obviating the extension function. The values computed cannot be interpreted as their distance from the evolving
contour but rather their and their neighboring values’ proximity to one mean model or the other. Thus, the
computation also enables the contour to evolve much faster as it does not have to progress in small increments.
Just using the region based force is insufficient to obtain smooth contours for the cell images. So we designed
a new curvature force along the same lines but using the level set function and without computing the second
order differentials,

Fc =
∫

RN

φ(x)g(
x− y

a
)dy − φ.

The dilation factor a of the smoothing window is selected based on the resolution of the image. With this,
we are able to achieve smooth and accurate contours even beginning with a random initialization of the level set
function. For example, for both the total protein (HeLa-UCE) and the membrane protein (Golgi) data, if we
initialize φ to be identically zero, we obtain reasonable contours in 3 iterations, each iteration taking about 6.5
seconds on an average (on an Intel Pentium M 1.6 GHz platform) for images of size 1024×1024. Sample results
are shown in Fig. 7. When we have a priori knowledge of the topology, then this method can be easily combined
with the topology preservation method used in TPSTACS. This topology preserving module can be expected
to increase the run time of the algorithm and this increase is directly proportional to the size and number of
contours in the image.

This algorithm is, like its predecessor, extendable to other modalities. A preliminary experiment of the MSAC
Transform to segment the brain fMRI images using the appropriate region based force yielded an enormous speed-
up. The MSAC transform completed segmenting the entire volume of nearly 600 2D images in one hour versus the
36 hours taken by the previous system. As far as accuracy was concerned, it did no worse than the segmentation
accuracy of the previous algorithm.



Note that though there is a provision of using multiple scales to evolve the contour, we have only presented
the algorithm and results for a fixed value of the scale. We can combine this algorithm with the multiresolution
perspective, that is, smoothing followed by downsampling, and iteratively refine the contour to further increase
the algorithm’s efficacy and efficiency.

3.3 The bimagicLab Segmentation Toolbox

The MSAC transform forms the core of our segmentation algorithm. We propose to select modules such as
multiresolution (downsampling and/or use of different dilations of the smoothing filter) and topology preservation
based on the details of the data set (such as the imaging modality, dimension of the data set, experimental
conditions, etc.) and the user’s specific needs. For most of our end users, segmentation is typically the first
step towards answering their biological question. They need not concern themselves with all the modules, etc.
Thus, we intend to provide a user-friendly graphical user interface for the algorithms we develop. All they
would have to do is indicate to the software the experimental conditions such as, for example, the imaging
modality, dimensionality, resolution and the nature of the image (such as total protein channel with no parallel
channels). The GUI will guide them in the process of selecting the modules most relevant to their data and
application. Further, if any parameters need to be tuned explicitly, the GUI will guide the users by providing
intuitive descriptions such as the cell size, to facilitate customization. We do recognize that in some tasks, such
as high-throughput imaging or high-content screening, 2D images cannot possibly be segmented one at a time.
In this aspect, the user investing a few minutes to configure the algorithm through the GUI, will greatly enhance
the quality of the segmentation output of the batch processing.

4. CONCLUSIONS

We have presented an active contour algorithm that successfully segments fluorescence microscope images. Fur-
ther, we have demonstrated its flexibility to be adapted to different imaging modalities. It is however not suitable
for high-throughput applications due to its large run time. We showed that by incorporating the power of mul-
tiresolution, we not only successfully decrease the run time but are also able to detect features that could not be
detected earlier and hence segment even those images that do not have any parallel channels for initialization.
Furthermore, we proposed a novel multiscale transformation paradigm that can be used to segment images effi-
ciently and without losing the advantage of accuracy and flexibility provided by active contours. This is only the
beginning of the work that has raised interesting theoretical and experimental questions and opened new vistas
for further exploration.
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