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ABSTRACT

We survey our work on adaptive multiresolution (MR) approaches
to the classification of biological images. The system adds MR
decomposition in front of a generic classifier consisting of feature
computation and classification in each MR subspace, yielding local
decisions, which are then combined into a global decision using a
weighting algorithm. The system tested on different datasets (sub-
cellular protein location images, drosophila embryo images and his-
tological images images) gave very high accuracies. We hypothesize
that the space-frequency localized information in the multiresolution
subspaces adds significantly to the discriminative power of the sys-
tem. Moreover, we show that a vastly reduced set of features is suf-
ficient. Finally, we prove that frames are the class of MR techniques
that performs the best in this context. This leads us to consider the
construction of a new family of frames for classification, which we
term lapped tight frame transforms.

1. BACKGROUND AND MOTIVATION

Systems biology entails the study of the interactions between the
components of a biological system and the mechanisms by which
these interactions give rise to the function and behavior of that sys-
tem. Such approach encompasses mathematical and computational
modeling based on quantitative data collected within each compo-
nent of the biological system. Advances in biochemistry, probes, and
microscopy gave the biologists the opportunity to observe cells and
cell processes at a level never seen before, which led to the collection
of huge amounts of 2D, 3D and even higher-dimensional data. As a
result, visual inspection of these datasets, always error-prone, non-
reproducible and subjective, became impractical as well. Hence the
need for automated, accurate and efficient systems to extract knowl-
edge contained in the collected data.

Automated knowledge extraction requires the expertise devel-
oped in signal processing, machine learning and mathematics. In
the project of determination of protein subcellular location patterns,
Murphy et al. identified classification as the underlying problem [1].
Similarly, in the project of determination of developmental stages in
fly embryos [2], we realized that the problem is again that of classi-
fication. Not surprisingly then, in several other projects, such as the
development of teratomas in stem cells, the need for classification
emerged. Thus, an accurate and efficient algorithm for classification
would be of great use to biologists, motivating the developments in
this work.

Classification. Assume that the images are of sizeN×N and let
R denote the set of intensities covered by all the images in the given
dataset. The classification problem can be formulated as designing
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a map from the signal space of the examined images X ⊂ RN×N ,
to a response space Y ⊆ {1, 2, ..., C} of class labels. The decision
d is the map, d : X 7→ Y that associates an input image with a class
label. To reduce the dimensionality of the problem, one sets up a
feature space F ⊂ Rf , f ≤ N2, between the input space and the
response space. The feature extractor θ is the map θ : X 7→ F , and
the classifier ν is the map ν : F 7→ Y . The goal is to find a (θ, ν)
pair that maximizes the classification accuracy.

Features are numerical descriptors that characterize the input
data, usually in a lower-dimensional space. We focus on the follow-
ing feature sets: (a) Haralick Texture Features (T1 with 13 features
or T2 with 26 features), are calculated using four co-occurrence ma-
trices which are combined in various ways to give either 13 or 26
measures. (b) Morphological Features (M , 16 features), visually
describe distinctive aspects of images as discerned by the human
eye. (c) Zernike Moment Features (Z, 49 features), computed for an
image are similarity measures between the corresponding Zernike
polynomials and the image. We focus on a specific class of nonlin-
ear classifiers: Neural networks (NNs), based on grouping the input
vectors (features) into intersections of clusters of one type while the
union of all such intersections yields the entire feature space.

In the problem of determination of protein subcellular location
patterns, the heart is a set of features (T1, T2,M, and Z) describing
the spatial distribution of proteins in each cell image. Of particu-
lar relevance to the work described here is the use of simplest MR
features such as wavelet (30 features) and Gabor (60 features) fea-
tures, as the addition of these resulted in a significant improvement
of classification accuracy to 91.5% for the 2D HeLa dataset [1]. As
the introduction of the simplest MR features produced a statistically
significant jump in classification accuracy, our hypothesis was that
more sophisticated MR techniques would result in even more accu-
rate classification.

Multiresolution Techniques. MR techniques have been exten-
sively studied and used in signal and image processing over the past
two decades [3]. MR processing means analysis and processing of
data at different resolutions and/or scales. MR transforms decom-
pose a signal into zooming spaces (coarse spaces and many detail
spaces called subbands) and are implemented by filter banks (FBs),
through filtering and sampling.

Nonredundant Multiresolution Techniques: Bases. Most of MR
techniques in use are nonredundant— the underlying mathematical
structures are bases (MRBs). Assuming Rm or Cm, a basis for such
a space, Ψ = {ψi}m−1

i=0 , we associate to it a matrix (operator) which
we will also call Ψ, and which has basis vectors as its columns (ψi,j
is the jth element of the ith basis vector). Given a pair of biorthog-
onal bases (Ψ, Ψ̃) dual to each other, a signal x belonging to Rm or
Cm can be expressed as:

x = ΨX = ΨΨ̃∗x, (1)



where X is the vector from Rm or Cm of so-called transform co-
efficients (inner products), and Ψ̃∗ denotes the Hermitian transpose
of the dual basis Ψ̃. If the expansion is into an orthonormal basis
(ONB), then Ψ = Ψ̃ and the above becomes ΨΨ∗ = I , which fur-
ther implies that Ψ is a unitary matrix.

The only infinite-dimensional class of MR decompositions we
discuss here are those implemented by FBs, as these are bases used
in applications. The vectors (signals) live in the infinite-dimensional
Hilbert space l2(Z)1. Whenm = n, we deal with critically-sampled
FBs implementing bases. A FB decomposition can be expressed as
in (1) where x is now an infinite sequence belonging to l2(Z), X
is an infinite sequence of transform coefficients (inner products) in
l1(Z), and Ψ is the basis expansion matrix given in a setting with
finite impulse response (FIR) filters. The matrix Ψ is used in the
synthesis FB (the reconstruction step) whereas its dual, Ψ̃, is used in
the analysis FB (the decomposition step). Assume that the nonzero
support of the filter ψi, or, its length is l = km (if not, we can always
pad with zeros), and write the basis operator as a block circulant
matrix with blocks Ψr is of sizem×m, containing filter coefficients.
We can rephrase the basis decomposition in the z-domain as well
using polyphase analysis. A polyphase matrix Ψp(z) collects the
subsequences modulo n. For bases, Ψp(z) is of size m×m:

Ψp(z) =

k−1X
r=0

Ψrz
−r. (2)

A paraunitary polyphase matrix (representing an ONB) satisfies Ψp(z)
Ψ∗p(z) = I̧, where c is a constant.

When the filter length l is equal to the sampling factor m, we
have a block transform. Then, only Ψ0 is nonzero, making Ψ block-
diagonal. In effect, since there is no overlap between processed
blocks, this can be analyzed as a finite-dimensional case, where both
the input and the output arem-dimensional vectors. This shows how
finite-dimensional bases can be analyzed in the FB context.

In practice, the use of block transforms can produce artifacts
known as “blocking effects” (since there is no overlap between the
basis functions—processed blocks), and thus solutions were sought
with longer basis functions. One such solution is the Lapped Or-
thogonal Transform (LOT). The LOTs can be seen as a class of m-
channel FBs implementing bases, originally developed for filters of
length l = 2m and later generalized to arbitrary integer multiples
of m [4]. Compared to block transforms, the LOT keeps the same
number of filters but doubles their length, which means that the basis
functions of adjacent blocks overlap by half their size, thus removing
the blocking effects. However, LOTs are not solely determined by
their length, but by the specific form of their basis vectors as well.

In general, for a FB with filter length l = 2m, the time-domain
matrix Ψ has a double diagonal, that is, only Ψ0 and Ψ1 exist. Thus,
(2) reduces to

Ψp(z) = Ψ0 + z−1Ψ1, (3)

where Ψr, r = 0, 1, are m × m matrices with (Ψr)j,i = ψi,j for
i = 0, . . . ,m− 1 and j = mr, . . .mr+m− 1. Since the LOT is a
unitary transform, that is, ΨΨ∗ = Ψ∗Ψ = I the following must be
satisfied:

Ψ0Ψ∗0 + Ψ1Ψ∗1 = Ψ∗0Ψ0 + Ψ∗1Ψ1 = I, (4)
Ψ∗0Ψ1 = Ψ∗1Ψ0 = 0, Ψ0Ψ∗1 = Ψ1Ψ∗0 = 0. (5)

Two main classes of LOTs exist distinguished by whether they

1In fact, we can investigate finite-dimensional MR decompositions within
the FB framework as well.

use cosines or complex exponentials in their basis functions. We
concentrate here on a particular family that uses cosine basis func-
tions: The The Princen-Johnson-Bradley LOT (PJB-LOT) [5] basis
functions are given by:

ψi,j =

r
1

m
cos(

π(2i+ 1)(2j −m+ 1)

4m
), (6)

with i = 0, . . . ,m− 1, and j = 0, . . . , 2m− 1.
With this construction, we will have, similarly to the Discrete

Fourier Transform (DFT), fixed basis functions allowing no freedom
in design, which can be remedied by adding a window that multiplies
each filter resulting in a modulated FB over the frequency band. This
modulated FB can be modeled as WΨ, where the window W =
diag{wj}2m−1

j=0 is symmetric wj = w2m−1−j , j = 0, . . . 2m − 1

and has to satisfy w2
j + w2

m−1−j = 2, for j = 0, . . . ,m− 1.
The Discrete Wavelet Transform (DWT), a famous MR tool, is a

basis expansion and as such nonredundant (critically sampled). The
dyadic DWT is built by iterating a two-channel FB with sampling
factor n = m = 2 on the lowpass channel. One can also build trees
by, at each level, iterating on any subset of the branches of the FB.
This is knows as Wavelet Packets (WP). Both DWTs and WPs can
be block transform or not depending on the length of the filters.

In our previous work on fingerprint images [6], we used an adap-
tive wavelet packet (WP) approach in combination with correlation
filters to solve the recognition problem, with considerable success.
In the same work, we found the system was sensitive to shift vari-
ance introduced by wavelet bases, prompting us to turn to redundant
ones—frames.

Redundant Multiresolution Techniques: Frames. In Rn or Cn, a
frame is defined as a set Φ ofm frame vectors Φ = {ϕ0, . . . , ϕm−1}
where m is larger than n. As for bases, we associate to the frame a
rectangular matrix of size n ×m, also called Φ, that has the frame
vectors as its columns.

Similarly to bases, one can check that frames expand signals in
Rn with x = ΦX = ΦΦ̃∗x, where Φ̃ represents the dual frame.
If Φ = Φ̃, then we have what is called a tight frame (TF), and
the expansion becomes ΦΦ∗ = I . If all frame vectors have the
same norm, the frame is termed an equal-norm frame (ENF), while
if all the norms are equal to 1, this is a unit-norm frame (UNF).
By combining this with the requirement of tightness, we can have
equal-norm tight frames (ENTFs), as well as unit-norm tight frames
(UNTFs). An introductory account on frames is given in [7].

In an m-channel FB with sampling factor n, if m > n, we deal
with an oversampled FB implementing a frame. For a TF, ϕ̃i = ϕi.
The FB frame decomposition can be expressed as in (1) (substituting
Φ for Ψ), where x is an infinite sequence belonging to l2(Z), X is
an infinite sequence of transform coefficients (inner products), and
Φ is the frame expansion matrix. Assuming again that the nonzero
support of the filters (frame vectors) length is l = kn, we can write
the frame operator Φ as for bases, with matrices Φr, r = 0, . . . , k−
1, being rectangular of size n×m.

We can rephrase the frame decomposition in the z-domain as
well, where a FB implements a TF decomposition in l2(Z) if and
only if its polyphase matrix Φp(z) is paraunitary [8]. For frames,
the polyphase matrix Φp(z) is of size n ×m and can be written as
in (2) (substituting Φ for Ψ), where Φr are of size n×m

In an ever-continuing search for new frame families, an appeal-
ing option is the process of obtaining TFs from ONBs in larger di-
mensions, known as the Naimark Theorem or seeding [9].

Definition 1 We say that a frame Φ is obtained by seeding from a
basis Ψ by deleting a suitable set of columns of Ψ. We write Φ∗ =



Ψ[J] where J is the index set of the retained columns.

All tight frames can be obtained this way. One of the most famous
frame families, the Harmonic Tight Frames (HTFs) is obtained by
seeding the DFT. In FB parlance, seeding is done on the polyphase
matrix. Given Ψp(z), the m×m polyphase matrix associated with
a basis of size m, then Ψp(z) = Ψ0, and

Φ∗p(z) = Φ∗0 = Ψp[J] (7)

is the transpose of the frame polyphase matrix. When l = n, that is,
the length of the frame vectors equals the sampling factor, we obtain
a block transform, such as HTFs.

2. MULTIRESOLUTION CLASSIFICATION ALGORITHM

In the last section, we saw that the classification problem is ubiq-
uitous in biology, and that MR techniques might make classification
more accurate. The results obtained in [6] seem to indicate that adap-
tive MR techniques, frames in particular, might be needed. Having
motivated the use of adaptive MR in classification as well as the need
for redundant MR transforms, we now test that hypothesis. We first
describe the adaptive MR classification algorithm developed; details
and results are described in [10, 11, 12, 13].

Main Idea. As argued earlier, we would like to extract discrim-
inative features within space-frequency localized subspaces. These
are obtained by MR decomposition; that is, instead of adding MR
features as in [1], we compute features in the MR-decomposed sub-
spaces. Our initial idea was to use WPs since they adapt themselves

MR
Weighting
Algorithm

Generic Classification System

Feature
Extraction

Classification

Fig. 1. Adaptive MR classification system [10].

to the signal at hand, and just as in the fingerprint case, prove that
adaptivity significantly improves the recognition system. So, ide-
ally, we would characterize each class by the best wavelet packet
tree that represents it. However, this is possible only if a suitable
cost function can be found. Given that we have no natural cost func-
tion available, we decided to mimic a wavelet-packet like system by
adding a weighting procedure at the end of our system, allowing us
to weigh the decisions of each subband in a fully grown tree. This
way, a very low weight emulates a pruned branch in the tree. Thus,
we propose a system with an MR decomposition block in front (see
Fig. 1), followed by feature computation and classification in each
of the subspaces, which are then combined through a weighting pro-
cess, providing adaptivity.

Multiresolution Block. In our classification system, any MR
transform can be used. In particular, amongst the MRBs, we used
the DWT, DFT, Discrete Cosine Transform (DCT) and others, while
amongst the MRFs, we used the Double-Density DWT (DD-DWT),
Dual-Tree Complex Wavelet Transform (DT-CWT) and the Station-
ary Wavelet Transform (SWT), which is the most redundant trans-
form. Note that here, we use all the subbands of the decomposition
tree, not only the leaves. Thus, it might be abuse of language to call
a transform a DWT. For example, for 2 levels, we have a total of
S = 21 subbands (original image + 4 subbands at the first level + 16
subbands at the second level).

Feature Extraction and Classifier. We start with the feature
sets used in [1]: Haralick texture features (set T1, 13 features), mor-
phological (set M , 16 features) and Zernike moments (set Z, 49
features). Unlike in [1], we do not use wavelet/Gabor features be-
cause the MR advantage given by these will be achieved by our MR
decomposition. Therefore, our total number of features is 78, as op-
posed to 174 in [1].

Instead of combining all features into a single feature vector, we
allow each feature set its own feature vector per subband effectively
bringing the number of subbands to 3 · S = 63 when using two lev-
els of decomposition and all three feature sets. Note that although
we have decreased the number of features significantly, we have also
increased the number of classifiers, because we now have one clas-
sifier per subband. Evaluating this computational trade-off is a task
for future work.

New Texture Feature Set T3. As we will show later on, the Har-
alick texture features seem to possess the most discriminative power,
so we looked more closely into these. We changed the way that Har-
alick combines the initial four sets of features. We note that horizon-
tal and vertical co-occurrence matrices are fundamentally different
from the diagonal ones because adjacent neighboring pixels are spa-
tially closer than diagonal neighboring pixels. Therefore, instead of
averaging the features from all four sets, we create our first set of 13
features by averaging horizontal and vertical measures, and a second
set of 13 features by averaging diagonal measures. Thus, we end up
with a new feature set T3 of 26 features [10].

Neural Networks. We decided to use a two-layer NN classifier.
The first layer contains a node for each of the input features, each
node using the Tan-Sigmoid transfer function. The second layer con-
tains a node for each output and uses a linear transfer function (no
hidden layers are used). In our design, when training, each output
from the second layer corresponds to a class, and each training im-
age will have an output of 1 for the class of which it is a member and
a 0 for all other classes.

Weighting Procedure. Fig. 1 shows a graphical representation
of a generic MR classification system, including the process of com-
bining all of the subband decisions into one. We use weights for
each subband to adjust the importance that a particular subband has
on the overall decision made by the classification system. If the
weights are chosen such that the no-decomposition weight is equal
to 1, and all other weights are 0, we will achieve the same output
vector as we would have without using the adaptive MR system.
Therefore, we know that there exists a weight combination that will
do at least as well as the generic classifier (when no MR is involved)
in the training phase. Our goal is to decide how to find the weight
vector that achieves the highest overall classification accuracy on
a given dataset. We developed three versions of the weighting al-
gorithm: open-form (OF), per-dataset closed-form (PD-CF) )and
per class closed-form (PC-CF). The PD-CF algorithm assigns one
weight vector for the entire dataset, whereas the PC-CF assigns a
weight vector for each class in the dataset. The latter goes back to
our original idea of having a wavelet packet tree characterizing each
class, only in this case, we do not necessarily obtain a tree.

The NN block outputs a series of decision vectors for each sub-
band of each training image. Each decision vector d(r)

s contains C
numbers (whereC denotes number of classes) that correspond to the
“local” decisions made by the subband s for a specific image r.

The classifier is evaluated using nested cross validations (five-
fold cross validation in the NN block and ten-fold during the weight-
ing process). One problem with this technique is that the initial or-
dering of the images determines which images are grouped together
for training and testing in each fold of the cross validation. We solve



this problem by running multiple trials, each with a random initial
ordering of the images.

Open-Form Algorithm (OF). If using the OF algorithm, we ini-
tialize all the weights, and a global decision vector is computed
through an iterative procedure using a weighted sum of the local
decisions [10].

Per-Dataset Closed-Form Algorithm (PD-CF). The CF solution
does not use an iterative algorithm; rather, it finds the weight vector
by solving a minimization problem in the least-square sense.

Assume we have R training images. For each training image
r = 1, . . . , R, the vector d(r)

s = (d
(r)
s,c)

T for classes c = 1, . . . , C,
is the C × 1 decision vector at the output of each subband classifier
s, where d(r)

s,c indicates the confidence of subband s that the training
image r belongs to class c. For each training image r, the weighting
block takes as input the subband (local) decision vectors d(r)

s and
combines them into a single output decision vector as follows:

SX
s=1

wsd
(r)
s . (8)

We can rewrite the above by, for each training image r, forming a
matrix D(r) of size C × S, where each element D(r)

c,s is the value at
position c of the decision vector d(r)

s of subband classifier s. We can
now compute D(r)w, where w = (w1, . . . , wS)T is of size S × 1.
Thus, we want to find a weight vector w common to all training
images r = 1, . . . , R.

A possible solution for w is the one that minimizes the error in
the least-square sense:

wwin = arg min
w

RX
r=1

‖d(r) −D(r)w‖2, (9)

where d(r) is the desired target decision vector of size C × 1, with 1
in the position of the true class, and 0 elsewhere. We need to rewrite
the above in a direct error-minimization form. We thus define a target
output vector d of size CR × 1, as a vector which concatenates all
the target decision vectors d(r) as follows:

d =

0BB@d(1)
1 , d

(1)
2 , . . . , d

(1)
C| {z }

training image 1

, . . . , d
(R)
1 , . . . , d

(R)
C| {z }

training image R

1CCA
T

,

and a CR × S matrix D consisting of the all the decision matrices
D(r) of all the training data stacked on top of each other. That is,
(D)cr,s = D

(r)
c,s for c = 1, . . . , C, r = 1, . . . , R and s = 1, . . . , S.

We can now rewrite (9) as:

wwin = arg min
w
‖d−Dw‖, (10)

which possesses a CF solution and can be computed efficiently.
Then, for a testing image t, we compute its decision vector δ =

(δ1, δ2, . . . , δC) as follows:

δ =
SX
s=1

wwin,sd
(t)
s ,

where d(t)
s are the local decision vectors for t. The classification

decision is then made as cwin = arg maxc δc, that is, the winning
class corresponds to the index of the highest coefficient in δ.

Per-Class Closed-Form Algorithm (PC-CF). To make the sys-
tem truly adaptive, it is reasonable to assume that different classes
require different weight vectors. Thus, we propose a system where,
instead of a single weight vector w for the whole training dataset,
each class c has its own weight vector wc [13]. As opposed to (8),
the entries in the output decision vector are now computed as:

D(r)wc, c = 1, . . . , C. (11)

Now, the weights can be grouped together to form an S × C ma-
trixW so that each column represents a class-specific weight vector.
Equation (11) can be rewritten as diag

“
D(r)W

”
. Recall that D(r)

is of size C × S and thus d is of size C × C (compare this to (8)).
To learn these weights, we again use the training set and look for a
solution that minimizes the squared error:

Wwin = arg min
W

RX
r=1

‖d(r) − diag
“
D(r)W (r)

”
‖2. (12)

To obtain an expression analogous to (10) and be able to apply stan-
dard methods, we have to define v as the vector concatenating all
class-specific weight vectors:

v = (W1,1,W1,2 . . .W1,C , . . . ,WS,1, . . . ,WS,C)> . (13)

We now define D as the CR × CS block matrix (D)rc,sc = d
(r)
c ,

where d(r)
c is the vector (D

(r)
c,1 , D

(r)
c,2 , . . . , D

(r)
c,S) and r = 1, . . . , R.

We can now write a minimization problem equivalent to the one in
(12), and which we can solve using standard techniques:

vwin = arg min
v
‖d−Dv‖. (14)

Decomposition Tree Pruning. Our long-term goal in develop-
ing an adaptive MR classification system was to find a WP-like de-
composition, where each class would induce a different MR subtree.
While the authors have done just that in [6], we needed a cost func-
tion which is specific to the dataset used. Our goal is thus to have
a more generic system and to achieve a WP-like system but without
the need for a cost function. We come close to this goal here, where
we identify the set of discriminative subbands for each class (not
necessarily a subtree). Once the weight vectors are computed (using
any version of the CF weighting algorithm), we use the values of the
weights to regulate the MR decomposition. In particular, subbands
with low weight can be pruned as long as the remaining subbands are
still sufficient to classify the image correctly. This way, the pruned
subbands and their associated features need not be computed, result-
ing in computational savings (although not increased accuracy). We
propose to keep the high-weight subbands, so that at least a certain
ratio, defined as the fraction of the sum of kept weights over the sum
of all the weights, of subbands are kept.

3. CLASSIFICATION PROBLEMS IN BIOIMAGING

While we have developed the current algorithm by learning from
each application as we went along, we decided to first present all
algorithmic accomplishments and then discuss results in various ap-
plication domains. We do that now and use different instantiations
of the MR classification algorithm depending on the dataset at hand.

Determination of Protein Subcellular Location Patterns. To eval-
uate our MR approach, we use the 2D HeLa set depicting PSL [1].
The proteins in the dataset were labeled using immunofluorescence,
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Fig. 2. Sample H&E-stained images from three of the six tissue
class: (a) bone, (b) mesenchyme (embryonic connective tissue) and
(c) myenteric plexus.

and thus, we know the ground truth, that is, which protein was la-
beled in each cell and subsequently imaged. The details of our re-
sults in this area can be found in [10]. The challenge in this dataset is
that images from the same class may look different while those from
different classes may look very similar. The dataset is publicly avail-
able (http://murphylab.web.cmu.edu) and contains 50 single-cell im-
ages of size 512×512, in each of C = 10 classes. The 10 classes of
subcellular location patterns were obtained by labeling an endoplas-
mic reticulum protein, two Golgi proteins (giantin and gpp130), a
lysosomal protein, a mitochondrial protein, a nucleolar protein, two
cytoskeletal proteins (actin and tubulin), an endosomal protein, and
DNA. The best previously described overall classification accuracy
on this dataset is 91.5% [1]. We achieve the best classification accu-
racy of 95.40% using MRFs [10].

Detection of Developmental Stages in Drosophila Embryos. The
details of our results in this area can be found in [11]. The dataset
consists of 60 time-lapse, fluorescence microscopy z-stacks (3D vol-
umes in time) of developmental stages of Drosophila embryos. The
stacks are acquired roughly every 10 minutes. The number of slices
per stack varies; it is 5 slices for normal sets and 7 slices for de-
layed/abnormal. The number of time points is typically 15 for nor-
mal/abnormal and around 30 for delayed. All the slices have been
tagged by a human expert so we have reliable ground truth. The
highest classification accuracy achieved by our system is 93.35% [11].

Classification of Histological Stem-Cell Teratomas. We start
with H&E images (at 10x magnification, see Fig.2) that depict sam-
ple images from multiple tissues (classes) contained in the teratomas.
We use six classes for this experiment: mesenchyme (embryonic
connective tissue), skin, myenteric plexus, bone, necrotic (dying or
dead tissue), and striated muscle. The best classification accuracy of
87.72% is achieved by MRFs [12, 14].

Results and Discussion. By observing the results for all appli-
cations, we drew the following conclusions:
• In all cases, MR significantly outperforms no MR, thus demon-

strating that classifying in MR subspaces indeed improves classi-
fication accuracy.

• The redundant transforms (MR frames) do better than nonredun-
dant ones (MR bases). In all cases, the SWT achieves the best
classification accuracy.

• While a slightly higher classification accuracy is obtained by us-
ing all three feature sets as well as both T and M , the larger
number of features and additional complexity of using M and Z
features do not justify the slight improvement in accuracy This
“flat” trend is good news as we can use a significantly reduced
feature set and still obtain a fairly high classification accuracy.

• The closed-form version of the weighting process gives slightly
better results than the open-form.

• As expected, when used, while pruning does not improve the ac-
curacy of the system, it does make the system more efficient.

• In general, the class-adaptive method seems to do better than the
dataset-adaptive one.

4. DESIGN OF NEW FRAME FAMILIES

Examining the results we obtained with our MR classification sys-
tem, we found the trends to be similar: MR significantly outperforms
NMR and the best results are invariably obtained by frames. Taking
into consideration the computational cost, it is important to have a
system that is efficient in addition to being accurate. The SWT is
the most accurate here but also the most redundant. Therefore, to
allow for a trade-off between accuracy and cost, we would like to
create new redundant transforms that are less redundant but still af-
ford very good accuracies when it comes to classification.

The question now is: How do we go about constructing new
families and what do we look for? Most of the known frame families
(though not all) are block ones (finite dimensional) leading to block-
ing effects. We want to have efficient implementations as well as be
able to flexibly decide on the requisite amount of redundancy. These
requirements made us think of LOTs, which, on top of being compu-
tationally efficient, have the advantage of processing blocks of over-
lapping data and hence eliminate blocking artifacts. So the question
is: Could we construct a similar transform with frames? Our idea
is to seed LOTs to obtain a new class of frames we name Lapped
Tight Frame Transforms (LTFTs). That is, we want to find filter-
bank frames seeded from the LOTs in the hope they will inherit all
the good properties LOTs possess. Obtained by seeding, the LTFTs
could thus be seen both as the frame counterpart of LOT bases as
well as the infinite-dimensional, filter-bank counterpart of the most
famous frame family—Harmonic Tight Frames (HTFs, seeded from
the DFT). Details can be found in [15].

Lapped Tight Frame Transforms.. We propose a host of new
frame families we denote as Lapped Tight Frame Transforms (LTFTs)
(details about this part of our work are given in [15]):

Definition 2 A lapped tight frame is a frame transform (LTFT) seeded
from an LOT.

We start with Ψp(z) being the m ×m polyphase matrix associated
with the LOT of size m. Then (3) holds and we seed the LOT to get:

Φ∗p(z) = Φ∗0 + z−1Φ∗1 = Ψp[J]. (15)

The matrices Φ∗r are now rectangular of size n×m. For r = 0, 1, we
have (Φr)i,j = ψ∗i,mr+j ,with i = 0, . . . , n−1 and j = 0, . . . ,m−
1. By Naimark Theorem, we know that this family is a TF, which
implies that Φp(z)Φ

∗
p(z) = cI . Note that as opposed to the LOT

case, the matrix products do not commute anymore.
Princen-Johnson-Bradley LTFTs. All of the above is general

and can be applied to any type of LOT. Let us now see through an
example what happens when the obtained LTFT has been seeded by
the PJB-LOT in (6). We will call these Princen-Johnson-Bradley
LTFTs (PJB-LTFTs). From the Naimark theorem, we know that any
general seeding will result in a TF. However, if we want more than
tightness (equal-norm, for instance), in general, there is no guarantee
that we will obtain such a property. One needs to carefully choose
the set of retained columns to preserve those properties. Indeed,
seeding the DFT leads to HTFs only if the set of eliminated columns
is contiguous. Choosing non contiguous columns leads to tight but
not equal-norm frames. In the PJB case, it turns out that we can
have a general seeding and any subset of columns (not necessarily
contiguous) can be retained to obtain an ENTF. We summarize this
result in the following (the proof is technical and not included here):



Lemma 1 The PJB-LTFTs obtained by any seeding of the PJB-LOTs
are ENTFs. That is, Φ∗p(z) = Ψp[J] for any subset J of columns is
an ENTF, with norm

p
n/m.

For PJB-LOTs we can compute diag(Φ∗0Φ0 + Φ∗1Φ1)i = ‖ϕi‖2.
From Lemma 1, we know that without loss of generality we can
assume that J = 0, . . . , n− 1. Note that

‖ϕi‖2 =

n−1X
j=0

ψ∗
2
j,i + ψ∗

2
j,i+m.

In fact, we can find the equal norm as ‖ϕi‖2 = n/m, for i =
0, · · · ,m− 1. That is, the LTFT obtained is equal-norm.

Window Design. If we start with the PJB-LOT with a window,
and seed WΨ, the TF obtained would loose its equal-norm property
since ‖ϕi‖2 = (n/m)w2

i . To preserve equal norm, we have to mod-
ulate directly the LTFT after seeding the LOT. In the PJB-LOTs, the
window chosen was symmetric, that is, wi = w2m−1−i. We lift this
restriction initially and assume a general window represented by a
matrixD, a 2n×2n diagonal matrix. We can writeD = (D0 D1)
and Dr is a n× n diagonal matrix. Unlike for the LOTs, the matrix
product Φ0Φ∗0 has no particular structure, in fact,

(Φ0Φ∗0)i,j = ai,j =
1

2m

sin(π(i+j+1)
2

)

sin(π(i+j+1)
2m

)
+

1

2m

sin(π(i−j)
2

)

sin(π(i−j)
2m

)
.

Substituting this into (4), we obtain the following:

aj,jd
2
j + (1− aj,j)d2

n+j = 1, (16)

djds = dn+jdn+s, s = 0, · · · , n− 1, s 6= j. (17)

The set of solutions to (16)-(17) is infinite. Of course, the constant
window with dj = 1, for j = 0, . . . , 2n− 1 is also a solution to the
above. If the window is symmetric, then (4) becomes:

D0Φ0Φ∗0D0 + JD0JΦ1Φ∗1JD0J = I (18)
with Φ0Φ∗0 + Φ1Φ∗1 = I. (19)

Using (18), we derive the following conditions on D:

aj,jd
2
j + (1− aj,j)d2

n−j−1 = 1, (20)

djds = dn−j−1dn−s−1, s = 0, · · · , n− 1, s 6= j. (21)

Fixing d0 = −1, we have dn−1 = ±1 and ds = −dn−1dn−s−1 for
s = 1, . . . , n − 2. Note that the same conditions hold for an anti-
symmetric window, that is, the half-windows can only be symmetric
or antisymmetric. For a symmetric window, a possible solution is

dj =


cos( jπ

n−1
+ π) if n is even,

cos( 2jπ
n−1

+ π) if n is odd,
j = 0, . . . , n− 1.

One of our first tasks in future work will be to use these symmetric
windows in the PJB-LTFTs and study their effect. We also need to
investigate window design techniques to obtain optimized windows
that will modulate the PJB-LTFT and hence lead to better localiza-
tion in the frequency band of the frame vectors.
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