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ABSTRACT

We propose an adaptive multiresolution (MR) approach to th%ata is to do so automatically,

classification of fingerprint images. The system adds MR g
sition in front of a generic classifier consisting of featamenputa-
tion and classification in each MR subspace, yielding loeaigions,
which are then combined into a global decision using a waigtl-
gorithm. In our previous work on classification of proteitsellular
location images, we showed that the space-frequency kechilnfor-
mation in the MR subspaces adds significantly to the discatie

camera are the minimum requirements), fingerprint recignis a
highly researched field. A crucial goal in processing sucmigitric
accurately and fast.

Modern fingerprint image classification systems have prefen
fective to accuracies of well over 90% recognition. Mostrah fall
into one of the two major categories: minutiae-based or évizased
methods. The former are based on computation of minutiafest
require expensive pre-processing and are error-pronelattee ex-

power of the system. Here, we go one step farther; We develop fact features directly from the original image; they armpatation-

new weighting method which allows for the discriminativeyeo of
each subband to be expressed and examined within eachThéss.
in turn, allows us to evaluate the importance of the inforamaton-
tained within a specific subband. Moreover, we develop aipgun
procedure to eliminate the subbands that do not containiLisébr-
mation. This leads to potential identification of the appiaie MR
decomposition both on a per class basis and for a given datdgl
this new approach, we make the system adaptive, flexible basve
more accurate and efficient.

Index Terms— Biometrics, fingerprint images, classification,

multiresolution techniques.

1. INTRODUCTION AND MOTIVATION

Personal identification has been a topic of interest for stme,
with various solutions proposed. Accessing buildings ailifées,
withdrawing money or using a credit card, gaining accesddc-e
tronic information on a local computer or over the Interrsat all
examples of situations which require accurate and relialx¢h-
ods of personal identification, and solutions vary gredflyere are
hundreds of modalities for personal identification, froemnis one
might keep in one’s possession (for example, identificatiamls or
keys) to combinations of numbers and information one migétm
orize (for example, Social Security numbers and passwoldising
human biometric characteristics (fingerprints, irisesefa etc) has
great advantages over other techniques: the informationatebe
lost or forgotten, and forgery requires greater skill.

The most familiar and studied modality of biometric recaigmi
is the fingerprint. Because acquisition of fingerprint imggemin-
imally invasive and requires little hardware (ink, paped ardigital
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ally efficient, but require elaborate algorithms to makenthrebust
to plastic distortions and low image quality. A number of gea
based algorithms use multiresolution (MR) techniques. niplas
include the use of wavelet coefficients [1, 2], as well as thergy
distribution between MR subspaces [3, 4]. In [5], the augthmed
correlation filters in the wavelet packet domain for fingerpveri-
fication and recognition. They adaptively construct wavpbecket
trees using a correlation energy cost function along withaicn
score, with excellent results.

In our previous work [6, 7], we showed that introducing MR
techniques into the classification of biological imagesatyeim-
proves the classification accuracy. The power of MR toolbried-
fold: (a) They provide space-frequency localized inforiorain the
MR subspaces, the so-callsdbbands (b) They are adaptive to the
data at hand. (c) They are fast and efficient to compute. I7][6,
the idea was to use the MR subspaces as images to be classified.
To output a class label for an image, local decisions madaeat t
level of each subband were combined into a global decisiagmgus
a weighting algorithm. With this process, we showed thatstie-
bands had a discriminative power and that the adaptivityigeal by
the weighting procedure helped increase the classificationracy
over a system that did not contain neither the MR decomjpwsitor
the weighting algorithm.

In this paper, we use the same type of idea and explore therpowe

of adaptive MR techniques in the classification of fingergrirages.

We introduce a new weighting algorithm along with a prunimg-p
cedure to help us gain insight into the role of each subbasdedl

as, given a dataset, find the most suitable MR decompositém t
We also attempt to expand our understanding of the role dbwsr
MR transforms by exploring the use of different MR transferim

the classification of fingerprint images.
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Fig. 1. Schematic of the current classification method [7].

2. BACKGROUND

2.1. MR Classification

We now briefly describe the MR classification system devalope
in [6, 7]. We denote aso MR (NMR)the standard classification
system consisting of a feature extractor followed by a di@sgsee
Fig. 1). We add an MR block in front of NMR and compute fea-
tures in MR subspaces (subbands). Classification is théarperd

on each of the subbands yielding local decisions which age th
weighed and combined to give a final decision.

Images to be classified undergo an MR decomposition that cre-
ates a total ofS subbands. Following this decomposition, any set

of features can be extracted from each of theubbands; here, we
use texture features as we have found them to be most pow€nel
feature vectors are then input infoseparate generic classifiers (neu-
ral networks for instance). Finally, each of tBeclassifiers outputs
a decision vector.

Given K classes, we define target decision vectoasd =
(d1,da,...,dr)T € R¥. Ideally,d has all its coefficients but one
equal to 0. A nonzero coefficient at positibmmplies that the image
belongs to clask. The intended interpretation is thét is a measure
of the resemblance of the image to cldss To assign a “wining”
class to an image, we assign it the index of the highest casffim
the decision vector:

kwin = arg max dg.
k

Let us now define the decision vecter,as the output after each
subband classifier. The weighting block takes as input the different
local decision vectors and combines them into a single awteci-
sion vector. For each image, given the sefalecision vectors, we
concatenate them into a mattiXof size K x S, where each element
Cy,s is positionk of the decision vector of classifier

2.2. Weighting Procedure

Assume that we hav# training images. Then, at the output of the

classifiers we havéV decision matrice€ " = {C} s}V, forl =
1,...,N,k=1,...,Kands = 1,...,5. To theseN matrices,
we associateV target decision vector&?, 1 = 1,..., N.

The weighting procedure combines the decision vectorstiege
by weighing each of them with a subband-specific weight In
matrix notation, the system computes:

d = Cw, 1

wherew = (ws,...,ws)” is of sizeS x 1, C'is of sizeK x S and
thus,d is of size K x 1. (We omitted the superscript that indicates
the training image since the equation is valid for all of them

1The concept of resemblance is intentionally left undereefin

Given a set of training data, a possible solutionois the one
that minimizes the error in the least-square sense:

N
Wwin = arg minz 1d®) — D,

i=1

@)

Define a target output vectorof size K N x 1, as a vector which
concatenates all the target decision vectbfsas follows:

T
0 = (dﬁ”,dé”,...,dg),...,dgm,...,d%“) )

and letT be theK N x S matrix consisting of the all the decision
matricesC'") of all the training data stacked on top of each other:

1 1
ofie Ci's
(1) (1)
CK,1 CK,S
r=| ; @
N N
iy cry
N) (N
Cil C
We can now rewrite (2) in a direct error minimization form:
Wwin = argmin|jo — Twl], (5)

which possesses a closed-form solution and can be effigieoih-
puted.

3. PROPOSED ALGORITHM

3.1. Problem Statement

The problem we are addressing here is that of finding a singighw
vector for each of the fingerprint classes. This allows bettarac-
terization and adaptivity to each individual class. Basethe train-
ing data for a specific class, the weight vector for this clasighs
the local decisions made by each classifier so as to minimézelas-
sification error for the images of that class. In the processuse a
pruning procedure to eliminate any information or subbahdsare
not useful for the classification. This yields an efficiergteyn with-
out sacrificing the accuracy. Thus, the input to the clasgptie
weight algorithm is the decision vectcﬁé(,f) fori=1,...,Nofall
of the S classifiers and the output is the weight vectofsassociated
toeachclasg fork =1,..., K.

3.2. Weight Matrix Model

To make the system truly adaptive, it is reasonable to asshate
different classes require different weight vectors. Thues propose
a system where, instead of a single weight veetdior the whole
training data set, each clakdas its own weight vectaw,. As op-
posed to (1), the entries in the output decision vector ave cam-
puted as:
di :ka7 k:17...,K, (6)

whered;, is the decision vector associated with class

Now, the weights can be grouped together to forntank ma-
trix W so that each column represents a class-specific weightrvecto
Equation (6) can be rewritten as:

d = diag (CW). @)



Recall thatC' is of sizeK x S and thusi is of sizeK x K (compare
this to (1)). To learn these weights, we again use the trgisat and
look for a solution that minimizes the squared error:

Wwin

N
; @ _ g; @@ 12
arg min ; Ild diag (C’ W ) = (@

To obtain an expression analogous to (5) and be able to afmply s
dard methods, we have to defin@s the vector of the concatenation
of all class-specific weight vectors:

v = (Wi, Wia.. Wik,...,Ws1,...,Wsx)" . (9
We now defineT ) as the following block matrix, where”,
I=1,...,N,isthe vecto(C{"}, C{), ..., C%):
AV o 0 0
0o &Y o0 0
o o0 Y 0
0 0 0 0
0 0 0 Y
T = : (10)
Moo 0
o &M o 0
o o &V 0
0o 0 0 0
0 0 0 AN

We can now write a minimization problem equivalent to the one
(8), and which we can solve using standard techniques:

Vwin = argmin [jo — T y]|. (11)

3.3. Decomposition Tree Pruning

Our long-term goal in developing an adaptive MR classifaratys-
tem was to find a wavelet-packet-like decomposition, whexghe
class would induce a different MR subtree. While we have dosie
that in [5], we needed a cost function which is specific to thtad
set used. Our goal is thus have a more generic system anditgvech
a “wavelet-packet’-like system but without the need for atdanc-
tion. We come close to this goal here, where we identify thete
discriminative subbands for each class (not necessarilptes).

Algorithm 1: Pruning the decomposition tree
Input: The vector of weightsv, fraction of kept
weights/subbands (0 < n < 1)
Output: Set of subbands
18— {}
2 while (3, wil) <nX7, |wi| do

3 S «— arg maxsgs Ws

4 S —Su{s}
5 return S
4, EXPERIMENTAL RESULTS
4.1. Data Set

To test our system we used images from a subset of the NIST 24
fingerprint database [8]. The data set contains 10 classtbs5@i
512x 512 images each . The images were acquired while individuals
were rolling their thumbs, which induces different plastistortions

that make the data set realistic and challenging. Figureo@sitwo
examples from an easy and a hard class.

4.2. Experimental Setup

We use 45 images per class to train the system. Each image un-
dergoes different 2-level MR transforms. These can be eiiih
two main categories: nonredundant unitary (MR bases) athahre
dant (MR frames). Amongst the unitary ones, we used the Bliscr
Wavelet Transform of siz& x 2, and different transforms of size
4 x 4: the Discrete Fourier Transform (DFT) [9], the Discrete Co-
sine Transform (DCT) [9], the Discrete Hartley TransformHD
[9], the Walsh-Hadamard Transform (WHT) [10], the Discréte
angle Transform (DTT) [11] and two random unitary transfeym
RU1, which has a an all ones row (lowpass filter) and RU2 whsch i
completely random. All of these are separable 2D transfapast
from the DTT, which is nonseparable. The redundant MR decom-
positions tested here are the Double-Density DWT (DD-DWPR)[
the Dual-Tree Complex Wavelet transform (DT-CWT) [13] ahd t
Stationary Wavelet Transform (SWT) [14].

We use modified Haralick texture features (26 features)fid] a
a two-layer neural network as our generic classificatiotesysand
perform ten-fold cross validation on the weight calculati®We set
the value forp at 0.8 as initial observations showed that this value
achieved a good balance between pruning away the decoioposit
tree while keeping the accuracy high.

4.3. Results and Discussion

Once the weight vectors are computed, we use the values of the| ihe results are shown in Table 1. By observing the resuts

weights to regulate the MR decomposition. In particulabbsnds

can draw the following conclusions:

which are given a low weight by the weighting procedure can be

pruned away as long as the remaining subbands are stillisuffio
classify the image correctly. This way, the pruned subbandgheir
associated features need not be computed, resulting inutatignal
savings. We propose to keep the high-weight subbands, satha
least a certain ratig, defined as the fraction of the sum of kept
weights over the sun of all the weights, of subbands are kept.

This pruning can be done over a single weight vector and & thu
suitable for both the previous model with a weight vector gratire
dataset as well as for the new model with a weight vector @esscl
(6). The process is formalized as Algorithm 1.

o MR does better than NMR.

e The redundant transforms (MR frames) do better than the uni-
tary ones (MR bases) and the SWT achieves the best classifi-
cation accuracy of 99.50%.

e The choice of the transform amongst MR bases does not seem
to be crucial. One might as well use a random unitary trans-
form and still achieve similar performances.

e As expected, pruning does not improve the accuracy of the
system, but it does make it more efficient.



Pruned

Class-adaptive

Not class-adaptive

NMR

MR bases
DWT
DFT
DCT
DHT
WHT
DTT
RU1
RU2

MR frames
DD-DWT
DT-CWT

SWT

96.22

98.86
98.26
95.08
95.48
95.02
98.02
97.12
94.90

98.96
99.06
99.36

96.22

98.82
98.18
94.46
95.06
94.34
97.92
97.00
94.84

99.10
98.52
99.38

Not pruned
Class-adaptive  Ns$-@daptive
96.22 96.22
98.58 98.68
98.42 98.46
98.10 98.02
98.00 97.78
98.12 98.08
98.30 98.28
99.00 98.98
98.12 98.18
98.70 99.12
99.14 98.80
99.42 99.50

Table 1. Accuracies in [%] obtained with different MR transformsngstwo weighting algorithms and a pruning procedure. Wedaig in
bold the highest accuracy achieved by each transform.
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Fig. 2. Samples of fingerprint images from an easy class (left) and a

difficult class (right).
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e In general, the class-adaptive method seems to do better tha

the data set adaptive one.

Considering the two main MR decompositions DWT and SWT,
usingn = 0.8 in the pruning procedure removed almost half of the

subbands, enabling significant computational savings mpeaa-
tion with a small impact on the classification accuracy.
For future work, we intend to use a much smaller training set
of images to train our system, use a much larger data set asasvel (8]

optimizen for each transform.
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