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1Center for Pattern Recognition and Department of Information Science and Engineering
PES School of Engineering, Bangalore, India
2Department of Mathematics and Statistics

Air Force Institute of Technology, Wright-Patterson AFB, OH 45433
3Center for Bioimage Informatics and Departments of Biomedical and Electrical and Computer Engineering

Carnegie Mellon University, Pittsburgh, PA 15213

ABSTRACT

We propose an active mask segmentation framework that combines the advantages of statistical modeling,
smoothing, speed and flexibility offered by the traditional methods of region-growing, multiscale, multires-
olution and active contours respectively. At the crux of this framework is a paradigm shift from evolving
contours in the continuous domain to evolving multiple masks in the discrete domain. Thus, the active
mask framework is particularly suited to segment digital images. We demonstrate the use of the framework
in practice through the segmentation of punctate patterns in fluorescence microscope images. Experiments
reveal that statistical modeling helps the multiple masks converge from a random initial configuration to
a meaningful one. This obviates the need for an involved initialization procedure germane to most of the
traditional methods used to segment fluorescence microscope images. While we provide the mathematical
details of the functions used to segment fluorescence microscope images, this is only an instantiation of the
active mask framework. We suggest some other instantiations of the framework to segment different types
of images.

Keywords: active contours, active masks, cellular automata, fluorescence microscopy, multiresolution, mul-
tiscale, segmentation

1. INTRODUCTION

In recent years, fluorescence microscopy has greatly facilitated the task of understanding complex systems
at cellular and molecular levels. We focus on the task of segmenting punctate∗ patterns of cells to delin-
eate individual cells in multicell images. Unlike traditional applications such as multimedia, fluorescence
microscope images lack edges (see Fig. 1(a)). Hence, most of the segmentation algorithms developed by the
computer vision and image processing communities cannot be used without modifications to segment these
images.

(a) Original image (b) MSAC transform

Figure 1. (a) HeLa cells stained with sec13 marker.4 (b) Segmentation result obtained using multiresolution active
contour transformation.18

In an earlier work, we demonstrated the utility of combining multiresolution transforms with active
contours to segment cells in fluorescence microscope images.18 In this we described two masks—in and

∗Punctate refers to dotted patterns or patterns with very small holes. This describes a large class of fluorescence
microscope cell images such as those of subcellular protein locations.
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out—that were evolved, starting from a random initialization, to segment an image. The limitation of using
only one mask to denote multiple cells in the foreground is that it becomes difficult to separate overlapping
cells (see Fig. 1(b)). To overcome this drawback, we resorted to evolving multiple masks. Thus, in the
present work, we build upon the earlier ideas to use one mask for the background and a mask to represent
each cell in the foreground. As this work began as an improvisation of the active contour method and rather
than the contour, it is the mask—the boundary and everything in it—that evolves, we call it the active mask
algorithm.16

Related work. Most of the algorithms in the literature that rely on discernable edges cannot be used as
such to delineate cells from punctate patterns. There are a host of region-growing algorithms that may be
adapted to segment fluorescence microscope images. This is based on the relative homogeneity of statistics
of these patterns. However, these ideas have not directly been used to segment fluorescence microscope
images.1, 7, 12, 13 A region-based algorithm that is used to segment punctate patterns is the Vornoi, to derive
neighborhood relationships and the seeded watershed to delineate cells.6, 11 Various modifications have been
suggested to improve this algorithm over the years.8, 20 The principal limitation of this method is it is not
designed to produce tight contours around the objects of interest. Further, the method does not always work
effectively with random seeds. Accurate seeds are often not easy to determine automatically in fluorescence
microscope images of punctate patterns.

In this work we present the mathematical framework of active masks that combines (a) statistical mod-
eling offered by region-growing methods, (b) the advantage of smoothing offered by multiscale techniques,
(c) the advantage of speed offered by multiresolution methods and (d) flexibility of active contour methods
to segment punctate patterns of cells. In Section 2, we highlight the need for statistical modeling and a
representation based on multiple masks for the example we have considered in this work. The idea of using
multiple masks to represent regions in an image is not new to region-growing techniques. Similar ideas
have also been seen in PDE literature.2, 10, 14 We then describe the functions used to evolve these multiple
masks with the active mask framework. These functions form an instantiation of active mask framework.
In Sections 3 and Section 4, we highlight the advantages multiscale and multiresolution bring to the active
mask framework. Finally, in Section 5, we briefly discuss changes to the instantiation of the framework to
adapt to a different class of images.

2. STATISTICAL MODELING

The statistical modeling we use to segment fluorescence microscope images is based on a statistical region-
based function in combination with a majority voting-based function. This section describes the design
details of these functions.

2.1 Region based distributing function

As shown in Fig. 1, statistical properties coarsely distinguish the foreground from the background. We first
convolve the input image f with a low-pass filter h to “connect the dots” in the image (see Fig. 2).

Next, we apply a soft-threshold to obtain a coarse separation of the foreground from the background (see
Fig. 3). The resulting image is a region-based distributing function,

(a) (b)

Figure 2. Effect of smoothing a fluorescence microscope image containing a punctate pattern. (a) The original image.
(b) After convolution with a low-pass filter, the edge of the cell becomes clearly defined.
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Figure 3. An illustration of the effect of the region-based distributing function R1 applied to image f .17 (a) Smoothed
image (f ⋆ h)(n); (b) soft-thresholded image as in (1).

R(n) := α sig
(

β
(

(f ⋆ h)(n) − γ
)

)

, (1)

where α ∈ (−1, 0) is the skewing factor, sig a sigmoid function (for example, a Gaussian), β, harshness
of the threshold, f ⋆ h, convolution of image f with a low-pass filter h and γ, the average intensity of the
foreground-background border.

After this step, we must distinguish between different regions in the foreground. For this we call upon
the representation of multiple masks. We then use a majority voting based distributing function to evolve
the mask. As the cells we seek to delineate in the foreground are smooth, the function ensures the multiple
masks suitably partition the image with smooth boundaries.

2.2 Majority voting based distributing function

To be able to delineate multiple regions, we first define ψ, a collection of multiple binary masks, µm, to
represent the image. Thus, ψ can be thought of as a multihued image of the same size as the input image
f . Corresponding to each hue (or value) m in ψ, we have a characteristic function µm defined as

µm(n) =

{

1 if ψ(n) = m,
0 otherwise.

Starting from a large collection of randomly initialized masks, the majority voting based distributing
function gives us a way of evolving ψ:

ψi+1 = argmaxm{µi

1 ⋆ g, µ
i

2 ⋆ g, . . . , µ
i

M ⋆ g}, (2)

where i is the iteration number and M the largest m in ψi+1 and g is a lowpass filter, whose scale parameter
determines the degree of smoothness of the boundararies between masks. For simplicity of notation we refer
to the voting based distributing function described by (2) as V . If any µm = 0 for all n, then mask m ceases
to exist in ψ and cannot be recovered during the course of evolution. Empirically, we find that the masks
merge to partition the image with smooth boundaries between them. Fig. 4 shows the action of V starting
with a ψ = rand(256). Eventually, the masks converge to a zero change configuration. In other words, the
stopping criterion is ψi+1 − ψi = 0.

(a) i=0, M=256 (b) i=1, M=237 (c) i=179, M=11 (d) i=500, M=4

Figure 4. An illustration of the action of the voting based distributing function V on a collection of multiple masks,
ψ. (a) Initial ψ with 256 masks. (b) ψ after one iteration of (2) with 237 masks. (c)ψ at i=179 with M=11. (d)ψ at
i=500 with M=4.
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Clearly, Fig. 4 does not use any information from the input image. Hence, to obtain a meaningful
partition of the image, we must use some property of the image itself. In the case of punctate patterns of
fluorescence microscope images, this is region-based distributing function R.

2.3 Active mask segmentation of punctate patterns

As we noted from Fig. 3, R provides a satisfactory separation of the foreground from the background. Thus,
we can skew the voting so one of the masks arbitrarily favors the background. Thus, the modified voting
function can be written as

ψi+1 = argmaxm{(µi

1 ⋆ g) +R,µi

2 ⋆ g, . . . , µ
i

M ⋆ g}, (3)

where the µi

1 is arbitrarily chosen to represent the background region. Since the multiple objects in the
foreground are statistically indistinguishable, we do not bias any of the other masks. Consequently, the
background region no longer participates in the voting process as before. This ensures that the mask that
represents the background does not completely “take over” the foreground. At the same time, no mask from
the foreground region eats into the background. Based on the cell geometry, certain pixels at the foreground-
background interface might change their membership from one mask to another. Thus, the masks in the
region corresponding to the foreground configure themselves based on the geometry of the cells. Fig. 5
shows the combined action of R and V , starting with a random initialization of the multiple masks used to
represent the image is shown in Fig. 1(a).

(a) i=0, M=256 (b) i=1, M=177 (c) i=12, M=12

Figure 5. Active mask segmentation applied to the image in Fig. 1(a).17 (a) Random initialization: 256 masks are used
to describe the original image. (b) After the first iteration of (3), the background is separated from the foreground by
the region-based distributing function. (c) After 12 iterations, cells in the foreground have been assigned to M = 12
distinct masks; the masks do not change with further iterations.

This skewed majority voting procedure or the combination of R and V described above, forms an in-
stantiation of the active mask (AM) framework for the segmentation of punctate patterns of fluorescence
microscope images. The skewing ensures the masks achieve a zero change configuration faster than without
a bias.

3. MULTISCALE ACTIVE MASK SEGMENTATION

We note from Fig. 1, the segmentation result is not a satisfactory one. This is because of spurious splits:
pixels corresponding to a single cell in the foreground have been assigned to multiple masks. As we noted
earlier, the scale parameter of the lowpass filter g used in (2) determines the degree of smoothness of the
boundaries between the masks. Suppose g is the radially symmetric function,

g(n) = e−
‖n‖

a , (4)

where a is the scale parameter.

A small value of a results in spurious splits as well as a longer time for the convergence (due to a large
number of evolving masks). A larger a implies a higher degree of smoothing. This translates to the masks
merging rapidly to ensure smoother boundaries between them. If we set the value of a to be a very large
value, then once a mask m is subsumed by another, it can never be recovered (unless ψ is reinitialized). This
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would be counter productive if pixels corresponding to two distinct cells in the foreground were assigned to
the same mask.

There are different ways to vary the scale parameter; one way could be to start with a small value of
a and gradually increase it. Another way is to start with an initial value of a based on the size of the cell
and resolution of the image. We can then gradually decrease this value. Thus, once the masks achieve a
zero-change configuration, we can gradually decrease the scale parameter and allow the masks to evolve
again. This allows the details in the boundary to be traced more accurately. Thus, multiscale used in
conjunction with AM provides the advantage of appropriate smoothing to enable an accurate tracing of the
boundary. Fig. 6 shows the effect of changing the scale parameter and allowing the algorithm to iterate on
the segmentation result shown in Fig. 5(c).

This is the Multiscale AM (MsAM) version of the algorithm.

4. MULTIRESOLUTION MULTISCALE ACTIVE MASK SEGMENTATION

Whereas application of the MsAM algorithm would be slow on a large image, say of size 1024×1024 pixels, it
is much faster on smaller images, say 128×128 pixels. This is because in the former there are far more pixels
for which the distributing functions R and V must assign masks. Applying the algorithm at a low resolution
to obtain a coarse segmentation and successively refining the result offers the advantage of speed.9, 18 The
low resolution version of an image can be created using a filter bank to decompose the image to K levels.19

Since the application is segmentation, we would only work with the coarse approximation of the image.
Moreover, since smoothing is a part of the decomposition process, it automatically provides the lowpass
filtering action shown in Fig. 2. The scale parameter of V can be suitably adjusted at different resolutions
to obtain a quick and meaningful segmentation outcome. This forms the multiresolution multiscale active
mask (MrMsAM) algorithm for the segmentation of punctate patterns in fluorescence microscope images.
The final result shown in Fig. 6 is after the application of multiresolution and multiscale techniques.

(a) i=65, M = 12 (b) i=134, M = 11 (c) i=179, M = 10

Figure 6. An illustration of the evolution of the multiresolution multiscale active mask algorithm starting from
Fig. 5(d) at resolution level k = 3 and scale of the region-based lowpass filter a = 4 to Fig. 6(c).17 (a) Segmentation
outcome at resolution level k = 3 and scale a = 3 with M=12 and i = 65. (b) Segmentation outcome at resolution
level k = 2 and scale a = 5 with M=11 and i = 134. (c) Segmentation outcome at resolution level k = 1 and scale
a = 4 with the final number of masks M = 10.

MrMsAM achieves experimental convergence. That is, the evolving masks arrive at a zero change state
at which point the procedure comes to a halt. The action of iterative smoothing is well studied as the
maximum (or minimum) principle? (see? for a discrete version of the maximum principle). The conditions
under which a lowpass filter produces a coarse version of the image have been presented in the formulation
of the diffusion equation.? It has been rigorously proved that a version of the maximum principle from the
theory of parabolic differential equations is equivalent to the condition of applying such a lowpass filter on
an image so as not to produce any new zero-crossings (or edges) in the image.? Unfortunately, we cannot
apply these results directly to prove the convergence of MrMsAM as it is not continuous. Unfortunately, the
discrete counterpart is not easy to analyze.14 However, we note that the active mask framework is closely
related to threshold growth of cellular automata.3 Attempts have been made to characterize such dynamic
systems, although a rigorous proof remains elusive in this setting.
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5. MRMSAM SEGMENTATION: A FLEXIBLE FRAMEWORK

One of the principal advantages of active contour algorithms is their ability to accommodate multiple forces
that work in tandem to perform segmentation. In the active mask algorithm we have presented above, the
two distributing functions R and V form an instantiation of the framework.

For the region-based function R, a soft-threshold is sufficient to segment punctate patterns of fluorescence
microscope images. However, we can easily replace this with in any function—such as one that describes
textures—to suit the application on hand. Fig. 7 shows a class of images that is very distinct from fluorescence
microscope images. Computation of the variances (rather than average intensity around a given pixel) or an
edge-based mask might be more appropriate R’s for this type of image.

Figure 7. A DIC microscope image of yeast cells.5

Likewise, the voting-based distributing function we use successfully segments blobs (objects with smooth
boundaries). We can design similar functions to describe different shapes. For instance, instead of using
the majority voting based approach, V could be any other dynamical system that is known to converge. In
summary, the AM framework can be adapted to different images through the design of appropriate filters
and distributing functions. Thus, the AM framework is a flexible one.

Summary

We have presented an active mask framework that combines the advantages of different approaches such
as region-growing, multiscale and multiresolution techniques and active contours. We have demonstrated
the advantages each component brings to the framework through the example of segmentation of punctate
patterns of fluorescence microscope images. While we have only treated this as an example to describe
the features of the framework, details of the biological study and extensive experimental analysis of AM’s
performance are available for punctate patterns of fluorescence microscope images.15–17 In this work, we
have also discussed how the instantiation of the framework to segment images from other modalities through
suitable changes to the distributing functions. While there is much work to be done to rigorously characterize
the evolutionary behavior of the functions used in the active mask framework, experiments have categorically
demonstrated the use of the active mask framework in practice.
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microscope images. IEEE Trans. Image Proc., 2009. To appear.
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