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ABSTRACT A

We propose an algorithm for the compression of ECG signals, i
particular QRS complexes, based on the expansion of sigritis
compact support into a basis of discrete Hermite functiofisese
functions are obtained by sampling continuous Hermite tions,
previously used for the compression of ECG signals. Ourrdlgo
uses the theory of signal models based on orthogonal polaigm
and achieves higher compression ratios compared withitiigts “_f"T" s 51— 1 S
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Fig. 1. (a) ECG structure (image courtesy of National Instru-
1. INTRODUCTION ments, http://zone.ni.com/devzone/cda/tut/p/id/6349)QRS com-
plex (centered around the peak).
Many signals encountered in electrophysiology often hawvecén
be assumed to have) a compact support. These signals usemlly

resent the impulse response of a system or organ to an e#ctri exact reconstruction of a signal, large computational, s an a
stimulation recorded on the body surface. Examples incklde-  priorj selection of coefficients for reconstruction.

tr_ocardiographic (ECQ), electroencephalographic, andetectric Contributions. We propose an improved compression algo-
signals. , N o rithm for QRS complexes that expands digitized signals tinéoba-
Visual analysis of long-term repetitive electrophysiot@y sig-  gjs ofdiscreteHermite functions, obtained by sampling the continu-
nals, especially in real time, is a tedious task that requhe pres- 5 Hermite functions at specific points, not necessarily oniform
ence of a human operator. Computer-based systems have &een arid. This approach is based on results obtained from owmtéc
veloped to facilitate this process. For efficient storagepmatic developed theory of signal models based on orthogonal pan
analysis and interpretation, electrophysiologic.al.sligrame usu.ally als [5, 6, 7]. The proposed algorithm achieves the perfemirre
represented by a set of features, either heuristic, suchumsieh gy ction of signals, has a lower computational cost, ataivalus
and amplitude, or formal, such as coefficients of the exparisian ¢, choose coefficients for reconstruction from a larger pbabeffi-
orthogonal basis. In the latter case, a continuous basibeased, cients. Experiments comparing the approximation accudaoyon-
and the projection and reconstruction of a compact-supgnal  girate that the new algorithm performs on par with other ritigms

are computed using numerical methods for integral appraton, ¢ oy compression ratios (less thars), and outperforms them for
such as a numerical quadrature. Alternatively, a discragistcan higher compression ratios.

be used, and a discrete signal transform, such as the disevatier

trgnsform (DFT) or t.he dlscrete.cosme transfqrm (DCT).’ barap- ous Hermite functions and their use for the QRS complex cespr
plied to a digitized signal—obtained by sampling a contirione. sion. It also introduces Hermite polynomial transforms ameir

. _In both qo_ntmuous and discrete cases, usually onIy_a few proproperties. Section 3 describes the new compression #igoend
jection coefficients are used for the storage and recorigiruof

- . . analyzes its advantages. The compression accuracy ofdpeged
a S|gr_1al, Iea_dlqg t_o a_recons_tryc_tlon error. The _goal c_)_f - algorithm and other compression algorithms is comparetérex-
pression optimization is to minimize the error while aclevthe

. i LS periments discussed in Section 4. Section 5 summarizestudts

great.est compression (for example, by using the fewesficiesits presented in this paper.
possible).

In this paper, we study the compression of QRS complexes,
which are the most characteristic waves of ECG signals [Hle T 2. BACKGROUND
structure of an ECG signal and an example QRS complex areshow
in Fig. 1. In particular, we examine the expansion of QRS dew§s  ormjite functions. Consider the family of polynomialil, (), ¢ >
into the basis of_ Herml_te funct_lons. Suc_h functions, in rtl_aentln- 0, that satisfy the recursion fdr> 2
uous form, provide a highly suitable basis for the represtén and
compression of QRS complexes [1, 2, 3, 4]. However, as welslsc
in Section 3, the reported computer implementations of sxglan-
sion suffer from certain limitations, such as the inabitiyobtain an

Organization. Section 2 provides an overview of the continu-

Ho(t) = 2tH,_1(t) — 2(€ — 1) Ho_a (),

with Ho(t) = 1 and Hi(t) = 2t. They are known aslermite
This work was supported in part by NSF grant CCF-633775. polynomials These polynomials are orthogonal on the real ke



(a) '] (t7 0) (b) ©P1 (tv U)
(C) w2 (tv U) (d) ¥3 (tv 0)

Fig. 2. First four Hermite functions (plotted for the same scale

with respect to the weight functiom*”
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It immediately follows from (1) that the functions

pe(t.0) = —e "2 Hi(1/0) @

Vo2lel/r

are orthonormal ofR with respect to the inner product

<90[(t7a-)7 <pm(t,a)> = /]R(pl(t’ U)‘Pm(tﬂ)’)dt =0r—m- ?3)

These functions are callddermite functions The set of Hermite
functions{y(t, o) }¢>0 is an orthonormal basis in the Hilbert space
of continuous functions defined dk [8]. Any such functions(t)
can be represented as

S(t) = Z C“Oe(t 0)7

>0

4)

where
ce = (s(t), pe(t,0)) = /Rs(t)gog(t,a)dt.

The first four Hermite functions are shown in Fig. 2. Noticatth
they become approximately zero as the valuétpfncreases. We
can assume that they have a compact supportgatido) = 0 for
t ¢ [-T,,T,], whereT, depends om. If s(t) also has a compact
support of[—7,, T ], then we can compute the coefficiemtswith
a finite integral:

Compression.In practical applications, only a finite numh&f
of Hermite functions are used to reconstruct the sigi&) in (4).
Depending on the computational cost@f the M corresponding
coefficientscy,, . .., ce,,_, Can be chosen a priori, so that only they
are computed. Alternatively, a larger pool of coefficients de

s(t)pe(t,o)dt. 5)

Digital implementation. A computer-based computation of the
coefficient (5) and the Hermite expansion (4) has to be pexdadr
in the discrete form. The integral in (5) can be computed with
numerical quadrature using, for example, a rectangle rule:

Te
o= / s()pet,o)dt ~ > s(k)pe(Th, o) (tk — tr1).
—Ts k=—K
(6)

Here,—T =t_x-1 <t_-g < ...<tx-1 < tx = T, and each
tk—1 < 1 < tx. The signal is then approximated wifi Hermite
functions as

K

M-—-1

8(Tk) = ) Ctp P (T, ).
m=0

Let t; be such that, — t,—1 = A for all k. Then (6) and (7)
can be expressed in the matrix-vector notation. Let

(@)

S(TfK) Co §(7'7K)
5= . ? c= . ’ é = .
s(TKr) CM—1 5(tr)
Then
c=A®"s and &= dc, (8)
where® € RCE+HDXM gych that itsm-th column is thel,,-th
Hermite function sampled at the poirtsi, 7—k+1,...,TK :

Pim = ©e,, (Thy 0)

for—- K <kE<K,0<m< M.

Observe that for perfect reconstructién= s, ® must be an
orthogonal matrix®®? = Iox 1.

Compression of QRS complexes: Previous workThe com-
pression of QRS complexes using the expansion into coniguo
Hermite functions has been studied in [1, 2, 3, 4]. It wasierig
nally motivated by the visual similarity of QRS complexesntered
around their peaks, and Hermite functions, as can be olbénwa
Figs. 1 and 2. Varying the value efallows us to “stretch” or “com-
press” the Hermite functiong,(¢, o) to optimally match a given
QRS complex.

Since ECG signals are usually available as discrete signaislis-
tantly sampled at, = kA, previous works uset, = 7, = kA
in (8). In addition, they proposed to use only tiirst A/ Hermite
functionsyo (t,0), ..., pm—1(t,o) for the approximation of QRS
complexes.

Hermite polynomial transforms. In [5, 6, 7], we developed a
new class of signal models based on orthogonal polynofiBlge
to the lack of space, we omit the discussion of these signdetsp
and only mention the results that are used in Section 3 tatiwans
an optimized QRS complex compression algorithm.

Consider a set of distinct sample poirts= {ao,...,an-1}
and a set of linearly independent polynomiBls= { Py (t),. .., Pn—1(t)}.
Then x n matrix

Ppo = [Pg(ak)] 9)

0<k,b<n’

1A family of polynomials{ P, (t)},> is calledorthogona) if they sat-

computed, from which\/ are selected. For an orthonormal basis, itiSfY @ recursion of the formp () = a;Py—1(t) + bePy(t) + coPrya (t),

can be demonstrated that selecting coefficients with tigesimag-
nitude minimizes the approximation error, computed as tiergy

of the difference between the sigrsk) and its approximation with
M basis functions.

usually with initial conditionsPy(t) = 1 and P_; = 0. Each fam-
ily is orthogonal over an interval C R with a weight functionw(t) :
J; Pe(t) P (t)w(t)dt = 0 if £ # m. Each polynomialP; (t) has exactly’
simple real roots. Hermite polynomials are an example dfogronal poly-
nomials.



is called apolynomial transform In general, it is non-trivial to
compute the invers@, ! . However, in the particular case when

Py(t) = ﬁH{(t) for 0 < ¢ < n are scaled Hermite polyno-
mials, anduo, . . . , an—1 are the roots of?, (¢),

Ppo=PhaD, (10)

whereD € R™*" is a diagonal matrix whosk-th diagonal element
is \/Q/TL/Pnfl(Oék)P,;(Oék).

Using the decomposition algorithm for polynomial transfier
derived in [9, 6], a matrix-vector product wifhp , can be computed
with only 3n + O(% log %) operations instead af(nlogj n),
which is the best known computational cost [10]. As a reghk,
cost is reduced approximately by a factor of 2. Similarly, ces
use (10) to compute a matrix-vector product WRI;L with only
4n + O(% log3 2) operations instead @(n”) operations that are
required in general. The resulting reduction of the comjmnal
cost is even more significant, especially for large values. of

3. PROPOSED ALGORITHM

The compression algorithm based on the expansion intoraenti
ous Hermite functions has several important limitationgloes not
achieve the perfect reconstruction of a sighaince®®T # Ik 1
for 7. = kA. As a resultswill not converge tcs, regardless of the
numberM of Hermite functions used for the construction of an ap-
proximation. This problem could be solved by settig= 2K + 1
and using®~! instead of®” to computec in (8). However, the
matrix-vector produch~*srequiresO((2K +1)*) operations. This
cost can be prohibitive for largk, and makes this approach imprac-
tical. Finally, the solution suggested in previous worksttuses the
first M Hermite functions, may not be the optimal choice for the
construction oBwith M basis functions.

Proposed algorithm. In Section 2 the parameterwas used to
“stretch” and “compress” the Hermite functions (¢, o) relatively
to the signals(t). Alternatively, we can fixr = 1, and introduce
a parametei to “stretch” and “compress” the signa{t)\). In this
case the numerical quadrature (6) becomes

> s(tN)pe(t, 1)dt = Z s(TeA) e (Th, 1) (tk — th—1).

o= /7 2
(11)

Furthermore, we can use different, non-equispaced sagpdimts.
Letm, = ax—k, —K < k < K, be the roots of the Hermite polyno-

Ty

mial Hax +1(t), and define polynomial®, (t) = ﬁH{(t). Then
® in (8) has the form '
b = 7T71/4WPP,(¥7
where y
H —a /2
W= dlag(e ) )O§k<2K+1

is a diagonal matrix, an®p ., is given in (9).
Furthermore, ifM = 2K + 1, then it follows from (10) that the
columns of® form an orthogonal basis:
®d” =7 PW3ADT! = A,

In order to account for the vector norms, we pre-multiply ithaut
signals with the weight matrixA !, and thus compute

c=dTA s
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Fig. 3. A QRS complex and its approximations with 10% and 5%
errors.

instead oft = ®T'sin (8).

Advantages. The proposed algorithm addresses all limitations
of the original compression algorithms based on contintitersnite
functions. The perfect reconstruction of signals can béeseld by
settingM = 2K + 1 and usingdb” A~ ! instead of®” in (8) to com-
putec. Since the computational cost of bothand ®7 is approx-
imately O(2£tL Jog3 (25£1)), we can compute all coefficients
for0 < ¢ < 2K + 1, and only after that select a few optimal ones
to construct the approximaticn

4. EXPERIMENTS

Setup. In order to analyze the performance of the proposed com-
pression algorithm, we study the compression of QRS coreplex
extracted from ECG signals obtained from the MIT-BIH ECG Gom
pression Test Database [11]. A total 8f = 29 QRS complexes
are used. Each complex is available as a discrete signahgtie
2K + 1 = 27, and represents a continuous signal of duration 104
milliseconds sampled at 250 Hz.

For the original compression algorithm that uses contisuder-
mite functions, we comput2K + 1 coefficientsco, . . ., c26. Among
them, we select < L < 27 coefficients with the largest magnitude,
construct the approximatigusing the transpose @f, and compute
the approximation error

5—5
5, _ 5=l
IIsl]2

For the new compression algorithm, we have to re-sample the
QRS complexes at pointg A\ proportional to the roots;, of Pax 41 (t).
To do so, we interpolate the available discrete signals sitbfunc-
tions, and sample it at points.c. Then we compute K + 1 co-
efficients, select. ones with the largest magnitude, construct the
approximation using the inverse transform, and computejpipeox-
imation error.

In addition, we study the accuracy of compression algorithm
based on two widely-used orthogonal discrete signal toaums—
DFT and DCT. As above, we apply the transformssteselectL
largest coefficients, and compute the approximation erfrtinere-
constructiors.

The purpose of the experiment is to obtain average apprexima
tion errors ofl 0% and5% with the fewest coefficients possible. This
goal is motivated by the observation that an approximatiam ¢ap-
tures90% of the energy of a QRS complex is sufficient to represent
its large-scale features. An approximation that captQéé$ of the



~DFT signals with compact support (such as ECG signals) intodiseslof

a0 ~bcr discrete Hermite functions sampled from continuous Hegrhitc-
—-H ity . . . .
» hermite (new) tions at sampling points that are the roots of a corresponHier-

mite polynomial. The new method uses results from our régent
developed theory of signal models for orthogonal polyndsniand
achieves a better compression ratio than the original idhgbased
on continuous Hermite functions. In addition, the compatel cost

of the compression and approximation is reduced.

Approximation error (%)
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Number of coefficients
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