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1School of Interactive Computing, Georgia Institute of Technology, Atlanta, USA
2Dept. of Info. Sc. and Eng., and Center for Pattern Recognition, PES School of Engineering, Bangalore, India

3Dept. of Mathematics and Statistics, Air Force Institute of Technology, Wright-Patterson AFB, USA
4Dept. of Biomedical Eng., Electrical and Computer Eng. and

Center for Bioimage Informatics, Carnegie Mellon University, Pittsburgh, USA

ABSTRACT

We study the convergence behavior of the Active Mask (AM) frame-
work, originally designed for segmenting punctate image patterns.
AM combines the flexibility of traditional active contours, the sta-
tistical modeling power of region-growing methods, and the compu-
tational efficiency of multiscale and multiresolution methods. Addi-
tionally, it achieves experimental convergence to zero-change (fixed-
point) configurations, a desirable property for segmentation algo-
rithms. At its a core lies a voting-based distributing function which
behaves as a majority cellular automaton. This paper proposes an
empirical measure correlated to the convergence behavior of AM,
and provides sufficient theoretical conditions on the smoothing filter
operator to enforce convergence.

Index Terms— active mask, cellular automata, convergence,
segmentation

1. INTRODUCTION

Recent advances in fluorescence microscopy have made it possible
for biologists to study particular proteins of interest in cells and con-
duct live cell imaging. Manually processing the enormous amount
of collected data is extremely tedious, and so the need for accu-
rate and efficient automated processing methods has become impera-
tive. One of the first tasks after image acquisition is segmentation—
delineation of cells (or objects of interest within them) from each
other and the background. Since fluorescence microscope images
of proteins in cells lack edges, most of the traditional segmentation
algorithms in image processing or computer vision literature fail to
produce meaningful results.

Segmentation with active contours. The class of algorithms
generically called active contours is considered state-of-the-art in
biomedical image segmentation. Its success resides in the ability
to incorporate a general and flexible set of forces to drive the seg-
mentation. In previous work [1], we successfully adapted the active
contour framework to segment punctate patterns of fluorescence mi-
croscope cell images. Adding multiscale and multiresolution tech-
niques into the mix enabled us to exploit the computational structure
of the problem efficiently: we first perform segmentation on a coarse
approximation of the image and later refine the outcome by running
only a few iterations of the algorithm at high resolution [2]. Finally,
by combining the flexibility of active contours with the computa-
tional efficiency of multiscale methods, and the statistical modeling
power of region-growing methods, we obtained a high-performance
segmentation algorithm: the Active Mask (AM) framework [3].

This work was supported in part by NSF through award DMS-0405376,
by NIH through award R03-EB008870, and by AFOSR through grant
F1ATA09125G003.

Segmentation with active masks. The basic idea of the AM
framework is to represent a segmented image ψ via a collection of
M binary masks1 μm. The AM iteration rule is:

ψ(i+1)(n) = argmax
1≤m≤M

{Vg(μ
(i)
m )(n) +Rm(n)}, (1)

where n is the spatial position of a pixel, i is the iteration num-
ber, Vg is a smoothing filter, and Rm is a region-based distributing
function (a soft threshold of the image) that skews the vote in mask
m. For segmentation of cell images, R1 is designed to distinguish
the background region from the foreground and Rm = 0, for all
m �= 1. Thus, background pixels are represented by the first mask,
while foreground pixels are distributed to remaining masks through
voting. Eventually, the procedure halts if/when the pixels cease to
change mask membership, or equivalently, when ψ(i+1) = ψ(i).
This typically happens when there is a smooth boundary between
the masks; the degree of smoothness depends on the shape and scale
parameter of the smoothing filter g used in the voting process.

Motivation and objectives. Experiments on images contain-
ing punctate patterns of cells (or specific proteins) demonstrated that
AM successfully delineates regions of interest (see Fig. 1) even in
cases where many existing image segmentation algorithms fail (for
a thorough discussion, see for instance [3].) Nevertheless, as is the
case with so many novel automated processing methods, understand-
ing at a deeper level the true source of such flexibility and efficiency
is sometimes very difficult. A question that was not conclusively an-
swered by the earlier work was, “why does the AM algorithm always
reach a zero-change state?”. This could be followed by “is conver-
gence primarily a property of the smoothing filter?” If so, it would
also be good to know “how to design more flexible filters for AM al-
gorithms using such ”basic properties” as guiding principles?”. The
general goal of this paper is to shed light onto these issues, but its pri-
mary focus will be to answer the first question. Namely, we explain
the convergence behavior of the AM algorithm both empirically and
theoretically. We show how AM can be very naturally framed as a
type of cellular automaton, and we exploit this framework by identi-
fying simple sufficient conditions on the structure of the filter which
will ensure convergence. Due to the relevance of majority cellular
automata in science, the results afforded by this setting enable us
to establish beneficial connections with very diverse fields, ranging
from social sciences [5] to statistical physics [6, 7].

The paper is organized as follows: In Section 2, we present the
AM framework in more detail, and provide an empirical measure
tightly correlated with the convergence behavior. In Section 3, we
describe how the Active Mask algorithm can naturally be framed
as a Majority Cellular Automaton. Section 4 contains a summary
of sufficient conditions for the convergence of majority automata.
Finally, we conclude with a discussion of the results in Section 5.

1Masks are defined as: μm(n) = 1 if ψ(n) = m, and 0 otherwise.
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(a) Original Image (b) i=0, M=256 (c) i=1, M=177 (d) i=12, M=12 (e) i=179, M=10

Fig. 1. Active mask segmentation of punctate patterns of proteins [3]. (a) Original image (courtesy of Linstedt Lab [4]) (b) Initialization
using 256 random masks. (c) After one iteration of (1), the background is separated from the foreground by the region-based distributing
function. (d) After 12 iterations, cells in foreground have been assigned toM = 12 distinct masks, which do not change with further iterations
for the chosen scale a of filter g and at that resolution. (e) On gradually changing the scale parameter to merge spurious masks (multiple
masks corresponding to one cell) and successively refining the segmentation outcome at higher resolutions to include relevant details in the
corresponding cell masks, we obtain the final segmentation outcome ofM = 10 masks at iteration i = 179 for the given random initialization.

2. DISTRIBUTING FUNCTIONS AND EMPIRICAL
CONVERGENCE

As described above, the active mask framework is instantiated by
defining appropriate distributing functions. These partition the im-
age by distributing the pixels to different masks and are akin to forces
in the active contour framework.

Majority voting based distributing function. We start with
image f ∈ �2(Zd), such that f(n) = 0 iff n /∈ Ω; Ω :=Qd

k=1[0, Nk) is a rectangular subset of the d-dimensional inte-
ger lattice Z

d. We define a collection of M masks ψ, as a function
that assigns each pixel n ∈ Ω a value ψ(n) ∈ {1, . . . ,M}. Then,
Vg , the crux of the majority voting based function is defined by the
nonstandard noncommutative convolution,

Vg(μm)(n) :=

8<
:

(μm � g)(n)
(χΩ � g)(n)

, n ∈ Ω;

0, n /∈ Ω;

(2)

where χΩ is the characteristic function of Ω, and g a lowpass filter
with a tunable scale parameter a. Given a random initialization of
ψ, the majority voting based distributing function is the evolution of
ψ as described in (1).

Region-based distributing function. Since (2) does not use any
information directly derived from the image, the iterative voting pro-
cess could produce different partitions of the image. To drive the seg-
mentation to a meaningful configuration, we introduce a distributing
function R derived from the image. It could be based on any set of
features that distinguish region(s) of interest from each other. (For
a more detailed explanation, and a concrete example, the reader is
invited to [3].) Since we are interested in delineating cells and as-
sume their statistical properties are relatively uniform and different
from those of the background, here we consider only one nonzero
Rm (arbitrarily chosen as R1). In general, there could be as many
nonzero Rm’s as there are regions of interest with distinct proper-
ties. As mentioned earlier, R is some function of the image (in our
case, a soft threshold that separates the foreground and background
regions). This restricts the voting to a specified segment in the im-
age: in our case, the voting after the application of R’s is restricted
to the foreground (see Fig. 1(c-d)).

Zero crossings and convergence. Throughout the experiments
reported in our work on fluorescent microscope images (1) the it-
eration process always came to a halt, which lead us to postulate
that there should exist a measure that is monotonically decreasing
with iteration. While convergence properties of algorithms similar
to (1) have been studied in the continuous domain, it is not easy to

find a reliable discrete equivalent of monotonically decreasing func-
tions [6, 7]. This is because the argmax function governing the dis-
crete process is neither linear, nor continuous. However, the action
of iterative smoothing using lowpass filters such as g is well studied
as the maximum (or minimum) principle [8] (a discrete version of
the maximum principle is presented in [9]). Based on the diffusion
equation, conditions under which a lowpass filter produces a coarse
version of the image have been presented in [10]. It has been rigor-
ously proved that a version of the maximum principle from the the-
ory of parabolic differential equations is equivalent to the condition
of applying such a lowpass filter on an image so as not to produce
any new zero-crossings [11].

In the case of active masks, for each pixel we count one zero
crossing for each of its 8 immediate neighbors that belong to a dif-
ferent mask. For very general conditions on the filter g and its scale
(or spread) parameter a, this number is empirically seen to decrease
monotonically. Fig. 2 depicts such an example for 2 masks, using
a Gaussian filter under three different scale conditions; each plot
contains the evolution of 5 runs of the algorithm, initialized ran-
domly and independently. We would like to point out the extremely
abrupt decrease of the “empirical potential”, depicted here through
a 4-times application of the natural logarithm to the number of zero-
crossings. By inspecting the curves, we notice that the steepness of
the average slope (θ3 ≈ −0.125, θ5 ≈ −0.064, and θ8 ≈ −0.019)
decreases monotonically with scale, in the regime where the filter is
neither too small to make filtering trivial, nor too large to render the
influences of distributing functions superfluous.

Next, we shall describe the mathematical details and working
assumptions used when framing AM as a Cellular Automaton.

3. ACTIVE MASK AS MAJORITY CELLULAR
AUTOMATON

Cellular automata are self-evolving discrete dynamical systems [12].
and they have found application in various fields like particle
physics, computational biology, and social sciences. Tremendous
amount of work in this area has focused on studying the convergence
behavior of various types of automata. Since the crux of AM in-
volves a self-evolving dynamical system via the voting function, in
this section we shall formulate AM as a majority cellular automaton
in order to facilitate our understanding of its convergence behavior.

We begin by expressing the convolution operation defined in (2)
as the result of a linear operation acting on a vector: f�g := Af .
This will later enable us to prove the convergence of the AM algo-
rithm via the structure of matrix A alone.

Based on (1), the “contribution” corresponding to mask m in
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(c) a = 8

Fig. 2. Decrease in the number of zero-crossings with iteration. Scale of the Gaussian filter is inversely correlated with convergence speed.

deciding the outcome at location n at iteration i shall be

V (i)
m (n) = (μ(i)

m �g)(n) = (A · μ(i)
m )(n). (3)

Henceforth, we refer to A as the influence or weight matrix.
In case of a tie in (1), we can decide to break it by choosing the

smallestm corresponding to a maximal element. In other words:

ψi(n) := min

„
argmax

m

V (i−1)
m (n) +Rm(n)

«
(4)

For any fixed cell n and iteration i, let ξm = V
(i)

m (n)+Rm(n).
This allows us to interpret (4) as follows: first we inspect all values
ξ1, ξ2, . . . ξM ; then we collect all indices corresponding to the max-
imum value ξmax of this sequence; finally, we assign the value of
the smallest such index to ψi(n).

Influence matrices in image processing. When using cellular
automata on regular lattices, especially in image processing applica-
tions, a typical and intuitive assumption is that pixels’ relative influ-
ences should depend primarily on their value and distance. As the
voting functions are filtering/convolution operators, this symmetric
influence assumption reflects upon the filter g, and equivalently upon
the weight matrix A, being symmetric. For example, by assum-
ing periodic convolution and filter symmetry, matrix A itself will be
symmetric and circulant (in 1-D) or block-circulant with circulant
block2 structure (in 2-D).

Whenever standard assumptions like periodicity are not appro-
priate, alternative convolution operators are preferred which apply
different edge-handling schemes and thus scale the result of the fil-
tering according to the spatial position of each pixel. For instance,
the AM convolution operator used in (2) is implemented by zero-
padding and local scaling.) In such situations, the corresponding
linear transform is represented by a quasi-symmetric matrix [5].

Definition A square matrix B is quasi-symmetric iff it can be writ-
ten as B = ΛA, where A is symmetric and Λ is diagonal.

In the following section, we will characterize the convergence
behavior of general Majority Cellular Automata, and in particular of
AM, in terms of structural properties of the weight matrix.

4. SUFFICIENT CONDITIONS FOR CONVERGENCE

Convergence behavior results. Theoretical guarantees about the
convergence behavior of Majority Cellular Automata with symmet-
ric influences (although without additive terms) exist in the literature

2Also referred in the literature as BCCB [13].

since the early 80’s (see [12], [14], and references therein). A gen-
eralization to quasi-symmetric matrices, together with an instructive
proof based on Lyapunov functionals, was recently published in [5].
We further extend these previous results to cover the general AM set-
ting where the non-zero region-based additive term R can critically
influence the result of the voting. In fact, we can prove the result
even if a nonzero term Rm exists for each mask.

Before stating the theorem, let us make the observation that since
there is a finite number of configurations and the production rules are
deterministic, regardless of the initial configuration the automaton is
bound to reach a state it has previously “visited”. This means that its
attractors are either fixed points or cycles of length at least 2. This
rather trivial property is independent of the weight matrix. However,
using more particular matrices results in a more “easily predictable”
behavior of the automaton.

Theorem 4.1. If matrix A is quasi-symmetric, then the attractors of
the corresponding AM Cellular Automaton can be either fixed points
or cycles of length 2.

Proof sketch. For simplicity, we only address the symmetric case;
the quasi-symmetric one is very similar. Without losing generality,
we can assume that the starting configuration ψ(0) belongs to an
attractor, that is to a cycle of period K, and we will safely consider
that iterations are residues modulo K. Suppose that K > 2; then,
there exists a cell n and an iteration i ∈ ZK such that ψi−2(n) >
ψi(n). By the definition of the AM automaton we have:

h
A · μ

(i−1)
ψi(n)

i
(n) +Rψi(n)(n) >h

A · μ
(i−1)

ψi−2(n)

i
(n) +Rψi−2(n)(n), (5)

while for all the other values of cells and iterations we have a sim-
ilar inequality, although not necessarily strict. After summing all
inequalities over i and n, and some algebraic manipulations, we get

X
i∈ZK

NX
n=1

h
A · μ

(i−1)
ψi(n)

i
(n) >

X
i∈ZK

NX
n=1

h
A · μ

(i−1)
ψi−2(n)

i
(n). (6)

However, both of the left and the right term are equal to the same

value, namely tr[
P

i∈ZK

M(i−1)T
AM(i)], where M(i) is the matrix

having the binary mask vectors μ(i)
m as its columns. This produces a

contradiction and so K ≤ 2.

One immediate consequence of Theorem 4.1 is that the conver-
gence behavior of the AM Automaton remains the same, regardless
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of local scaling and additive R terms. Obviously, the final config-
urations will not generally be the same; this is precisely the reason
behind their being employed by AM in the voting process: to bias
the vote towards more “informative” configurations.

Fixed-point guarantees. The convergence result above is con-
sistent with extensive empirical evidence reported in this paper and
in previous work on Active Masks [3]; namely for any random start-
ing state, the algorithm always converges to some fixed point when
a Gaussian filter is used by the voting functions. However, this also
brings up another interesting issue: why is AM with a Gaussian
smoothing filter always converging only to fixed points? Since a
Majority Cellular Automaton with symmetric weights may, in gen-
eral, also have oscillatory attractors (see the “box-filter” example
described later on), we can conclude that the (quasi-)symmetry con-
dition is too weak to explain exclusive fixed-point convergence.

It turns out that a sufficient condition for the convergence of the
Majority Cellular Automaton with symmetric weights to fixed points
only is the positive semi-definiteness of the weight matrix. This re-
sult is stated by the following theorem. Due to lack of space we omit
the proof. However, this and subsequent results regarding the con-
vergence of AM (e.g., generalization to the quasi-symmetric case)
will be included in a future paper.

Theorem 4.2. Let A be a symmetric, positive semidefinite (PSD)
real weight matrix. Then the corresponding Majority Cellular Au-
tomaton necessarily converges to fixed points.

Since any symmetric matrix A has real but not necessarily non-
negative eigenvalues the positive semi-definiteness condition truly is
stronger than symmetry.

“Box-filter” and related (counter)examples. The presence of
oscillating patterns for the 3-tap “box-filter” automaton (with peri-
odic convolution, and an even number of points) is explained by the
fact that the corresponding filter matrix is not PSD. Indeed, for a cir-
culant matrix the set of eigenvalues is given by the Fourier transform
of its first row [13]. Equivalently, they will be the result of evalu-
ating a polynomial (in this case, XN−1 + X + 1) at the roots of
unity. However, if N ≥ 4 is even, then (-1) is a root of unity, and
by evaluating the above polynomial at (-1) we get (−1) < 0, which
proves our claim that matrix A is not PSD. By similar arguments,
we can show that the “cross” filter (von Neumann’s automaton) in
2D presents oscillating states, namely the checkerboard patterns. Fi-
nally, the 3×3 box filter in 2D (also known as the Moore automaton)
also has oscillating states, namely the 2 × 2 checkerboard patterns.

Gaussian periodic case. Let us point out that when the pe-
riodicity assumption is enforced (i.e., when the matrix is circulant
or BCCB respectively), simultaneous symmetry of the filter g with
respect to both coordinate axes together with the nonnegativity of
its Fourier transform, guarantees the positive semidefiniteness of the
matrix and as a result, the corresponding AM algorithm will neces-
sarily converge to fixed points. Such is the case of toroidal space
with a Gaussian convolution filter. An extreme particular case is the
trivial one: when the “scale” parameter of the Gaussian is tiny, g
becomes a delta function and A is the identity matrix; then the algo-
rithm converges in one step no matter from which state it may start.
Of course, the value of such an “extreme” AM setup is vacuous; like
the experiment in Fig. 2 this suggests that a “reasonable size” of the
filter is important for the quality of the segmentation.

Diagonally dominant case. Finally, another interesting exam-
ple is the case when the weight associated to each pixel (i.e., the
“central” filter tap) is larger than the sum of the absolute values of
the weights of all other influences. For instance, in 1D the corre-
sponding filter matrix A will be (symmetric and) diagonally domi-

nant; by Gershgorin’s Circles Theorem the eigenvalues of A will be
(real and) nonnegative, which then implies fixed-point convergence.

5. CONCLUSION

We presented an alternative, yet natural, view of the Active Mask
segmentation algorithm [3] within the framework of Cellular Au-
tomata. By viewing AM as a special Majority Automaton, we could
provide theoretical guarantees for its convergence behavior in terms
of structural properties of the smoothing filter g or influence matrix
A. Besides a simple generalization of known convergence theorems
whose object is the quasi-symmetric case, we were able to find suffi-
cient conditions on A (e.g., PSD) to guarantee convergence to fixed
points only, which confirms empirical and experimental evidence.

We also studied whether a fixed mathematical measure (for our
discrete, square lattice case) can be reliably associated with conver-
gence behavior, that is, it varies monotonically as AM converges.
We empirically found that the number of zero-crossings matches this
profile. The connection to cellular automata literature brought up a
very interesting analog: the Lyapunov functional associated to an
automaton [12]. Although the number of zero-crossings may be a
Lyapunov functional, a rigorous proof in this sense remains out of
reach. Regardless, we will continue to ponder the richness of this
problem and expect that our better understanding it will result in
more efficient and intelligent biomedical image processing systems.
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