
EFFICIENT ACQUISITION AND LEARNING OF FLUORESCENCE MICROSCOPY DATA
MODELS

Charles Jackson1, Robert F. Murphy1,3 and Jelena Kovačević1,2

1 Dept. of Biomedical Eng. and Center for Bioimage Informatics,
2 Dept. of Electrical and Computer Eng.,

3 Dept. of Biological Sciences and Dept. of Machine Learning,
Carnegie Mellon University, Pittsburgh, PA, USA

ABSTRACT

This paper presents a method to efficiently acquire fluorescence mi-
croscopy datasets, to allow for higher spatial and temporal resolu-
tion, and with less damage from photobleaching. Our proposal is
to restrict acquisition to regions where we expect to find an object.
Given that the objects are continuously moving, we must have an
accurate model to describe their motion to predict their future lo-
cations. We outline a system for learning and applying this motion
model, demonstrate its application in a case study, and summarize
results from more complex applications.

Index Terms— Fluorescence, microscopy, tracking, state space
methods, Monte Carlo methods

1. INTRODUCTION

Fluorescence microscopy is one of the most popular tools for live-
cell imaging. As the trend in biology tends more and more towards
automated systems for high-throughput applications, the amount of
image data acquired with this technique is growing rapidly. To ob-
serve a cellular process over a sustained period, we take a time series
of images, where each image is known as a frame. This paper de-
scribes an efficient way to acquire such images, in which we obtain
the required information without acquiring the entire field of view.

The first motivation for this work is to reduce photobleaching
and phototoxicity. In fluorescence microscopy, images are acquired
by shining excitation light on the specimen to activate fluorescence.
However, this can damage the fluorescent signal (photobleaching)
[1], as well as the cell itself (phototoxicity) [2]. Thus, the duration
over which we can view a cellular process is limited because even-
tually photobleaching destroys the fluorescent signal or, less com-
monly, phototoxicity destroys the cell itself. By reducing the total
area acquired in each frame, we reduce the overall exposure to exci-
tation light, hence reducing photobleaching and phototoxicity.

The second motivation is to enhance resolution. In laser scan-
ning confocal microscopy, images are acquired line-by-line, pixel-
by-pixel [3]. We can achieve significant time savings by only imag-
ing those regions where we expect to find an object. These time
savings could be used to increase the frame rate, or to acquire the
selected regions at a higher spatial resolution.

Although algorithms relating to efficient image compression or
image enhancement are well studied, the efficient acquisition of these
images is not. In [4], the authors designed an algorithm to reduce the

This work was supported in part by NSF through grant EF-0331657,
as well as the PA State Tobacco Settlement, Kamlet-Smith Bioinformatics
Grant.

number of pixels sampled in a 2D or 3D image when using a laser
scanning confocal microscope. They observed that a large portion of
scanning time is spent on low fluorescence regions, which presum-
ably contain little useful information. The approach is then to begin
by scanning the field at a low resolution. Each scanned value is ex-
amined, and if found to be significant, the area around it is scanned
at a higher resolution. The process is repeated iteratively.

Here, we want to observe a large number of tiny moving objects
over a sustained period. Instead of taking an image of the entire
field of view, the approach is to acquire only those regions where
we expect to find an object. Therefore, we need to develop a model
to describe the objects’ motion, and continually refine this model to
more accurately predict the locations where objects will be found.
In [5], the authors provide algorithms for modeling objects’ motions
for the purposes of tracking, and although not used directly, their
work helped inspire our approach.

Section 2 outlines the framework used for developing the mo-
tion models, and the process of the actual algorithm is described in
Section 3. Section 4 presents a case study of a simple system, while
Section 5 outlines some characteristics of more complex models.

2. TRACKING FRAMEWORK

The fundamental part of this work is to learn the motion model for
each object, and thus, here, we describe the framework in which we
do this. We have taken the same approach as used in [5] for object
tracking algorithms.

2.1. State Space Model

The state space model assumes that all the necessary information
about a system can be summarized by a set of state variables. For
a simple case of object tracking, these state variables could be, for
example, the 3D coordinates of the centroids of every object. A
more advanced model could also include the size, shape, type of
every object, etc.

This system is governed by two fundamental state space equa-
tions [6]. Equation (1) describes the present state in terms of the
previous state, and (2) describes the observed variables in terms of
the state variables:

x(t + 1) = F (t)x(t) + ν(t), (1)
z(t) = H(t)x(t) + µ(t). (2)

Equation (1) shows the state at time t, x(t), evolving to the state
at time t + 1, x(t + 1), as governed by the state transition matrix



F (t). The equation implicitly assumes a linear system, although
a more general form can be used for nonlinear systems. The state
noise ν(t) reflects that the model will not perfectly predict the state
transitions.

Equation (2) maps the state variables x(t) to the measurement
variables z(t). H(t) is the observation matrix (if H(t) were a diag-
onal matrix then the system would be fully observable), and µ(t) is
the measurement noise. This paper assumes perfect measurement.

2.2. Application to Motion Modeling

Our method of modeling the objects’ motion follows that of [6], as
described in this section. Learning the motion model of an object is
equivalent to learning F (t) and the properties of ν(t) for the object.
Because we assume stationary object dynamics, F (t) can be repre-
sented simply as F , and the state noise has a constant covariance Q.
Every object in the specimen potentially moves under a different mo-
tion model. Therefore, we have state transition matrices F1, ..., Fm

and covariances Q1, ..., Qm for the m objects of interest. Learning
the motion models equates to learning these matrices.

Two restrictions are imposed on the model. The first is that
covariance matrices are diagonal (making each dimension indepen-
dent). The second is that F is restricted to one of the three motion
models from [5] to cover most motions observed in practice. These
three models are a random walk, FRW , a first-order linear extrap-
olation, FFLE , and a second-order linear extrapolation, FSLE , and
require knowledge of the object’s position in up to three successive
frames. Therefore, in 2D, we define the state vector as:

x(t) =
[

xt yt xt−1 yt−1 xt−2 yt−2

]>
,

where (xt, yt) represent the 2D coordinates of the object at time t.
The state transition matrices for each motion model are:

FRW =


1 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

 ,

FFLE =


2 0 −1 0 0 0
0 2 0 −1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

 ,

FSLE =


3 0 −3 0 1 0
0 3 0 −3 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

 .

The first two rows of these matrices compute the object coordinates
for the next time frame. For example, if using the FLE model:

xt+1 = 2xt − xt−1 + N(0, σx), (3)
yt+1 = 2yt − yt−1 + N(0, σy). (4)

The third row shows that xt in the current state becomes xt−1 in the
subsequent state, and so forth.

3. ALGORITHM OUTLINE

Problem statement. Our goal here is to learn the motion model for
each object. The input to the system is the time series of images
(frames), and the set of possible motion models that could describe
the objects. For each of these motion models, and for each object,
the system outputs the relative likelihood that a given motion model
describes a given object. As our knowledge of each object’s motion
becomes more refined, the efficiency of acquisition improves.

Assumptions. We assume that objects are perfectly detected
provided that the appropriate region is acquired. This is in contrast
to [6], which considers the possibility that an object goes undetected
due to background noise, or, alternatively, that background clutter is
falsely detected as an object. These considerations will be taken into
account in future work.

A second assumption is that each object of interest occupies a
single pixel, thus avoiding size and shape considerations. Future
algorithms will model the possibly deformable sizes and shapes of
objects along with their motion.

Finally, although our system does allow for nonstationary object
dynamics, all experiments so far assume that these dynamics are sta-
tionary. That is, we assume that the motion models are not changing
over time.

Algorithm. The system does not make hard decisions about
which motion model an object is operating under, but instead asso-
ciates a probability with each possible model. We begin by assign-
ing initial probabilites to each model. For example, we could assume
that the three models FRW , FFLE , FSLE , are all equally likely. The
covariance of the state noise is also a model parameter. We could
initially assume that the possible values of the variance (either in the
x-direction or the y-direction) are all equally likely, with some upper
bound (such as the diameter of the cell). The algorithm then refines
these probabilities as it cycles through the following steps (a pseudo
code is given in Algorithm 1):

1. Predict distribution of objects: Based on our current beliefs
about the motion model, we calculate the likelihood of finding
each object in any given pixel in the subsequent frame.

2. Acquire pixels according to some policy: For example, we
may choose to acquire the smallest number of pixels that give
a 95% probability of capturing each object.

3. Having acquired these pixels, we observe where each object
was actually located (or whether an object was not located in
any of the acquired pixels). This information is used to update
the motion models.

4. If we allow for nonstationary object dynamics then we must
now update our belief about the motion models to reflect that
they may have changed.

4. CASE STUDY

We now explain these steps in more detail with a simple case study.
We assume that we are only acquiring a single object, and that the
motion is known in advance to be the random walk model. Hence,
the only unknown variable is the covariance. For the sake of clear
diagrams, we will further assume that the object moves only in one
dimension, meaning that the covariance consists of a single variable.



Algorithm 1 Input: M , the set of all possible motion models, I1−N ,
a set of N frames, fx1(x), the distribution of the object’s location
in the first frame. Output: fM (m), the probability that the object
follows motion model m.

initialize fM (m), the prior likelihood of each motion model
for t = 1 to N do

compute fxt+1(x|m) for all m ∈ M
fxt+1(x) =

∫
M

fxt+1(x|m)fM (m)dm

choose smallest set of pixels D s.t.
∫

D
fxt+1(x)dx = 0.95

acquire pixels in D in It+1

if object found then
fxt+1(x) = 1 at object location, 0 elsewhere

else
fxt+1(x) = 0 for all x ∈ D

end if
fM (m) = Pr(xt+1|m)fM (m) for all m ∈ M

end for
return fM (m)

4.1. Initial Conditions

We assume the initial position of the object is known. As stated
above, the only unknown variable is the variance of the object’s mo-
tion, or, equivalently, the standard deviation σ. Our initial assump-
tion is that this standard deviation lies between 0 and 10 with equal
probability. The true σ (initially unknown by our system) is set to 1.

4.2. Prediction of the Distribution of the Object

Because the object follows a random walk, its expected location in
the subsequent frame is the same as in the current frame, but it is
still subject to the Gaussian state noise from (1). The problem is that
the system does not know the standard deviation of this Gaussian,
which would be required to compute the distribution of the object’s
expected location. However, the system does maintain the probabil-
ity of any given standard deviation being the true standard deviation.
Equation (5) shows how we compute the distribution of the object’s
position, fx(x), when the standard deviation σ is only known as a
probability distribution fσ(σ). fx(x|σ) refers to the expected object
distribution when σ is known, and is thus simply a Gaussian of mean
0 and standard deviation σ;

fx(x) =

∫
σ

fx(x|σ)fσ(σ)dσ. (5)

Figure 1 shows (a) an example of our intial prediction of the
standard deviation (equal likelihood everywhere up to 10), (b) the
object’s expected distribution given this initial prediction as com-
puted by (5), and (c) the object’s expected distribution if we knew
the true standard deviation of 1.

Figure 2 shows the first four iterations of the algorithm. We see
that as the knowledge of σ becomes more precise, the distribution of
the object’s expected location also becomes more precise.

The assumption thus far is that the object’s original position is
known. However, sometimes we fail to acquire the object in one
frame, but must still predict its location in the next frame. Figure 3
shows an example where the object’s current location is only known
probabilistically, and the subsequent object distribution is the convo-
lution of this current distribution and the random walk function.

(a) Initial likelihood of object standard deviation.

(b) Expected object distribution when standard deviation is unknown.

(c) Expected object distribution if standard deviation is known to be 1.

Fig. 1. The effect of our knowledge of the object standard deviation
on the expected object distribution.

4.3. Acquisition of Pixels According to Policy

Suppose that our aim is to capture the object in each frame with 95%
probability. Thus we select the pixels with the highest probability of
containing the object, selecting just enough so that the cumulative
probability of acquring the object is 95%.

4.4. Update of the Motion Model

On the basis of this acquisition, we now update our estimate of σ as
follows:

fnew(σ) =
Pr(d ∈ D|σ)fold(σ)

Pr(d ∈ D)
.

In this equation, D refers to the displacement of the object between
the two frames. If the object was acquired in both frames then D
is a single number representing the actual measured displacement of
the object. However, if the object was not acquired, then the actual
displacement of the object is unknown and thus D is the set of all
possible values of displacement.



Fig. 2. Four iterations of the algorithm. The left side reflects our
knowledge of σ; the right side shows the expected object distribu-
tion.

Fig. 3. Expected object distribution in subsequent frame when object
position is only known probabilistically in current frame.

5. HIGHER-ORDER MODELS

When we consider higher-order models, we must also maintain dis-
tributions of the objects’ past positions. In the second-order linear
extrapolation, with state transition matrix FSLE , the update equation
for a single dimension is given as:

xt+1 = 3xt − 3xt−1 + xt−2 + N(0, σ).

Thus, we need to maintain estimates of xt, xt−1 and xt−2. For the
frames when the object is observed, this estimate will be an exact
point. However, for frames when the object was missed, the position
of the object must be represented probabilistically.

This added complexity means that it takes longer to learn σ than
for the random walk model. Figure 4 shows the rate at which σ is
learnt for each of the three motion models. It can be seen that the
lower-order models are faster to converge to the true value of σ.

Even once σ has been learnt, the higher-order models still re-
quire a larger average acquisition region. This is because when an
object is missed in any given frame, the resulting uncertainty about
the object’s motion is propagated for longer when using a higher-
order model. If the object must be captured in 90% of frames in
a 1-dimensional setting, then an RW model requires an average ac-
quisition region of length 3.78σ, an FLE model requires an average
acquisition region of length 4.48σ, and the SLE requires 6.97σ.

Fig. 4. The rate at which σ is learnt under each of the motion models

6. CONCLUSION

We outlined an efficient way of acquiring fluorescence microscopy
images through modeling the motion of the objects and acquiring
only in regions likely to contain objects. The reduced acquisition
time can reduce photobleaching due to a lessening of light exposure,
or can lead to an increase in the frame rate or spatial resolution of
the images. We have described a general process that is applicable
to a wide range of motion models.

The case study shows how the system can be applied to a sim-
ple example. Extension to more dimensions, multiple objects, and
more complicated motion models, is simple and intuitive. The lim-
iting factor in these more advanced systems is the increased com-
putational complexity. The main challenge of future work will be to
ascertain what simplifications can be made to maintain a manageable
computational load yet without adversely affecting system behavior.

7. ACKNOWLEDGEMENTS

The authors thank Estelle Glory for helpful insights.

8. REFERENCES

[1] K. König, Handbook of Biological Confocal Microscopy, chap-
ter Cell Damage During Multi-Photon Microscopy, 2005.

[2] A. Diaspro, G. Chirico, C. Usai, P. Ramoino, and J. Dobrucki,
Handbook of Biological Confocal Microscopy, chapter Photo-
bleaching, 2005.

[3] S Inoue, Handbook of Biological Confocal Microscopy, chapter
Foundations of Confocal Scanned Imaging in Light Microscopy,
2005.

[4] T. E. Merryman and J. Kovačević, “Adaptive multiresolution
acquisition of fluorescence microscopy data sets,” IEEE Trans.
Image Proc., sp. iss. Molecular and Cellular Bioimaging, vol.
14, no. 9, pp. 1246–1253, Sep. 2005.

[5] A. Genovesio, T. Liedl, V. Emiliani, W. I. Parak, M. Coppey-
Moisan, and J.-C. Olivo-Marin, “Multiple particle tracking in
3-d+t microscopy: method and application to the tracking of
endocytosed quantum dots,” IEEE Trans. Image Proc., vol. 15,
no. 5, pp. 1062–1070, May 2006.

[6] A. Genovesio and J.-C. Olivo-Marin, “Tracking fluorescent
spots in biological video microscopy,” Proc. SPIE Conf. 3D
and Multidimensional Microscopy: Image Acq. and Proc., vol.
4964, pp. 98–105, May 2003.


