
1 INTRODUCTION 

1.1 The Need for Structural Health Monitoring 
 There are approximately 600,000 highway bridges 
within the U.S., and approximately 25 percent of 
them are currently rated as structurally deficient or 
functionally obsolete (Federal Highway 
Administration 2006)  

 Currently, bridges are inspected visually every 
two years. There is a strong interest to aid these 
inspection efforts with a more continuous, reliable, 
physics-based and less subjective procedure. This 
has led to a great deal of activity in structural health 
monitoring. Most of the current approaches consider 
data acquisition of bridges in a direct form, that is, 
by putting sensing devices at different specific 
locations on the structure. This poses a number of 
practical challenges, such as vandalism or 
involuntary damage of installed equipment, the need 
for a power source or complex energy harvesting, 
the initial and recurring costs associated with the 
monitoring system, and the need for extensive data 
processing and management at the bridge. Thus, 
there is an urgent need to explore alternative, more 
cost-effective means to monitor our complete stock 
of bridges on a regular basis. 
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1.2 Overview of Proposed Approach 
In this paper, we describe a possible approach 

for performing structural health assessment that 
takes a markedly different tack. This approach is 
based on the collection of, and multiresolution 
pattern analysis of, data in the form of dynamic 
responses of vehicles passing over bridge structures. 
This approach can be considered as indirect, since it 
acquires information about the bridge from sensor-
equipped vehicles moving over the bridge, as 
described by Lin & Yang 2005. Since some bridges 
over which such vehicles travel will be monitored by 
sensor systems installed on the bridge, direct data 
gathered from the bridge itself can be used for 
validation and calibration of the vehicle-based 
monitoring system. Thus, this indirect approach can 
also be considered as complementary to the direct 
approach. The vehicle-based approach will allow for 
much broader coverage of the entire bridge 
population, as only a fraction of the bridges will 
likely by sensed directly due to initial and long-term 
maintenance costs of the installed monitoring 
systems.  

The data will be acquired from many passing 
vehicles (cars, buses and trucks) that are able to 
timestamp and locate themselves with respect to the 
bridge and make that data available for structural 
analysis.  The data can then be processed and 
analyzed with advanced signal processing and 
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pattern recognition techniques, including state-of-
the-art multiresolution techniques such as wavelets, 
to identify the existence, location and severity of 
damage. The idea is to infer damage from changes in 
global and local properties of the bridge and its 
structural response characteristics that are present in 
the vehicle dynamic response. Such structural 
response characteristics include resonant 
frequencies, mode shapes, local deflections, etc. 

2 PROPOSED APROACH 
 
As described in the previous section, our approach is 
based on merging two main concepts: 1) the sensed 
data will be collected from many vehicles moving 
over the structure of interest; and 2) the data will be 
collected and processed using advance image 
multiresolution techniques.  We now present a more 
detailed discussion of the added features of this 
approach with respect to a direct monitoring 
approach. We start by reviewing some of the 
literature on direct approaches, some preliminary 
research on indirect approaches, the advantages of 
using an indirect monitoring approach, damage 
identification based on moving loads, the practical 
advantages of having mobile monitoring and a 
description of the multiresolution classifier. 

2.1 Direct Approaches for SHM 
During the past two decades, structural health 
monitoring and damage assessment have been very 
active research areas, and have motivated several 
excellent review and overview papers, which 
highlight some of the most relevant approaches (e.g., 
Van der Auweraer & Peeters  2003; Farrar & 
Worden 2007).   Brownjohn (2006) describes some 
general and fundamental objectives for monitoring 
civil infrastructure and points out some historical 
applications. More specific review topics include 
wireless, structural health monitoring, design of 
devices, and the trend for localized processing 
(Lynch, 2007); vibration-based condition monitoring 
(Doebling et al. 1998, Carden & Fanning 2004); 
damage identification using inverse methods 
(Friswell 2006); unsupervised learning (Fulgate et 
al. 2000, Worden & Dulieu-Barton 2004, Worden & 
Manson 2007); and vibration-based condition 
monitoring methods (Carden & Fanning 2004). 

One of the widely used classifications for 
structural health damage identification is based on 
the level of detection attempted (Rytter 1993): Level 
1: determine presence of damage; Level 2: 
determine location of the damage; Level 3: quantify 
the severity of the damage; and Level 4: predict the 
remaining service life of the structure.  A 
modification to these four levels, as described by 

Farrar & Worden (2007) considers the determination 
of the “type of damage” as an intermediate level 
between Levels 3 and 4. This incremental 
identification definition is suitable for the proposed 
approach, as it identifies the difficulty of detecting 
local failures.   
 Most of the existing literature addresses direct 
measurement approaches, in which sensors are 
placed on the structural elements from which one 
wishes to collect information to be used for the 
damage identification. The next section discusses 
research that has been done on indirect approaches 
to SHM, where data about the structure is collected 
from other sources, such as vehicles moving over 
the structure. 

2.2 Indirect Approaches for SHM  
 Yang et al. presented an indirect approach in 
2004, with the sole objective of extracting bridge 
frequencies from the dynamic response of a moving 
vehicle. They considered the bridge structure as a 
simply supported beam and the vehicle as a sprung 
mass.  They derived an approximate analytical 
closed-form solution based only on the beam’s first 
mode, and decoupled the bridge and the vehicle by 
neglecting the terms that contain the ratio of the 
oscillator mass to the beam total mass. This solution 
allows for the identification of a few significant 
dimensionless parameters that dominate the vehicle 
response, such as: S = πv/Lωb, a normalized vehicle 
velocity, where v = vehicle velocity, L = length of 
beam, and ω b= bridge’s natural fundamental 
frequency; and µ = ωb/ωv, where ωv is the vehicle 
(oscillator) vertical natural frequency. By 
performing a general finite element study, the 
concept was shown to be extendable to more 
complex structures.  Later, Lin & Yang (2005) 
presented the experimental verification of the 
approach by using a four-wheel commercial light 
truck, towing a small two-wheel cart. They used 
accelerometers and velocity meters near the center 
of gravity of the cart to sense its vertical motion.  
The experiment also considered the use of a heavy 
truck that played the role of ongoing traffic. The 
authors concluded that it is feasible to scan the 
natural frequencies using the cart-based approach as 
the numerical study anticipated.  

Another paper by Yang et al. (2005) explores the 
potential applications of an indirect approach to 
SHM. In this paper, Yang and his colleagues 
focused on the participation of the different modes 
of the bridges vibration and the complexity of 
dealing with multiple oscillators traveling at 
different speeds. The position of each vehicle within 
the bridge is crucial for determining the contribution 



of the different excitation sources (passing vehicles) 
to the dynamic response of the bridge when 
considering multiple oscillators.  Yang et al. (2005) 
also concluded that the first mode of the bridge was 
dominant in the dynamic response.  

Yang’s promising idea was not used for damage 
detection, but only for extracting the natural 
frequencies of the structure. Moreover, work done 
by Farrar indicates that natural frequencies by 
themselves are not good damage predictors (Farrar 
& Jauregui1998). The study by Farrar consisted of 
experiments on the I-40 Bridge used to compare five 
different damage assessment methods against the 
same set of data in order to contrast their detection 
capability. Different levels of damage were inflicted 
to a girder to test the sensitivity of the five methods 
considered. The studies found that resonant 
frequencies and modal damping are insensitive to 
low levels of damage, but experimentally 
determined mode shapes are more sensitive 
indicators. They also found that changes caused by 
environmental conditions can be as significant as the 
ones caused by damage.  

2.3 Damage Identification Approaches Using 
Moving Oscillators as Excitation Sources 

We now briefly describe some of the research efforts 
regarding moving loads for damage detection and 
experimental validation. Law & Zhu (2004, 2005) 
explored the changes in different damage indicators 
and the possibility of capturing those changes when 
considering the excitation of a moving oscillator on 
a beam. The flexural stiffness has been used as a 
damage index measure that has a good correlation 
with a vehicle’s response (Law & Zhu 2005). Other 
authors have presented a damage detection approach 
based on both the vehicle’s and the bridge’s 
response in the time domain (Majumber & Manohar 
2003). Yet others report the dynamic response of 
damaged beams subjected to moving masses 
(Mahmoud & Abou Zaid 2002, Bilello & Bergman 
2004), but these studies do not take into account the 
suspension system of a vehicle. This simplification 
can be well justified as dynamic response of the 
vehicle is far less important in terms of the overall 
load of the vehicle when considering a static and 
dynamic load separately. Experiments with moving 
masses over a sliding rail have been performed to 
validate mathematical models of damaged beams 
(Bilello & Bergman 2004).  

2.4 Practical Advantages of Indirect Measurements 
from Passing Vehicles 

In this section, we point out some of the issues that 
cause significant practical challenges for direct 

monitoring, which are absent or mitigated when 
using an indirect approach. Using an indirect 
approach to SHM will have a number of potential 
advantages.   
 The first issue is related to the powering of the 
sensors. Since direct monitoring requires that 
sensors be deployed on the bridge being monitored, 
there is a need to provide power for the sensors and 
their associated electronics and data transmission  
and storage devices.  A sustainable approach to 
providing this will likely consider energy harvesting 
in various forms, such as optimized solar energy 
(Alippi & Galperti 2008) or vibration based power 
collection systems (Beedy et al. 2006).  In the case 
of indirect monitoring, there is readily available 
energy from the vehicle’s electric system that 
completely eliminates the concern for how to 
provide power to the sensors while the vehicle is in 
operation. 
 The useful life of structures is much greater than 
the current reliable lifespan of most sensors. An 
indirect monitoring approach mitigates this issue 
because it will use data collected from many passing 
vehicles, which will have a variety of ages and thus 
a variety of ages of their sensor systems.  As 
vehicles are replaced, the sensors in them will be 
replaced as well.  In addition, the sensors will be 
protected from environmental conditions and the 
threat of vandalism, and will be able to be evaluated 
on a regular basis during routine vehicle 
maintenance intervals, whereas direct measurement 
devices require costly onsite sensor maintenance and 
are subject to harsh environmental conditions and 
vandalism. 
 The indirect monitoring approach will not cause 
traffic interruption, nor require the use of artificial 
loading devices, such as shakers or controlled load 
trucks. We consider the many moving vehicles on 
the bridge as both the excitation and sensing source 
for the sensing system. The basic idea is that the 
vehicles collect information about the dynamic 
vehicle-bridge interaction as they drive on the 
bridge.  

2.5 Multiresolution Classification Approach 
The task of classification is a standard signal-
processing task that involves assigning one of the 
possible classes to a given input signal. This is 
typically done by computing certain numerical 
descriptors, called features, on the given input, in the 
hope that these descriptors will be sufficient to 
discriminate among classes. For example, some of 
the commonly used features (and those we use in 
this work) are the Haralick texture features (Haralick 
et al. 1973). Thus, a generic classification system 



has a feature extraction block followed by a 
classifier block (see Figure 1). 
 

 
Figure 1. Multiresolution classification system for  “Damaged” 
and “Undamaged” Labels. 
 

Kovačević’s lab has developed a new 
multiresolution classifier (Chebira et al. 2007c), that, 
instead of working on the original signal, passes it 
first through a multiresolution decomposition block 
generating a number of smaller-size signals, called 
subbands, in different subspaces. These subbands 
then each undergo separate classification, generating 
their own local classification decisions. In other 
words, each of the subbands is classified, each 
representing a possible classification of the actual 
signal. To reconcile these different possible 
classifications, the decision making block arbitrates 
and decides on the final label.   This arbitration can 
be in closed form (that is, a solution to a least 
squares problem is found) or open form (where a 
reward-punishment system is iteratively applied 
onto subband local decisions). There can be as many 
labels as desired to take into account the different 
levels of damage identification. Considering the idea 
of Existence, Level 1 of damage identification, 
classifying signals as being  “Damaged” and 
“Undamaged” (Figure 1) is the first experiment 
presented later in this paper.   
 In the research presented, synthetic data was 
created that would enable testing of the 
classification capability of the multiresolution 
algorithm for our application. The vehicle response 
vertical acceleration data was generated using a 
simplified numerical oscillator-beam interaction 
model that we describe below. 

3 OSCILLATOR-BEAM INTERACTION 
MODEL 

 
To explore the feasibility of this approach, an 
oscillator-beam interaction (OBI) model was 
implemented. It considers the coupling of the 
oscillator and the beam at a regular interval, ∆T. The 
algorithm iterates until the deflection of the beam at 
the point of interaction (zb) and the base degree of 
freedom of the oscillator (zv) converge. Only a few 
iterations are needed. Figure 2 shows a scheme of 
the implemented model. 

  
 

      
Figure 2. Oscillator beam model. 
 
The model was validated against the results reported 
by Yang et al. (2004). For the experiments we chose 
oscillators of three different vertical fundamental 
frequencies (1.1, 1.7, and 3.4 Hz) to represent a 
small vehicle, large family vehicle and a truck, 
respectively.  In addition, 30% critical damping was 
assumed for the different oscillators for modeling 
the shock absorbers and other energy dissipation in 
the vehicle. The beam is an idealization of a 40-m 
bridge, I=0.219 m4 (Kim & Kawatani 2008) and it is 
discretized into 10 finite elements. 

With some small changes to this numerical model, 
as described in the following list, we were able to 
produce synthetic response data for different damage 
conditions, such as: 
a. distributed section loss, such as that caused by 

corrosion, and modeled by a percent reduction of 
the moment of inertia of a beam finite element;  

b. a section crack, such as that caused by fatigue in 
steel elements, and modeled as a rotational 
spring, where the spring stiffness depends on the 
crack depth being modeled; and  

c. frozen bearings of bridge supports, modeled 
using rotational spring elements linked to the 
rotational degrees of freedom at the ends of the 
beam.  

The location and severity of these three damage 
conditions can be easily altered within the modeled 
beam. This allows a large number of different 
damage cases and associated response signals to be 
generated. In the research reported here, we first 
tested the ability of the approach to detect the 
absence or presence of section loss in different 
elements, and then considered an example in which 
different levels of damage were present. 

4 MULTIRESOLUTION CLASSIFICATION  
 
We now give a brief overview of the multiresolution 
techniques and wavelet-based approach we are 
using.  Multiresolution techniques have been 
extensively studied and used in signal and image 
processing over the past two decades (Daubechies 
1992, Vetterli & Kovačević 1995, Mallat 1999). We 



call multiresolution techniques those signal 
processing tools that analyze and process signals 
across different frequency resolutions and scales. 
They have arisen in response to the inability of some 
standard techniques, such as Fourier analysis, to deal 
with nonstationary signals. For example, abrupt 
transitions in time cannot be captured using Fourier 
methods. An easy analogy is that with map 
programs on the Web, such as Google Maps. If we 
are looking into how to get to New York from 
Boston, the initial route will be at the 
scale/resolution of 50 km/1 in. Once close to New 
York, we will want more detailed directions, say to 
the Museum of Natural History, and would thus 
move to a scale/resolution of 2000 ft/1 in, which is 
the street level. In other words, we first investigated 
the global behavior of our signal, followed by its 
local behavior at a certain scale. This approach can 
be used in any situation where the signal is 
nonstationary. For example, we may assume that the 
data collected from a vehicle on a bridge will differ 
depending on time of day, day of the year, season, 
and many other factors. This is one of the main 
advantages of using this approach, as it enables the 
classification of new data based on a baseline 
provided by previous records. It takes into account 
modifications of the response by various factors, 
such as seasonal changes or daily temperature 
variations, as long as sufficient data is available.  

The multiresolution techniques achieve their 
goal by decomposing a signal into zooming spaces 
(e.g., coarse subspaces and detailed subspaces) and 
are implemented by a signal-processing device 
called a filter bank. This filter bank then implements 
a specific multiresolution transform. Some well-
known transforms that fit within this framework are 
the discrete Fourier transform (DFT) and the 
discrete cosine transform (DCT). Others, originating 
in the multiresolution literature, are the discrete 
wavelet transform (DWT) and a family of wavelet 
packet (WP) transforms. Which one of these to use 
depends on the specific application at hand. For 
more details, see, for example, Vetterli & Kovačević 
(1995). 

One possible characterization of multiresolution 
transforms is in terms of whether they represent the 
signal in a nonredundant or a redundant fashion. 
Redundancy often leads to increased accuracy, as 
has been found in a host of bioimaging problems 
(see Chebira & Kovačević 2008a and references 
therein). One possible example of the power of 
multiresolution techniques in pattern classification is 
that developed for the classification of Drosophila 
embryo development (Kellogg et al. 2007). Using a 
highly accurate multiresolution classification 

algorithm developed by Kovačević and her group, 
the process is now automated and reproducible, with 
accuracy greater than 98% (Kellogg et al. 2007).  

The use of wavelets in structural damage 
identification is relatively new. Melhem & Kim 
(2003) used continuous wavelet transform and 
Fourier analysis to detect damage on two full-scale 
concrete structures (a prestressed beam and 
pavement on grade) subjected to fatigue loads. 
Acceleration and deflection measurements were 
taken directly from the beam.   Differences between 
initial and final damage states were significant and 
the wavelet analysis allowed for the identification of 
damage progression on both of the studied 
structures. Another study by Sun & Chang (2004) 
used a statistical wavelet-based method for structural 
health monitoring, which considered progressive 
damage on a steel cantilever beam. Sun concluded 
that indicators from the Wavelet Packet Signature 
(WPS) are excellent indicators for monitoring 
structural health condition. They are sensitive to 
structural damage and insensitive to measurement 
noise.  

A recent paper by Law et al. (2008) makes use 
of wavelet transforms for identifying a moving load 
over a beam and the prestress condition. In Law’s 
work, the measuring points are located at the bottom 
of the beam. The forces of two moving axles and the 
prestress levels are identified successfully over time 
with high accuracy.  

4.1 Multiresolution Algorithm for Classifying 
Signals from the OBI Model 

The multiresolution classifier we use here was 
originally developed for images. For the purpose of 
testing whether it would make sense to use it for 
classifying the signals taken from a vehicle moving 
over a bridge, we had to produce images from the 
collected vehicle data. This requires the images to be 
at the same scale, considering the maximum and 
minimum values of the whole set of data as the scale 
limits. As an example, Figure 3 shows an image 
before scaling. It corresponds to a 2% inertia 
reduction on an element adjacent to the midspan of 
the beam. The ordinate represents the different 
velocities of the oscillator, and the abscissa refers to 
the relative position of the oscillator with respect to 
the beam. The colors represent the acceleration 
value of the oscillator. The scale and frequency 
content of the image represent the dependency of the 
response on the position and velocity of the 
oscillator. 

At Level 1, the multiresolution decomposition 
takes an image and produces a number of smaller 



images from which the original one can be 
reconstructed, if needed (see Figure 4). At Level 2, 
the same, or different, multiresolution 
decomposition is applied to a subset, or all, of the 
images from Level 1. The process can be repeated 
many times, at each level producing subbands at a 
different resolutions/scales. For example, Figure 4 
shows a preprocessed scaled input image, and four 
subbands at Level 1. In our experiments we used a 
2-level full decomposition (meaning at each level, 
each subband is split into four subbands at the next 
level). The left-most subband is typically the one 
that carries the global characteristics of the signal 
(so it very much looks like the higher-level image, 
but blurred), while the other three carry the 
necessary details to reconstruct the original (these 
are the local changes, or, edges). 
 

 
Figure 3. Raw image representation of acceleration response of 
traveling oscillator. 
  

When small amounts of data are available, as is 
the case here, a technique called leave-one-out cross 
validation (LOOCV) is used. LOOCV attempts to 
estimate the generalization error of the classifier, 
which is effectively the capability of the classifier to 
correctly classify unseen data (i.e., data that has not 
been trained on). Let N be the number of data 
samples, [x1 x2 … xN], for a particular class of 
images to be classified. For a particular data sample 
xi, the classifier is trained using samples [x1 … xi-1 
xi+1 … xN] and is tested over the sample xi. This is 
repeated for each available data sample that results 
in N separate classifiers being trained and tested. 
The overall accuracy of the classifier is the average 
accuracy over these N results. 

 

 
 
Figure 4. Multiresolution decomposition (Level 1). 
Preprocessed original image (top); four subbands (bottom). 

4.2 Experimental Setup and Results 
We conducted two experiments with the acceleration 
response of the oscillators obtained from the 
numerical model described in Section 3.  

Experiment 1: Existence of damage classification.  
In this experiment, we attempted to classify the 
bridge into one of two categories: “Undamaged” (5 
cases, Table 1); or “Damaged” (Levels 1-4 lumped 
together, 25 cases, Table 1).  Thus, with N=30, there 
were 30 two-class classification experiments for 
each of the three oscillators and each of the 10 
elements.  
 
Table 1.  Damage cases considered. ______________________________________________ 
Label      Damage range [%]  # of cases  
______________________________________________ 
Undamaged    0-4      5  
Level 1      5-9      5 
Level 2     10-14      5 
Level 3     15-29      8 
Level 4     30-55      7  _____________________________________________ 

 
Table 2 shows the overall classification accuracy 

for the “Undamaged” and “Damaged” cases over 
each element. These results indicate that this 
approach is able to achieve very high accuracy in 
classifying a damage condition occurring over an 
element near the midspan for the three oscillators.  
 
Table 2.  Two-class damage classification accuracy (in %). _________________________________________________ 
Element     Oscillators        Accuracy  

1.1Hz     1.7 Hz     3.2Hz 
(small veh.)  (family veh.)   (truck)      _________________________________________________ 

1    96.7    83.3    76.7    85.6 
2     76.7    86.7    73.3    78.9 
3    96.7    86.7    86.7    90.0 
4    93.3    93.3    96.7    94.4 
5    93.3    93.3    96.7    94.4 
6      100.0    90.0      100.0    96.7 
7     93.3    93.3    80.0    88.9 
8     83.3    90.0    90.0    87.8 
9    83.3    86.7    73.3    81.1 
10    90.0    83.3    83.3    85.5 _________________________________________________ 
Accuracy 90.7    88.7    85.7    88.4  _________________________________________________ 

 
Note that the first oscillator achieves the highest 

average accuracy, followed by the second and then 
the third. One might infer that the larger the load, the 
lower the accuracy. These results are preliminary 
because they use a highly idealized beam to 
represent a bridge.  We must run more experiments 
involving structures with different natural 
frequencies and different vehicles to validate this 
conjecture. Also, in this experiment, it was possible 
to determine the damage in some elements very 
accurately (for example, Element 6), while not for 
others (for example, Element 2 near the end of the 
beam). Overall, the multiresolution classification 
approach achieved an average accuracy of 88.4% in 



determining the existence of damage. We are thus 
encouraged that a more comprehensive investigation 
of this approach will improve these accuracies. 

Experiment 2: Severity of damage classification. 
This experiment considers an undamaged class and 
four damage levels for a total of five classes/labels 
as described in Table 1. With these five labels, there 
were again N=30 classification experiments, but 
there were five classes to be distinguished for each 
oscillator and element. Table 3 shows the overall 
classification accuracy for the five classes 
(“Undamaged” and “Damaged” levels 1-4) for each 
oscillator and beam element. The results shown in 
Table 3 can be read as: the percentage of accuracy to 
classify an image representation (see Figure 3) of the 
vehicle response as a specific damage level (Table 
1), on a particular element and considering a 
particular vehicle. Note that what is reported in the 
table is the aggregate accuracy of the methodology 
for distinguishing each of the five levels of damage.  

First, observe that, as expected, the accuracies in 
Experiment 2 are lower compared to those from 
Experiment 1. This is because it is harder, using the 
same number of actual collected signals, to 
distinguish between five different levels of damage, 
as opposed to just the undamaged/damaged 
situations. In contrast to Experiment 1, the middle 
oscillator gives the most accurate results in 
Experiment 2. Overall, the multiresolution approach 
achieved an average accuracy of 71.2% in 
determining the severity of the damage. 

5 CONCLUSIONS 
 
We have presented an alternative approach for 
indirect monitoring of the structural health of 
bridges through data collected from vehicles passing 
over a bridge. To test the validity of this approach, 
we created a numerical model of the interaction 
between a simple oscillator and a simple beam and 
subjected the beam to different levels of section loss 
at different locations.  We then subjected the 
simulated responses to these damaged states to a 
multiresolution classification system in order to 
determine how accurately the damage level could be 
classified.  The results of these two experiments, 
while limited and very preliminary, seem promising. 
We are encouraged to further pursue the refinement 
and evaluation of this approach.   
 
 
 
 
 
 

Table 3 Five-class severity of damage classification accuracy 
(in %). _________________________________________________ 
Element     Oscillators        Accuracy  

1.1Hz     1.7 Hz     3.2Hz 
(small veh.)  (family veh.)   (truck)      _________________________________________________ 

1    66.7    80.0    83.3    76.7 
2    66.7    76.7    66.7    70.0 
3    80.0    73.3    40.0    64.4 
4    60.0    66.7    70.0    65.6 
5    76.7    80.0    63.3    73.3 
6    76.7    80.0    73.3    76.7 
7    76.7    73.3    70.0    73.3 
8    73.3    66.7    50.0    63.3 
9    66.7    83.3    66.7    72.2 
10    73.3    80.0    76.7    76.7 _________________________________________________ 
Accuracy 71.7    76.0    66.0    71.2 
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