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1Dept. of Biomedical Engineering and Center for Bioimage Informatics
2Dept. of Electrical and Computer Engineering

3Dept. of Biological Sciences, Carnegie Mellon University, Pittsburgh, USA
4Dept. of Mathematics and Statistics, Air Force Institute of Technology, Wright-Patterson AFB, USA

ABSTRACT

We present a novel active mask framework for the segmenta-
tion of fluorescence microscope images of cells, and in par-
ticular, for the segmentation of the Golgi body as well as cell-
volume computation. We demonstrate that the algorithm is
able to efficiently segment a stack of images and successfully
assign multiple pieces of the Golgi body in a 2D image to the
cell to which they belong. Further, we demonstrate that our
algorithm is more accurate than manual segmentation of these
images.

Index Terms— active contours, active mask, segmenta-
tion

1. INTRODUCTION

The Golgi body is an organelle in eukaryotic cells that me-
diates the processing and sorting of proteins and lipids in the
final stages of their biosynthesis. It is a dynamic organelle
that undergoes rapid cycles of assembly and disassembly in
response to cell division and differentiation. The cytoplasmic
surface of the Golgi body is a site for numerous important sig-
naling pathways [1], and defects in the components of these
pathways are responsible for many human diseases [2]. As
the understanding of the molecular basis of these defects is
paving the way for new therapeutics [3], understanding the
Golgi apparatus is of particular interest and is the focus of
research of Linstedt et. al. [4, 5].

Biological problem. The current hypothesis being tested
by Linstedt is that interaction affinity between vesicle coat
complexes and SNARE molecules (and other Golgi proteins)
establishes and controls the size of Golgi compartments [4].
These tests depend on a quantitative ratiometric assay com-
paring Golgi size to its cell size. To date, the experimental
tests of this hypothesis resulted in the discovery that COPII
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assembly is regulated by the availability of Golgi proteins in
the ER due to a direct interaction between components in the
Golgi protein cytoplasmic domains and the COPII component
Sar1p [5].

The need for automated segmentation. The assay is
fluorescence microscope-based and accurate segmentation of
the image is the critical step in determining cell volume. As
a segmentation algorithm suited for this application is not
available, cell boundaries were segmented manually in each
of as many as 20 optical slices. This manual processing is
not only time-consuming and error prone but also limits the
researchers to only what is discernable to the human eye, ne-
cessitating the use of an automated segmentation algorithm.

2. ACTIVE CONTOUR SEGMENTATION OF
FLUORESCENCE MICROSCOPE CELL IMAGES

Active contour algorithms are today’s state-of-the-art in the
segmentation community and involve the calculus of varia-
tions and partial differential equations. This class of algo-
rithms attempts to find smooth, closed contours that envelop
shapes within the image. Here, the contour is comparable to
an elastic string that moves according to two kind of forces:
internal and external. Internal forces are determined from the
intrinsic geometric properties of the contour, such as its curva-
ture. External forces are derived from the image itself, using
edge detection or image statistics, for example. While origi-
nally modeled as parameterized curves, active contours have
more recently been formulated as level sets of a surface [6].
Active contours have only begun to be used to segment bio-
logical images [7, 8, 9, 10, 11, 12].

Previously, we designed a topology preserving stochas-
tic active contour scheme (TPSTACS) for the segmentation
of fluorescence microscope images of cells [10]. This design
incorporated concepts from digital topology into the level set
formulation of the active contour method [13]. We demon-
strated that TPSTACS outperforms the seeded watershed al-
gorithm (widely used in fluorescence microscopy) both by vi-



sual inspection and quantitative measures of performance.
The success of TPSTACS led to further enhancements

such as the introduction of a multiresolution component to
the system to reduce the run time of the algorithm [11]. Sub-
sequently, we studied the limitations of the level set formula-
tion of the active contour algorithm. In that formulation, the
forces that drive the contour evolution are only computed at
the points on the current contour. These values then need to
be propagated to the entire domain, as the level set function
is defined over the entire domain of the image. This so-called
velocity field extension process is computationally expensive.
We thus proposed a faster, alternative method: a multiscale
active contour (MSAC) transformation framework that uses a
geometric embedding of the function but does not involve the
distance transform to build the level set function [12]. The
MSAC transform combines the flexibility and accuracy of the
active contours with the adaptivity and efficiency of multi-
scale transforms. This is done by casting the energy function-
als or forces that drive the active contour evolution as convo-
lutions, permitting an FFT-based implementation of the algo-
rithm.

In that algorithm, the contour convergence is facilitated
by, but does not critically depend on, a good initial contour.
Further, convergence is very quick, as the contour may ad-
vance by more than a few pixels in each iteration. Unfortu-
nately, this increased rate of convergence comes at the cost of
the loss of topology preservation. Indeed, the topology pre-
serving criterion used in TPSTACS is based on the topological
number of a point in the level set function [13], defined in a
3× 3 neighborhood around the point. When, as in the MSAC
algorithm, the contour jumps in large increments in a single
iteration, such local information is of little use. Instead, what
is needed is an algorithm that retains all the advantages of
the MSAC transform in addition to accommodating topology
preservation as a force in its framework, the proposed goal in
this work.

3. A NOVEL ACTIVE MASK FRAMEWORK FOR
SEGMENTATION

We propose to segment images of multiple cells using multi-
ple masks, rather than the geometric embedding of the con-
tour in a single scalar-valued function. Although multiple
level sets have been proposed before [14], the transform per-
spective of our segmentation core makes the proposed frame-
work a novel approach.

In this design, we regard the segmentation of an image
f(x) as the computation of M masking functions {ψm}M

m=1,
each having the same domain as f yet taking values in {0, 1},
with ψ1(x)+· · ·+ψM (x) = 1, for each x ∈ R2. That is, each
ψm(x) is a mask (indicator function) of the mth segmented
region. The forces that drive the segmentation are based on
the properties of the image or on the desired properties of the
mask, such as having smooth boundaries, etc. As the forces

act on the masks and it is the masks that evolve, we call our
method an active mask (AM) algorithm. The segments of the
original image are immediately available as the masked com-
ponents fm(x) = ψm(x)f(x). Moreover, by combining the
different masks, we may obtain a single mask with multiple
regions, each of which corresponds to a cell; Fig. 1 depicts
the ψm’s corresponding to an image with three cells, together
with their Golgi bodies, represented as one mask. This for-
malism is well suited to our application, as the volume of the
cells can be easily obtained by integrating over the cell areas.

Fig. 1. A schematic representation of the multiple masks, ψ1, ψ2 and
ψ3, corresponding to three cells in an image together with the masks for the
Golgi body fragments contained in them. We can combine the information
from these separate masks to locate the different cells (and their Golgi body
fragments) in an image.

Initialization. We start with a random initialization of
M À M0 masks, where M0 is the expected number of cells
in the image to be segmented. Each mask ψm is an indicator
function of the pixel value f(x) of the image belonging to
the region m. As the algorithm progresses, it is likely that
some of these indicator functions will converge to zero, that
is, empty masks; in this case, we eliminate these masks and
reduce the number M accordingly.

Evolution. The active masks evolve based on two dif-
ferent forces. The first is a region-based force R(x). Given
the initial configuration, this force first acts on the M masks
to coarsely separate the background and foreground regions.
As we require only a coarse separation, R(x) is essentially
a weighted soft thresholding of a smoothed version of the
original image f . We use a single mask ψ1 to segment the
background; the purpose of the remaining masks {ψm}M

m=2

is to segment the foreground into approximately M0 distinct
cells. To be precise, the entire collection of masks {ψm}M

m=1

evolves via a local majority voting process, which is skewed
according to the region-based force. In particular, our second
force, a smoothing “geometric force” is the filtering opera-
tion:

Fg(ψm(x)) =
∫

R2
ψm(x)g

(
x− y

a

)
dy,



where g is a lowpass filter with dilation parameter a. We then
add the region-based force to Fg(ψ1(x)), which, in essence,
grants background pixels a disproportionately large vote to
remain in the background. For any pixel x, the mask to which
the pixel will belong in the next iteration corresponds to the
index m which is the maximum of the values {Fg(ψ1(x)) +
R(x), Fg(ψ2(x)), . . . , Fg(ψM (x))}. In this paradigm, masks
“fight” with each other to take over their neighboring region.
They stop evolving when the number of points voting on ei-
ther side of the border is balanced.

Stopping criterion. The geometric force is iterated until
the masks converge to a pattern and change no more, that is,
when the skewed voting results in no pixels changing masks.
This is an advantage as we do not have to choose the number
of iterations to run the algorithm as is usually the case with
most active contour algorithms.

We display the result by projecting each of the ψm masks
to the space of the same dimension as that of the image to ob-
tain a multihued mask, with each hue representing a different
region (see Fig. 3(c)).

4. CELL-VOLUME COMPUTATION AND GOLGI
BODY SEGMENTATION

We are given a stack of N 2D images with two channels
each—one representing the cells and the other, the localiza-
tion pattern of a Golgi-body protein contained within them.
As the Golgi body is an irregularly shaped organelle and very
dynamic in nature, we often see multiple fragments of the
organelle in the Golgi channel. Thus, segmenting the Golgi
channel alone is a difficult task. Further, the cell boundaries
are not always well-defined and, especially towards the pe-
riphery of the stack, most of the cells are not even discern-
able. These are some of the problems that complicate the task
of segmentation and volume computation.

Golgi body segmentation. We adapt the active mask al-
gorithm to segment the cell images and Golgi body images as
follows: First, we initialize the AM algorithm on the middle
slice in the stack and segment it to obtain the masks represent-
ing various cells in the image. As the cells are fairly distinct
in this middle slice, the number of masks in the segmentation
output serves as a reliable reference for the number of cells in
the stack. After obtaining the active mask segmentation out-
put on this slice, we use the result to initialize the Golgi body
segmentation on the corresponding parallel channel image.
Then, we propagate these results by using the corresponding
masks to initialize the slices preceding and following the mid-
dle slices (see Fig. 2). We then repeat the process to segment
all of the images in the stack.

Volume computation. Once we obtain the segmentation
masks for the cell channel for all slices of the stack, we as-
sociate the different cells across the stack by computing the
extent of overlap between the masks. We then sum up the ar-
eas of the masks that represent the corresponding cell to ob-

Fig. 2. The segmentation outcome of slice n is used to initialize the masks
for segmenting slice n + 1.

tain the cell volume. We use these cell masks to associate the
different Golgi fragments to their respective cells. We then
sum up the areas of the corresponding Golgi masks across the
stack to obtain the Golgi body volume for each cell.

5. EXPERIMENTS

Dataset. Our data consists of 15 fields of images (a z-stack
of 2D slices), containing 3-8 cells each. 40 optical sections
of size 1024 × 1344 pixels, were acquired, starting from the
top of the cell to the bottom. The cells are double labeled with
Sec13, a soluble membrane-protein and the Golgi marker pro-
tein, Giantin, in two parallel channels. Sec13 staining has a
diffuse cytoplasmic background, which is used to mark the
boundary of the cell. The resolution in x,y is 0.05µm whereas
the z-resolution is 0.3µm. Fig. 3(a) shows an example of
the original cell image and Fig. 3(b) the corresponding Golgi
body image for an arbitrary slice from the stack.

Results and discussion. We report here the numbers ob-
tained for one of the noisier stacks with a relatively large num-
ber of cells. We used an initial number of masks, M = 216 to
segment the middle slice. We then used the masks of the mid-
dle slice to initiate the segmentation of the neighboring slices
and repeated the process to the end of the stack. We fixed the
resolution of the image to (1/8)th of the original as we obtain
a good segmentation performance at this scale, even without
further tuning. Fig. 3(c) shows the active mask outcome over-
laid with the hand-segmentation result for an arbitrary slice
chosen from the stack.

The biologists who visually assessed these results agreed
that the AM segmentation is far better and more reliable than
the hand segmentation. Thus, they will use the results from
the AM algorithm as their reference. To quantify the differ-
ence between the AM segmentation and the hand segmenta-
tion, we computed the average area similarity (AS) between
the masks. According to the literature, an average area simi-
larity of 70% or greater, indicates a good agreement with the
ground truth [15], which is the result of the AM segmentation
in this case. We obtain an average AS = 35.19 ± 23.20, de-
noting poor agreement between the hand segmentation with
the AM results. This is not surprising as, with hand segmen-
tation, not a single cell has been segmented in slices 32-40.
Further, even amongst the more visible slices, the hand seg-
mentation is not reliable. For instance, Fig. 3(c) shows how
the cells that exist have not all been chosen by the manual
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Fig. 3. Golgi Data and active mask Segmentation results. (a) The original
cell image for slice 13. (b) The original Golgi body image for slice 13. (c)
The active mask segmentation result: each color corresponds to a different
cell, overlaid with the hand-segmentation masks in white. (d) Segmentation
of the Golgi fragments with pieces that belong to a cell coded by a different
mask.

segmenter and those that have been segmented are not neces-
sarily accurate, a limitation of the human eye in discerning the
cells correctly in these images. The forces of the AM algo-
rithm, on the other hand, are designed to extract the features
of the cells that aid in their segmentation.

The measure of interest in our application is the volume
of the cell and the Golgi body. We computed the total volume
of the cells based on the AM masks and compared this with
that computed by hand to quantify how much manual pro-
cessing deviates from the automated method. We found that
the difference in the total volume between the AM algorithm
and hand segmentation is more than 3 × 105 pixels, that is,
more than 28% of the total number of pixels, showing again
the limitation of manual segmentation.

Thus, we cease to compare the performance of the AM
algorithm with the hand-segmented masks as such a compar-
ison is not a meaningful one.

We coded the AM algorithm using Matlabr Student Ver-
sion R2007a. The entire process of segmenting the cells and
Golgi bodies and computing the volume for a stack of 40 im-
ages takes 5.12 minutes on a 1.86 GHz Core 2 Duo Processor.
Thus, the AM algorithm is not only accurate but also efficient
and can be used for high-throughput analysis.

6. SUMMARY

We have presented a novel active mask segmentation algo-
rithm that combines the advantages of flexibility and accuracy
of active contours as well as the efficiency and adaptivity of

multiscale transforms, in addition to elegantly incorporating
topology preservation as a force. We have demonstrated why
this algorithm is more viable than manual segmentation for a
quantitative and large-scale study of the properties of Golgi
body proteins. We have also shown that the formulation of
this algorithm makes it easy to segment and compute the vol-
ume of the Golgi body, which has multiple fragments within
a cell in a 2D image.
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