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ABSTRACT

We propose an algorithm for automated segmentation of white mat-
ter in brain MRI images, which can be used to create connected rep-
resentations of the gray matter in the cerebral cortex of the brain.
These representations then provide meaningful visualizations of brain
activity data obtained from fMRI studies. Our algorithm to seg-
ment the white matter from the rest of the image is based on an
active-contour scheme—STACS, and thus inherits all the advantages
active-contour schemes possess. The segmentation, performed in
three different planes of image capture, is driven by the statistics
of the image. We combine the segmentation results from the three
planes by a majority voting procedure to classify each voxel in the
image as white matter or not. We improve the runtime of the algo-
rithm by rewriting the force computation as a multiscale transforma-
tion. Initial results of labeling the white matter with an accuracy of
about 89% show great promise of the proposed algorithm.

Index Terms— brain fMRI, segmentation, active contour.

1. INTRODUCTION

Magnetic Resonance Imaging (MRI) has emerged as a powerful tech-
nique to noninvasively visualize biological structures. Furthermore,
with the development of functional MRI (fMRI) techniques, it is pos-
sible to directly visualize neuronal activity in the brain by using the
amount of oxygen in the surrounding blood flow as a proxy for neu-
ronal activity.

Anatomical MRI images of the whole human brain are collected
routinely at a resolution of about 1mm3 in functional and anatomical
imaging studies. Segmentation of these MRI brain images into gray
and white matter, or, tissue types, is crucial for multiple purposes,
including: (a) measuring the location and size of visual field maps in
human occipital cortex by overlaying fMRI signals on surface rep-
resentations of the gray matter [1]; (b) studying the organization of
retinotopic, motion and object sensitive cortex through 3D visual-
ization of an inflated surface along the gray-white boundary of the
brain [2], (c) mapping gray matter growth and loss patterns in normal
development and in neurological conditions by computing deforma-
tion fields on the entire gray matter mask or on specific structures
(for example, lateral ventricles, corpus callosum) defined by tissue
type (respectively: CSF, white matter) [3], and many others. Thus,
high quality tissue segmentation is a powerful tool that enables mul-
tiple lines of investigation in neuroscience [4].

While it is possible for human experts to label each voxel in
a 3D MRI image of the brain by hand, the time and effort can be
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prohibitive. Furthermore, automated techniques guarantee repro-
ducible results. Finally, state-of-the-art generic automated segmen-
tation techniques that do not take into account the specific nature of
brain MRI images and the topological features of the cerebral cor-
tex can not yield sufficient accuracy to match manual segmentation
results. This motivates the need to consider algorithms that can in-
corporate domain knowledge of the task at hand (prior knowledge of
the topology of the brain in this case).

Current segmentation algorithms used on 3D brain MRI im-
ages to extract the three classes of cerebral tissue—the gray matter,
white matter and CSF—can be classified into two major categories:
Voxel-based classification and deformable or active-contour-based
segmentation. Voxel-based classification methods use image statis-
tics and histogram-based thresholding [5, 6]. While partially suc-
cessful, these methods are affected by intensity variations, the need
to maintain distinct templates for various brain pathologies when
coregistration with a template is incorporated, and finally, they do
not necessarily incorporate the connectedness of the brain tissue.
Active-contour-based methods, on the other hand, have considerable
advantages due to their topological flexibility [7, 8].

In this paper, we propose an algorithm based on the stochastic
active contour algorithm (STACS), which combines the advantages
of active contour schemes with the incorporation of model statistics
from the image [9, 10]. The algorithm we propose harnesses the
three-dimensional information that is available in the brain MRI im-
age to improve the robustness and quality of the 2D segmentation
produced by the suitably adapted STACS.
Organization of the paper. Section 2 gives the necessary back-
ground information on the structure of the brain in the context of
the segmentation problem and the algorithm used to obtain an ini-
tial segmentation, a short description of a publicly available algo-
rithm mrGray, as well as a short introduction into STACS. This is
followed by Section 3 that describes our proposed algorithm—the
voting-based STACS and an improvement in its runtime using a mul-
tiscale active contour (MSAC) transformation. In Section 5, we dis-
cuss our experimental results.

2. BACKGROUND

To generate meaningful visualizations of the data obtained from fMRI
studies, one must first obtain accurate topological maps of the area
of the brain in which the neuronal activity is being measured—the
gray matter in the cerebral cortex. One way to create these topo-
logical maps is to segment 3D MRI images of the brain into three
regions—gray matter, white matter and cerebral spinal fluid (CSF).
Thus, it is necessary to understand the structure of the brain and in
particular, the topology of the cerebral cortex (gray matter) and the
surrounding white matter and cerebral spinal fluid in the context of
segmentation.



Structure of the Brain. Gray matter forms the outer layer of the
brain (called the cortex), completely encasing the inner white mat-
ter. The gray matter is highly folded to allow a higher surface area to
volume ratio, and its topology resembles “two crumpled sheets hav-
ing no holes or self intersections” [11]. Further, a large portion of the
gray matter resides in the deep fissures, or, sulci, that surround the
ridges on the surface of the brain. On the other hand, white matter
forms the bulk of the deep parts of the brain, and is a large monolithic
structure with no holes (see Fig. 1). Finally, the cerebral spinal fluid
(CSF) occupies the region between the cerebral cortex and the skull
and appears in brain MRI images as a black region that surrounds
the gray matter.

Fig. 1. Cross section of the brain showing the gray matter and white
matter [12].

Based on the specific characteristics of brain MRI images and on
the topology of the brain, there are two problems that complicate the
brain image segmentation task [11]. The first is that there is a sig-
nificant overlap between the intensities of the gray and white mat-
ter voxels, thereby making it impossible to segment images based
on voxel intensity alone. Next, the presence of narrow sulci makes
it hard to determine the connectivity of gray-matter regions, since
gray-matter voxels on either side of a sulcus may appear to be con-
nected if the sampling grid is sparse.
mrGray. A technique for brain MR image segmentation that uses
prior knowledge of the structure of the human brain to aid the seg-
mentation process was proposed in [11] and made publicly avail-
able as a MATLAB toolbox called mrGray [13]. Due to the diffi-
culties in segmenting the gray matter directly, the authors chose to
segment only the white matter and CSF regions in the image. Once
the white matter has been segmented, the proposed technique re-
constructs the gray matter surface using a method of “constrained
growing-out from the white matter boundary”. White matter seg-
mentation is performed by building statistical models of pixel inten-
sities for the white matter and nonwhite matter regions of the brain
followed by a step that assigns, to each pixel intensity value, a label
based on a novel maximum aposteriori probability (MAP) estimation
algorithm. However, the authors observe that the segmented white
matter regions obtained from this step occasionally have holes and
handles within them. Since actual white matter regions cannot pos-
sess such holes or handles, all voxels that lie in these holes or han-
dles are relabelled as white matter. Finally, layers of gray matter are
grown iteratively, starting from the edge of the white matter region.
The number of layers of gray matter that need to be grown is taken
as an input from the user. Care is taken to ensure the connectivity of
gray matter regions within and across layers. In the algorithm, the
quality of the white matter segmentation directly affects the quality
of the final 3D gray matter topology. In this paper, we only address
the issue of the white matter segmentation using an active-contour
based approach, as opposed to the MAP-based approach used in
[11]. The improved segmentation can then be used as an input to

the hole-filling and gray matter growing steps of mrGray.
Active contours. Active contours is a flexible and adaptive class of
algorithms that evolved from the need to find a method that looks
for any shape in the image that is smooth and forms a closed con-
tour around it. The Stochastic Active Contour Scheme(STACS) was
introduced in [9] to take into account the specific nature of the seg-
mentation problem in cardiac MR images. STACS adjusts the shape
of an initial curve (or contour) based on internal and external forces
until it reaches equilibrium. The original STACS algorithm uses four
forces: a region-based force, an edge-based force, a shape prior and
the contour smoothness. These forces are suggestive as they are ap-
plication specific and may be suitably included, if required. STACS
uses a level set embedding in which the contour is the zero level of
a level-set function φ(x, y, t).

3. PROPOSED ACTIVE CONTOUR SEGMENTATION

As a first step, we adapted STACS to segment the white matter in
brain MR images. Subsequently, we improved the runtime of the
algorithm by rewriting the level-set evolution (force computation) as
a MSAC transformation.

3.1. Voting-based STACS

The steps of the proposed voting-based algorithm for the white mat-
ter segmentation of white matter are described below.
Initial Contours. We threshold the input image f , using an empiri-
cally determined threshold value and then apply a series of morpho-
logical operations to reduce the number of initial contours obtained
and retain a meaningful result. This circumvents the need for man-
ual intervention in initializing the contour (as required for STACS).
The initial contours evolve based on the forces applied on them.
Choice of Forces. Since the model statistics of the MRI image are
fairly strong, with the white matter being fairly distinct from the
nonwhite matter, we chose a region-based force to drive the seg-
mentation. To compute the actual force, we first represent both the
white matter and the nonwhite matter by their respective statistical
models. We compute the statistical models by selecting a few repre-
sentative slices from the volume as training data and computing the
discriminating statistics for the foreground and background regions.
We exclude the images used as training data later in the testing phase
to quantify the algorithm’s performance. The two statistical models
are based on the mean pixel intensities of the white matter (fore-
ground) and nonwhite matter (background) regions. The foreground
and background regions exhibit significant intensity variations, with
the regions near the edges exhibiting lower or higher intensities than
the means of their respective regions. Therefore, while deriving the
model statistics from the training images, we compute the model
mean intensities using only small windows around the foreground-
background edges (specifically, the edge between the white and non-
white matter). The evolution of the level-set function for a point
(x, y) on the contour at a time step t can now be described as

∂φ(x, y, t)

∂t
= λrFr(x, y)|∇φ(x, y, t)|,

where the region-based force Fr(x, y) is computed only on points
along the contour and subsequently extended to the whole domain.
λr is a weighting function that modulates the strength of the region-
based force as the contour evolves. This ensures that the contour
changes shape rapidly in the beginning of its evolution and gradu-
ally slows down as it approaches its desired location. The value of
λr is determined in every iteration using the annealing schedule Sr



proposed in [9]. The shape and smoothness-based forces are inappli-
cable since the white matter region possesses neither smooth edges
nor a well-defined shape that can be used as a template. Finally,
while the edge-based force seemed like a good candidate for inclu-
sion, it actually degraded the quality of our final segmentation due
to the existence of a number of spurious edges (such as the edges
between the gray matter and CSF regions) in the edge map of the
image. Therefore we omitted the edge-based force from the algo-
rithm.
Voting. The original STACS implementation and the discussion un-
til now implicitly assumed segmentation on a 2D data set, while the
brain MR image data set is actually three-dimensional. The addi-
tional information available along the third dimension can be har-
nessed to improve the robustness of the algorithm and the results of
the 2D segmentation. A given 3D image can be sliced into a col-
lection of parallel 2D images along three orthogonal axes or planes
(commonly referred to as axial, coronal and sagittal planes by biol-
ogists). While performing segmentation on a collection of 2D slices
from any one plane is sufficient to label each voxel as either white
matter or nonwhite matter, we can build some redundancy into the
system by segmenting all slices along each one of the three planes.
Since there are three orthogonal planes that pass through each voxel
in a 3D image, the segmentation result of each of these three planes
would independently label a voxel as either white matter or non-
white matter. The “vote” from each plane could then be combined
using a simple majority voting procedure to yield the final label for
that voxel. The pseudo code for the algorithm is presented in Algo-
rithm 1.

Algorithm 1: Voting-based STACS
Input: f , an MR image of the brain, LastSlice, number of

slices in each sectioning plane, p, dt, time step, it,
number of iterations, Sr , scheme of evolution for the
coefficient of the region-based force Fr .

Output: Class, segmentation result that assigns to each
voxel a label White or Nonwhite.

Class=VotingBasedSTACS(f , LastSlice, dt, it, Sr)1
for p = 1 to 3 do2

for z = 1 to LastSlice(p) do3
Threshold f to obtain a binary image Ib in the4
specified sectioning plane
Initialize level set function φ(0) based on the signed5
Euclidean distance transform computed on Ib

Compute all the values of λr , weight applied to Fr ,6
based on Sr

for t = 1 to it do7
for all points on the contour do8

compute Fr , the region based force9

Extend Fr values to the whole domain, get Fφ10
φp(x, y, z, t + 1) =11
φp(x, y, z, t) + λrFφ(x, y, z)

κ(x, y, z) =
∑3

p=1 sgn(φp(x, y, z))12

for all voxels do13
if κ(x, y, z) ≥ 114

Class(x, y, z) = White15
else16

Class(x, y, z) = Nonwhite17

3.2. MSAC Transformation

A profile of the implementation revealed that the bottleneck in the
implementation of Algorithm 1 was the step that updated the level-
set function by extending the forces computed only at points on the
contour to the entire domain. It has been shown that using the level-
set function to merely track the foreground and background regions
is more efficient than strictly using a signed distance interpretation
of the function and evolving it in small steps [14, 15]. Thus, inspired
by the these results, we rewrote the algorithm so as to compute the
forces everywhere and thus obviate the extension step [16]. In par-
ticular, the region-based force Fr is computed as

Fr =

2∑
r=1

(Mr − M̂r); Mr =

∫
Rd fr(x)g(a−1(x− y)) dy∫

Rd Cr(x)g(a−1(x− y)) dy + ε
,

where d is the dimension of image f , g is a lowpass filter with scale
parameter a, Mr is the mean intensity of region r, the region inside
(or outside) the current contour, M̂r is the model mean intensity, fr

is the portion of the image contained in r, Cr is the binary mask of r
and ε > 0 is a small correction factor to avoid dividing by zero.

As Fr is cast as a convolution, we can use a FFT to expedite
the computation. The level-set function at iteration i is evolved as
φ(i+1) = φ(i) + λ

(i)
r F

(i)
r . As a transformation is used to evolve an

active contour with the potential of being applied at multiple scales,
we call this MSAC transformation. Applying Fr at a fixed scale a,
we were able to improve the runtime by an order of magnitude, with-
out any degradation in the segmentation quality. The voting-based
segmentation using MSAC transformation completed in roughly 1hr.

4. EXPERIMENTAL RESULTS

Data Sets. The dataset—MRI of a child brain—was made available
to us by the VISTA laboratory at Stanford University [17]. It con-
sists of 400 images—100 in the coronal plane, 140 in the sagittal and
160 in the axial sectioning planes—each of size 217 × 180 pixels.
The VISTA lab also provided us with human expert-based segmen-
tation for the left hemisphere of the child brain that we then used as
“ground truth” to evaluate our algorithm.
Qualitative Analysis. The images shown in Fig. 2 overlay the white
matter regions using our technique (red channel) over the manual
segmentation (green channel) for selected slices in the coronal, axial
and sagittal planes. Yellow pixels indicate regions where the pro-
posed technique and the human expert agree on a white matter la-
beling, while red and green pixels represent over-segmentation and
under-segmentation respectively. One of the major advantages of
voting-based STACS over segmentation using only one axis is the
voting scheme is able to pick up white-matter regions at the extremi-
ties of the MR image while these are often missed in single-axis seg-
mentation. Fig. 3 shows the segmentation results using (a) coronal
segmentation and (b) voting-based segmentation for one of the pe-
ripheral axial slices. Clearly, coronal segmentation entirely misses
the entire white matter region in this slice while voting-based seg-
mentation is able to identify it quite accurately.
Quantitative Analysis. While the qualitative results demonstrate
the effectiveness of the proposed technique, we define the following
metrics to quantify how well it agrees with the “ground truth”:

M1: Percentage of white matter voxels in the “ground truth”
labeled correctly as white matter by the voting-based STACS.

M2: Percentage of nonwhite matter voxels in the “ground truth”
labeled incorrectly as white matter by the voting-based STACS.



Fig. 2. Qualitative results for selected slices in the axial, coronal and
sagittal planes. Yellow indicates the pixels labeled correctly as white
matter. Red corresponds to the false positives and green to the false
negatives.

Fig. 3. A peripheral slice in the coronal plane segmented using (a)
coronal segmentation only and (b) voting-based segmentation.

M3: Area Similarity is the ratio of the area of the intersection
of STACS segmentation and the ground truth and the area of their
union. Typically, an AS ≥ 70% is considered excellent agreement
with the ground truth [10].

Table 1 shows the metrics obtained for four possible implemen-
tations: voting-based segmentation (Voting), segmentation based on
axial slices only (Axial), segmentation based on coronal slices only
(Coronal) and segmentation based on sagittal slices only (Sagittal).
From the table we note that the voting-based technique achieves the
best performance on each metric.

M1[%] M2[%] M3[%]

Axial 86.26 2.32 82.83
Coronal 89.02 2.55 80.76
Sagittal 86.21 1.79 81.92
Voting 89.13 1.63 85.07

Table 1. Quantitative measures of the segmentation performance of
voting-based STACS.

5. CONCLUSIONS

We show how a STACS-based segmentation technique with a major-
ity voting procedure can be used to segment white matter in 3D brain
MR images. The runtime of the algorithm can be improved using the
MSAC transformation. The initial results from an implementation of
the proposed technique are encouraging and make a strong case for
further research. Opportunities for future work include: incorporat-
ing other forces (such as one that uses multiscale edge information)
in the MSAC transform framework to further enhance segmentation,

devising a better performing voting strategy and plugging the seg-
mentation results back into mrGray to obtain flattened 2D gray mat-
ter representations to help address the physiological questions un-
derlying the problem.
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