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ABSTRACT

We propose a novel method for axonal bouton modeling and auto-
mated detection in populations of labeled neurons, as well as bouton
distribution analysis for the study of neural circuit organization and
plasticity. Since axonal boutons are the presynaptic specializations
of neural synapses, their locations can be used to determine the orga-
nization of neural circuitry, and in time-lapse studies, neural circuit
dynamics. We propose simple geometric models for axonal boutons
that account for variations in size, position, rotation and curvature of
the axon in the vicinity of the bouton. We then use the normalized
cross-correlation between the model and image data as a test statis-
tic for bouton detection and position estimation. Thus, the problem
is cast as a statistical detection problem where we can tune the al-
gorithm parameters to maximize the probability of detection for a
given probability of false alarm. For example, we can detect 81%
of boutons with 9% false alarm from noisy, out of focus, images.
We also present a novel method to characterize the orientation and
elongation of a distribution of labeled boutons and we demonstrate
its performance by applying it to a labeled data set.

Index Terms— axonal bouton modeling, bouton distribution
analysis, neural circuit organization and plasticity, light microscopy,
confocal microscopy, two-photon microscopy, neuron, neuroanatomy

1. INTRODUCTION

An important part of modern neuroscience research aims to elucidate
the mechanisms underlying brain development and neural plasticity,
by collecting image data spanning several resolutions and modali-
ties, and extracting relevant functional and structural information.
One vital component for the understanding the developmental dy-
namics of the visual cortex is a bouton. Boutons are swellings on ax-
ons that contain the cellular machinery for neurotransmitter release,
including neurotransmitter filled vesicles. Identification of boutons
at the resolution of the light microscope has been shown to be re-
liable and indicative of one or more synapses through confirmation
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by electron microscopy [1, 2]. Thus, in single time point experi-
ments, boutons indicate where a neuron sends its information. In
time-lapse, live tissue work, one can use bouton stability and change
as a measure of synaptic change in the brain [3, 4].

In general, bouton locations and distribution of their locations
are both used as experimental evidence (dependent variables) in a
variety of studies in systems neuroscience. In the field of visual
neuroscience, problems of interest include the exploration of devel-
opmental dynamics before and during the critical period in the vi-
sual cortex. For example, bouton locations and distributions in the
superficial layers of visual cortex provide the neuroscientist with a
key to the circuitry of visual cortex associated with orientation se-
lectivity [5, 6]. The Crowley Lab is interested in combining the ef-
ficiency of present day imaging devices, axonal tracing, and bouton
distribution analysis techniques, to explore how stimulus features
are represented in the activity of identified neural circuitry. Unfortu-
nately, bouton detection is currently performed manually; given the
vast amount of images that are collected in a very short time, and
the fact that the human brain has about 1015 synapses, this leads to
an inefficient and error-prone way to extract information out of the
images.

Currently, as the automated bouton detection is not available, we
set this as the first goal of our work. To achieve it, we develop sim-
ple models for a bouton along an axon that account for variations
in size, position, rotation, and curvature of the axon in the vicinity
of the bouton. We use these models as templates and compute the
normalized cross-correlation [7] between an image and these tem-
plates, along with thresholding, to detect the bouton locations in the
image. The detection performance can be traded off with the num-
ber of false alarms by choosing the detection threshold appropriately
with the aid of a receiver operating characteristic (ROC) curve.

Once the relevant neurological information is extracted (bouton
locations in this case), biologists need various quantitative measures
to characterize the developmental dynamics of the visual cortex. As
mentioned previously, the directionality of the bouton distribution
has been shown to be indicative of various stages in the development
of the visual cortex. While a possible measure is the orientation
selectivity index (OSI) [8], it does not identify the actual direction
nor does it detect a lack of symmetry in the distribution. We propose
a new measure, the anisotropy selectivity index (ASI), which is more
sensitive than the OSI and addresses the above problems.



2. BOUTON MODELING, DETECTION AND ESTIMATION

Bouton Modeling. A simple model for a bouton can be viewed
as a pearl on a string: a circular structure (bouton) placed on an
elongated tubular structure (axon), with possible curvature. In Fig. 1,
top, we show a few examples of boutons extracted from a negative
of a brightfield image with a magnification of 63x together with the
corresponding geometric models (bottom). Among the models, we
have a bouton on a straight axon and a bouton on a curved axon.
One can also model a terminal bouton, not shown here. The bouton
size and shape as well as the axon curvature and width can be varied.
Finally, the model can also be rotated by an arbitrary angle.

Fig. 1. Illustration of bouton models: In the top row, we show a
few examples of boutons extracted from a negative of a brightfield
image. These boutons can vary in size and rotation, and the axon
may curve in the vicinity of the bouton. In the bottom row we show
corresponding bouton models mimicking the actual boutons shown
above them. Observe that we have a model of a bouton on a straight
axon and a bouton on a curved axon, with various bouton sizes. The
first model is at 10 degrees and the last model at 30 degrees, while
the other models are either at 0 or 180 degrees.

Bouton Detection and Estimation. To estimate and detect bou-
tons, we first incorporate a given model into a 2D template of size
m× n pixels. The resolution of the image is used to translate actual
measurements in µm of axon width and bouton radius into pixels.
Then, to find the bouton locations in an image, we use the normal-
ized cross-correlation γ, between the image f and the model t at
(u, v) (see (1)). By using normalized cross-correlation as opposed
to traditional cross-correlation, we ensure that our detections are tol-
erant to changes in image intensity [7].

γ =

P
[f(x, y)− f̄u,v][t(x− u, y − v)− t̄]pP

[f(x, y)− f̄u,v]2
P

[t(x− u, y − v)− t̄]2
, (1)

The sums above are computed over (x, y) under the window con-
taining the model t positioned at (u, v), t̄ is the mean of the model
and f̄u,v is the mean of f(x, y) in the region under the model. After
the correlation, the resulting image will have values ranging from
−1 to 1. We extract the locations whose correlation coefficients are
greater than that of a global threshold parameter T ; its value can be
set to accommodate a trade-off between the probability of correct de-
tections and the probability of false alarms (an undesirable outcome
from the biological point of view).

We repeat the process of normalized cross-correlation and thresh-
olding for each of the various models described previously. For each
model, since an axon and bouton can occur at any orientation in an
image, we iterate through several rotations of the model. After ap-
plying the chosen threshold, the peak location corresponding to the
largest value of the correlation coefficient is stored. We also impose

a minimum radius Rmin within which there can only be one peak;
in other words, two boutons cannot be closer than Rmin/2. (This
minimum radius is based on the bouton size and the axon width and
it does play an important role in eliminating false alarms.) Once
we exhaust our model space, we look through the peak locations
accumulated over the search space, and choose those whose cross-
correlation values are the highest, again enforcing a minimum radius
within which there can only be one peak.

Data Set. Tissue preparation was similar to previously pub-
lished protocols [6]. All procedures were approved by the Duke
University institutional animal care and use committee. Histology
specimens on glass slides were transferred to Carnegie Mellon Uni-
versity for further analyses.

Neural Tracer Injections. Iontophoretic injections were made
with microdot glass micro pipettes with a tip diameter of ∼ 10µm
containing 5% biocytin (Sigma, St. Louis, MO) in saline using
pulsed current (7 sec on, 7 sec off) of 2.5 mamps for 10-15 min.
After the injection the animal was sutured and returned to its cage.

Tissue Processing. After a 16-hr recovery period, the animal
was deeply anesthetized with Nembutal (25 mg, i.p.) and transcar-
dially perfused with 0.9% saline, followed by 10% formalin in 0.1 M
sodium phosphate buffer. The brain was removed and a block of cor-
tex containing V1 was flattened while immersed in 20% sucrose in
0.1 M sodium phosphate buffer and maintained at 48C overnight.
The following day, 40 mm tangential sections were cut from the
block on a freezing microtome. Procedures for visualization of the
biocytin label have been published previously [9]. Briefly, goat anti-
biotin and biotinylated rabbit anti-goat antibodies (Vector Laborato-
ries, Burlingame, CA) were used to amplify the signal before pro-
cessing with the standard avidin-biotin complex (Vectastain Kit PK-
4000, Vector, Burlingame, CA) reaction, and diaminobenzidine with
nickel and cobalt intensification.

Imaging. 12-bit brightfield images (1344 × 1024) were ac-
quired with a Hamamatsu ORCA ER-AG CCD camera coupled with
a 0.63x reduction optic to a Zeiss Axioplan 2 microscope fitted with
a Plan-Apochromat 63x (1.4 NA) oil immersion objective. The ground
truth is obtained by having an expert mark the bouton locations.

Fig. 2. Locations of correctly detected (circles), missed (triangles)
and incorrectly detected boutons (+’s). We have also isolated false
alarms that lie on what we believe to be boutons not labeled in the
ground truth (squares).



Results. To illustrate the effect of a threshold, Fig. 2 shows an
example with T = 0.875 and Rmin = 10 pixels (1.6 µm) where the
locations of the correctly detected (circles), missed (triangles) and
incorrectly detected (+’s) boutons are marked.

The performance of the bouton detection algorithm can be as-
sessed, in a statistical sense, using an ROC curve, where, for a given
set of parameters in the detection algorithm, the probability of misla-
beled boutons is plotted against the probability of correct detections.
In our case, these were computed empirically by comparing the re-
sults produced by our algorithm against ground truth data. The ROC
curve also allows one to choose a threshold that satisfies some proba-
bility of false detections, or correct detections. In Fig. 3 (top), we set
Rmin = 10 pixels and trace the ROC curve shown in the same fig-
ure (bottom). Each data point on the curve correspond to a different
T . For example, the result shows that the method can detect 81% of
the boutons with 9% false alarm rate. Interestingly enough, although
the manually marked boutons are used as ground truth, these are not
perfect, that is, experts miss boutons on occasion (we show exam-
ples of such misses in Fig. 2). Some of these have been marked by
our algorithm as false alarms, although in reality, they are boutons
missed during manual process.
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Fig. 3. An image with bouton detection results (top) and its corre-
sponding ROC curve with Rmin = 10 pixels (1.6 µm, bottom).

Due to our method of sorting and pruning multiple detections
that are in the vicinity of each other, we cannot generate a complete
ROC curve by incrementing our detection threshold through all pos-
sible values; rather, our thresholds range from 0.75 to 1.00 in steps
of 0.001. The true number of false alarms possible is that gener-
ated by using a threshold of -1 which we cannot simulate due to
complexity. Ignoring our method of eliminating multiple proximal
detections, the maximum number of false alarms in an image of size
m× n pixels, given that there are N boutons in an image, would be
m × (n − N). However, our algorithm reduces this to an unquan-
tifiable number, and thus, our maximum number of false alarms is
generated using a threshold of 0.75. In order to normalize the axes
of our ROC curve to the traditional [0, 1] range, we choose to divide
the number of true detections and the number of false alarms, by

the number of labeled boutons in the ground truth and the maximum
number of false alarms, respectively. We are in fact normalizing by a
number that is significantly smaller than the “true” maximum num-
ber of false alarms, resulting in a probability of false alarm that is in
fact higher than it should be.

3. BOUTON DIRECTIONALITY ANALYSIS

We now show one example of the type of analysis needed once the
bouton locations have been extracted. This analysis will be per-
formed on a different data set, one that has already been labeled.

Neuroscientists study bouton distribution as it gives useful in-
formation about a developmental stage and condition. In general,
an animal’s visual cortex cells are more directional as that animal
reaches adulthood. Qualifying the distribution as ”more directional”
means simply that the labeled axons and boutons extend for longer
distances, are more densely distributed and give off more terminal
boutons, all this along an axis in the map of visual space that corre-
sponds to the preferred orientation of the injection site.

Orientation Selectivity Index. Currently, there is no standard
measure available to characterize directionality of bouton distribu-
tion. A possible measure is the OSI index proposed in [8], which
uses Fourier analysis to quantify directionality as follows:

OSI =
A2

A0 +A2
, (2)

whereA0 is the DC component of the Fourier transform, whileA2 is
the second harmonic. In the above, the input boutons are typically di-
vided into 36 bins, each encompassing 10 deg to create a histogram
on which the Fourier transform is applied. The OSI value is typically
expressed in %, and the higher the percentage, the more directional
the distribution. The meaning behind the second harmonic is that
two peaks, equidistant on the unit circle, would appear, denoting a
single direction.

The issues with the OSI are that the it does not identify the actual
direction nor does it detect a lack of symmetry in the distribution of
the boutons (actually, for the measure to be valid, the distribution
must be symmetric).

Anisotropy Selectivity Index. Inspired by anisotropy measures
for quantifying diffusion profiles [10], we propose a new measure
called anisotropy selectivity index (ASI) to quantify the directionality
of the bouton distribution. It is defined as

ASI = 2

„
λ1

λ1 + λ2
− 0.5

«
, with λ1 ≥ λ2, (3)

where λ1,2 are the eigenvalues of the following matrix:

S =
1

N

NX
i=1

qiq
T
i , (4)

with qi the vectors of bouton locations. Again, we express ASI in
percentages; the higher the ASI, the more directional the distribu-
tion. Moreover, the eigenvalues as well as the corresponding eigen-
vectors give information about the major axis of bouton distribution.

Data Set. We used bouton distribution data from layers 2 and 3
of the primary visual cortex of tree shrews of various ages. We had
10 data sets; 3 at 14 days, 1 at 18 days, 1 at 21 days, 1 at 22 days,
1 at 29 days, 1 at 43 days and 2 adult ones. To ensure none of the
boutons are missed, they have been marked by a human expert.



Directionality Computation Using ASI
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Fig. 4. Illustration of directionality computation on the spatial distri-
bution of boutons using ASI. The two bold vectors are the eigenvec-
tors of S with the larger one corresponding to eigenvalue λ1. The
plot clearly demonstrates the directionality of the bouton distribu-
tion.

Results. Fig. 4 shows the bouton distribution on one data set
with the ASI index 57.73% and the directionality vectors superim-
posed. The larger vector clearly shows the main direction of the
bouton distribution, with a quantitative measure attached. Remem-
ber that while OSI would have detected presence of directionality, it
would have not given any indication of the actual direction.

Fig. 5 demonstrates two important points. First, it plots both
ASI and OSI for all 10 data sets. While it is clear that both measures
follow similar trends, that is, they would give similar qualitative idea
about the degree of directionality of the bouton distribution, the ASI
measure is more sensitive. Moreover, as the measures are plotted
against the developmental age, one can see how the directionality
behaves as the age increases. As we did not have access to enough
data sets, we will not be drawing any biological conclusions at this
point; this is left for future work. We are currently investigating a
few properties of the ASI measure, such as its ability to measure
symmetry and give information about directionality as a function
of distance from the injection site, as well as methods to quantify
clustering of data.

4. CONCLUSIONS AND FUTURE WORK

We have begun our quest towards the automated extraction and quan-
tification of neurological information from image data with an auto-
mated algorithm for bouton detection as well as a new measure of
bouton distribution directionality and elongation. Our algorithm ex-
tracts boutons with high fidelity; reducing and/or eliminating false
positives is the task for future work. On the analysis side, we are
investigating both how to extend the ASI measure as well as new
measures of quantifying bouton distribution directionality (such as
nonrandom clustering).
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Fig. 5. ASI (squares) vs OSI (circles) plotted against the increasing
developmental age. Both measures follow a similar trend with ASI
displaying more sensitivity.
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