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ABSTRACT 

We present a methodology for the automatic identification and 
delineation of germ-layer components in H&E stained images of 
teratomas derived from human and nonhuman primate embryonic 
stem cells.  A knowledge and understanding of the biology of these 
cells may lead to advances in tissue regeneration and repair, the 
treatment of genetic and developmental syndromes, and drug test-
ing and discovery.  As a teratoma is a chaotic organization of tis-
sues derived from the three primary embryonic germ layers, H&E 
teratoma images often present multiple tissues, each of having 
complex and unpredictable positions, shapes, and appearance with 
respect to each individual tissue as well as with respect to other 
tissues.  While visual identification of these tissues is time-
consuming, it is surprisingly accurate, indicating that there exist 
enough visual cues to accomplish the task.  We propose automatic 
identification and delineation of these tissues by mimicking these 
visual cues. We use pixel-based classification, resulting in an en-
couraging range of classification accuracies from 74.9% to 93.2% 
for 2- to 5-tissue classification experiments at different scales. 
 

Index Terms— Stem cell biology, classification, feature ex-
traction, image analysis 

1. INTRODUCTION 

The biology of embryonic stem (ES) cells holds great potential as a 
means of a1dvancing the research of tissue regeneration and repair, 
the treatment of genetic and developmental syndromes, and drug 
testing and discovery [1-3]. By understanding the mechanisms 
through which ES cells differentiate into tissue, we can further our 
understanding of early development. The qualities of an ES cell 
that set it apart from other cells are its ability to self-renew, perpe-
tuate indefinitely, and produce the three germ layers from which all 
tissue is derived (pluripotency). In typical laboratory situations, ES 
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cells are defined by the proteins they express and their behavior in 
culture. Human and nonhuman primate cells are different in that 
they cannot be considered ES cells until they are able to produce a 
teratoma tumor when injected into immunocompromised mice. A 
teratoma is strictly defined by histological evidence of tissues de-
rived from each of the three primary germ layers of ectoderm, 
mesoderm, and endoderm. Initial observation of a teratoma, after 
hematoxylin and eosin (H&E) staining and imaging, reveals a mass 
of individual germ-layer components whose underlying organiza-
tion is unclear (see Figure 1 for examples). Quantitative knowledge 
of the contribution and organization of the germ layers may pro-
vide significant insight into normal and abnormal development. To 
accomplish this task, the tissues present need to be first identified 
and delineated. While visual identification of these tissues is time-
consuming, it is surprisingly accurate, indicating that there exist 
enough visual cues to accomplish this task.  We propose automatic 
identification and delineation of these tissues by mimicking these 
visual cues.  

 
Figure 1. H&E stained teratoma images at different magnifica-
tions; outlined in black are specific tissues (a, b) bone at 4X, (c) 
striated muscle at 10X, and  (d) myenteric plexus at 10X. 
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There is a growing demand for image analysis to aid both 
clinical and research applications in pathology, such as the deter-
mination of the absence or presence and severity of cancers such as 
breast and prostate cancer. These problems are either binary classi-
fication tasks (malignant or benign), or continuous-state assign-
ments (grading of severity of cancer) [4-7], and consider single-
class images precluding the need for segmenting the image into 
regions of interest (ROIs). A less common application is the classi-
fication of tissues in normal human systems [8]. Such applications 
take advantage of the known organization and relationships be-
tween different tissues in a given human system. 

Our task is significantly more challenging due to the chaotic 
nature of teratomas. Unlike cancer detection/grading applications, 
our task is a multi-class problem that requires segmentation of any 
given image into ROIs, each of which contain only one tissue that 
must then be identified. Unlike classification of tissues in normal 
human systems, teratomas do not present any known regular or-
ganization or relationships between tissues. As a result, the identi-
fication and delineation of tissues in H&E stained images of tera-
tomas is a rather general classification problem.  

Other teratoma-specific challenges include occasional low in-
tra-class similarity (one tissue type presents itself in many ways) 
and high inter-class similarity (multiple tissue types often have 
similar appearances) as shown in Figure 1. Additionally, since 
teratomas are masses of maturing tissue, the exact manifestation of 
a tissue changes depending on the age of the teratoma, introducing 
within each tissue type a series of subtypes with some common 
features, but also specific ones unique to the maturation stage.  

We propose an algorithm for high-resolution classification of 
H&E images to automatically identify and delineate tissues. We 
create a set of scalable image features we term histopathology 
vocabulary (HV) to mimic the visual cues used by experts to per-
form this task. We implement these features in a multiscale fashion 
to describe and classify a given image at any given scale. Given 
increasingly finer scales, the resulting classifications will provide 
increasingly sharper delineations of tissues.  

Classification of Single-Tissue Images. Our previous work fo-
cused on classification of single-tissue images in an effort to gauge 
the feasibility of developing an automated classification algorithm 
[9] with accuracy of 88% in a 6-tissue problem. As this algorithm 
classifies only single-tissue images, it requires segmentation when 
presented with multiple-tissue images. To automate the entire algo-
rithm, we must automate segmentation as well.  

We argue that our problem cannot be solved as segmentation 
followed by classification, but instead as a joint process. Many 
segmentation algorithms focus on performing segmentation based 
on apparent visual similarity or dissimilarity of regions, and are 
insufficient to segment teratomas into single-tissue ROIs. In addi-
tion to visual cues, there are textural and structural cues that must 
be included to achieve the level of segmentation we require. How-
ever, by using these cues, the distinction between segmentation and 
classification is lost, and thus, accurate segmentation of teratomas 
into single-tissue ROIs is identical to identification and delineation 
of tissues present in the teratoma, which is our focus in this work.  

2. HIGH-RESOLUTION CLASSIFICATION 

We begin by formalizing our notion of high-resolution classifica-
tion of an image. Given an image I of size M×N, our goal is to 
assign a label to every one of a set of disjoint regions of size w that 

partition the image. For simplicity we only consider square re-
gions. We will determine h t   t e func ion

  ,  (1) 
where xn and yn are the coordinates of the center of the nth disjoint 
region of size w in I, while  is the class (tissue) 
label associated with the egion s r uch that 

 ,  (2)  

where xn,i and yn,i are the coordinates of all pixels in the nth region, 
that is, all pairwise combinations of  
and . The highest possible resolution 
we can consider is when w = 0 resulting in a separate classification 
of every pixel and the sharpest delineations of tissues. While we 
could sacrifice some sharpness by decreasing the resolution to gain 
computational efficiency and possibly increased resolution-specific 
accuracy, we choose not to do so as it would require a partitioning 
of the image into disjoint regions. Such regions may not always 
align themselves well to the actual contours of the tissue regions 
and thus reduce the accuracy of our delineation. We refer to high-
resolution classification as pixel-level classification. 

Typically, pixel-level classification cannot be accomplished 
by looking at pixels in isolation, but rather with respect to their 
local neighborhood at a given scale (the size of the neighborhood). 
We consider multiple scales for many reasons, the most important 
being that a tissue is a collection of very local organization and 
appearance, in conjunction with typically medium-scale organiza-
tion. Thus, we extract features from a pixel using the pixel itself 
and its local neighborhood; we call these features local features. 

We must now determine which local features to use. As we 
are trying to mimic those visual cues used by experts, it is crucial 
to agree upon a common set of terms describing the features that 
are understood by both pathologists and engineers. We address this 
issue by developing such a set of terms we term histopathology 
vocabulary (HV), which we discuss next.  
Histopathology Vocabulary. The purpose of the HV is to provide 
a set of terms, understood by both pathologists and engineers, to 
concisely and accurately describe the cues (visual, structural, etc.) 
used by pathologists, and thus guide our feature design. Addition-
ally, these features should be robust and accurate mimicking the 
experts who are able to repeatedly and accurately perform the task. 

Creation of the HV is simple and the basic formulation is not 
limited to this application only. While the formulation below is by 
no means unique or new, it is rarely used. We now list the basic 
steps of the HV formulation in the context of our application: 
1. The pathologist describes (in as simple terms as possible) and 

ranks, in order of discriminative ability, the cues (visual, 
structural, etc.) used to manually identify each tissue type. 

2. The engineer takes the pathologist’s descriptions and trans-
lates them into terms with a clear computational synonym, but 
still in terms that are understandable by the pathologist. 

3. The engineer describes tissue types using only the translated 
terms; the pathologist then attempts to identify the tissue types 
based only on the engineer’s descriptions. 

4. Terms that allow the pathologist to identify tissue types are 
included in the HV. 
Using this formulation we have created an HV consisting of 

the following 10 terms: background/fiber color, lumen density, 
nuclei color, nuclei density, nuclei shape, nuclei orientation, nuclei 
organization, macro shape, cytoplasm color, and background tex-
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ture. We have currently implemented the first 4 terms as local fea-
tures and the experiments in this work use these 4 local features. 

We now briefly describe each of our initial 4 features. Back-
ground/fiber color is the apparent/average color of a pixel/region 
not belonging to nuclei, cytoplasm, or lumen (regions to which 
none of the H&E stains bonded to), described using RGB values. 
Lumen density is the percentage of a given area occupied by lumen 
resulting in a scalar value ranging in value from 0 to 1. Nuclei 
color is the apparent/average color of a pixel/region belonging to 
nuclei, again described using RGB values. Nuclei density is ana-
logous to lumen density but now for nuclei. For any given pixel, 
we will have an HV feature vector of length 8 (3 for each color 
feature and 1 each for density features) that concisely describes 
much of the identity of the various tissue types.  

HV Features. We now describe the implementation of our HV 
features. A given image first undergoes H&E stain separation [8] 
resulting in a hematoxylin-stain image (H) and an eosin-stain im-
age (E). Using these stain images, we create three binary masks 
representing the portions of the image belonging to nuclei, lumen, 
and background. Nuclei are identified by simply thresholding H to 
find sufficiently saturated regions which typically correspond to 
nuclei. Lumen is identified as regions where there is little contribu-
tion from either stain, and background is then determined as those 
regions not belonging to either nuclei or lumen. 

 
Figure 2: HV feature-extraction methodology. 

Given these binary masks, we compute the HV features local-
ly and at every pixel location efficiently using filters. We must first 
consider the size (support) of the neighborhood around each pixel 
and the weighting we use for each pixel in the neighborhood. Typ-
ically, both the support and weighting of the neighborhood are 
dictated by a single filter. The filter’s nonzero positions and values 
effectively determine which pixels belong to the neighborhood and 
how much each contributes to the feature. However, simple filter-
ing of masked images will suffer from inclusion of the artificial 
effect of the mask itself. For example, when computing the local 
nuclei color, given a sufficiently large neighborhood, we will likely 
include in it regions which do not include any nuclei. As it is not 
desirable to include the effect of these “black” regions on the com-
puted nuclei color, we could iteratively address each nuclei pixel 
and use values in its neighborhood that are identified as nuclei, at 
the cost of losing the computational advantages filters offer. 

We propose to use a pair of filters to avoid these artifacts. We 
define a pixel-count filter that merely filters the binary mask of 
interest (for example, the nuclei mask) with a flat (all 1’s) filter 
whose spatial support dictates the neighborhood to be considered. 
The result is an image where the value at any pixel is the number 
of on (nonzero) pixels in the mask in that neighborhood. Similarly, 

we filter the masked image (for example, nuclei-only image) with a 
pixel-value filter whose values specify the spatial weighting to be 
applied in the neighborhood. The result is an image where the val-
ue at any pixel is the spatially-weighted sum of the on values of the 
masked image. Given these two images, we proceed to perform a 
pointwise division with the pixel-count result dividing the pixel-
value result. The result is an image where each pixel’s value is the 
spatially-weighted sum of only the on pixels belonging to the 
mask. Using this formulation, we can quickly extract all 4 HV 
features for every pixel in the images. 

Classifier Training. After generating HV features, we train and 
test a classifier to evaluate the efficacy of our features in the scope 
of pixel-level resolution. As the focus of our work is not the design 
of new classification algorithms, we use available algorithms, spe-
cifically, neural networks (NN) trained using backpropagation. Our 
use of NNs is motivated by our success using them in our previous 
work [9]. However, it is unclear whether or not existing classifica-
tion algorithms are sufficiently powerful for this problem. 

We now train our selected classifier over a set of training da-
ta. Since we are using pixels as our fundamental unit of data we 
have an over-abundance of data. It is, in fact, computationally in-
feasible to use all available data while training certain classifiers 
including NNs. Thus, given a set of training images, we must de-
cide how many and which pixels from each training image to use. 
This is essentially an issue of overfitting, but not necessarily to the 
entire dataset but rather to the individual images. If we choose too 
many pixels from one image we risk learning the specific instances 
of tissues in that image as opposed to the tissue in general. Con-
versely, if we choose too few pixels we may not learn enough 
about the specific instances to account for its particular variations. 
Moreover, choosing many pixels from one image is not necessarily 
useful since spatially adjacent pixels are often highly correlated. 
However, there are instances where neighboring pixels within a 
tissue present very different appearances and thus potentially dis-
criminative information. We will address this complex issue in 
future work; here, we choose to use random sampling of pixels 
within an image to create our training data. 

3. EXPERIMENTS AND RESULTS 

We now present experiments and results which will evaluate the 
effectiveness of the overall algorithm while focusing on the influ-
ence of the HV features on performance. 
Dataset. Teratomas are derived and serially sectioned as in [9], 
then H&E stained and imaged at 4X magnification resulting in 36 
1600×1200 images. 15 tissues appear in these images although the 
exact number of instances of each tissue varies greatly. 
Experimental Setup. We evaluate our algorithm in a series of 2-, 
3-, 4-, and 5-tissue/class problems (see Table 1). Bone (B) and 
cartilage (C) are present in all experiments as they are relatively 
easily discriminable, while additional classes test the ability of the 
algorithm to maintain separation as the size of the problem grows. 

In each problem we choose training and testing sets by first 
choosing 50% of images with relevant tissues for training. From 
each of these training images we randomly sample 1% of available 
pixels from each available relevant tissue. We insure that each 
tissue is present in at least one training image. The testing set is all 
available pixels of the relevant images not being used for training. 
Local HV features are computed for all pixels in the training and 
testing set. Both the pixel-count and pixel-value filters are flat 
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We also present an example confusion matrix from the 5-tissue 
problem to indicate the scale of the problem and the sources of 
error in Table 2. To illustrate the delineation of tissues accom-
plished, Figure 3 shows the labeling of one image from each of the 
problems. 

circular filters of different radii of 4, 8, 16, and 32 pixels. A 2-layer 
NN is trained and then tested. We perform 10-fold cross-validation 
and report average accuracy for each experiment. 

Results. We present the best results for each experiment (Table 1), 
differentiated by the particular set of HV features used (different 
scales), indicating the apparently preferred scale of each tissue. We 
present the tissue-specific accuracy as all tissues do not have an 
equal number of available samples and presenting an overall accu-
racy would misrepresent the performance of the algorithm. 

4. CONCLUSIONS AND FUTURE WORK 

We presented a methodology for automatic identification and de-
lineation of germ-layer components in H&E stained images of 
teratomas derived from human and nonhuman primate embryonic 
stem cells.  Our results demonstrate that our simple and concise 
HV features are reasonably sufficient for problems of these sizes, 
and that given a relatively small amount of training data we are 
able to characterize a large portion of unseen data. While particular 
tissues are not as well represented by the 4 HV features, we believe 
this will be remedied once a full set of 10 HV features is used to 
cover all structural cues.  

Scale Average accuracy/  [%] 
 B C I N F 
16 81.3/2.4 93.2/0.4    
16 85.3/3.2 86.6/1.5 84.7/2.6   
16 75.4/5.4 80.7/4.4 64.0/6.2 63.1/10.2  
32 71.1/6.4 74.9/8.8 60.2/11.3 64.1/15.3 72.4/4.3 

Table 1. Best average tissue-specific pixel-level classification 
accuracies over 10-fold cross-validation for 2-, 3-, 4-, and 5-class 
problems using bone (B), cartilage (C), immature neuroglial tissue 
(I), neuroepithelial tissue (N) and fat (F). 

 B C I N F 

B 34.25 2.27 7.60 0.77 2.27 
C 1.30 129.70 3.81 7.76 14.66 
I 7.71 5.50 106.44 5.60 15.95 
N 0.10 0.45 2.93 35.67 11.88 
F 6.62 60.90 15.59 91.68 264.09 

In future work, we will focus on developing the full HV set, 
as well as creating a method with which to choose pixels from a set 
of training images. Additional classifiers will be tested and formu-
lated in a hierarchical/tree structure that will allow us to perform a 
type of taxonomic classification of tissues. We will also develop 
quantitative metrics with which to describe tissues in the pursuit of 
understanding the underlying biology of ES cells. 
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Figure 3: Top to bottom: Example delineations of tissues for 2-,  
3-, 4-, and 5-class problems respectively. Left to right: Original 
image, expert-labeled ground truth, our algorithm's labeling. Color 
coding: B (light blue), C (cyan), I (yellow), N (orange), F (ma-
roon), other tissues (dark blue). 
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