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ABSTRACT

We present the current state of our work on a mathematical framework for identification and delineation of
histopathology images—local histograms and occlusion models. Local histograms are histograms computed over
defined spatial neighborhoods whose purpose is to characterize an image locally. This unit of description is
augmented by our occlusion models that describe a methodology for image formation. In the context of this
image formation model, the power of local histograms with respect to appropriate families of images will be shown
through various proved statements about expected performance. We conclude by presenting a preliminary study
to demonstrate the power of the framework in the context of histopathology image classification tasks that, while
differing greatly in application, both originate from what is considered an appropriate class of images for this
framework.
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1. INTRODUCTION

This paper highlights the main results given in a journal article6 about local histograms, and introduces some
new concepts currently being pursued in follow-up research. Local histograms of an image are histograms of
the values of the pixels that lie in a neighborhood of a given pixel’s location. They indicate the combination
of pixel intensities or colors that appear in that neighborhood. We model our images as functions from a finite
abelian group X of pixel locations into a second finite abelian group Y of pixel values. That is, our images f
are members of the set `(X ,Y) := {f : X → Y}. The local histograms of an image f are defined in terms of a
nonnegatively-valued weighting function w ∈ `(X ,R) whose values sum to one. Specifically, the local histogram
transform of f with respect to w is the function LHwf : X × Y → R,

(LHwf)(x, y) :=
∑
x′∈X

w(x′)δy(f(x+ x′)), (1)

where δy(f(x+ x′)) = 1 if f(x+ x′) = y and is otherwise zero.

Because local histograms mimic certain visual cues that people use when hand-segmenting an image, they have
great potential as features in image classification schemes. We use them to automate the process of segmenting
and classifying digital microscope images of biological tissues, like that of Figure 1(a), which is purple-pink from
hematoxylin and eosin (H&E) staining. Although one can distinguish the different textures in such an image,
segmenting the tissues by hand (Figure 1(b)) can be a tedious and time-consuming task, even for medical experts.
Therefore, it is our goal to automate as much of this process as is possible:
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(a) (b)

Figure 1. (a) A digital microscope image of a H&E-stained tissue section. (b) The histology image has been manually
segmented and classified by a medical expert, resulting in the per-pixel labels. From darkest to lightest, the labels indicate
cartilage, pseudovascular tissue, connective tissue, bone, fatty tissue, and background pixels, respectively. Our goal is to
automate this segmentation-and-classification process.

Problem 1. Develop mathematical features for an algorithm which assigns a tissue label to each pixel in a
histology image, thereby segmenting (delineating) and classifying (identifying) the image at the same time.

We use local features, specifically local histograms, in designing our algorithm for Problem 1 because consid-
ering pixels in isolation will often provide insufficient information to determine a label, and considering global
features will often destroy spatial context. We also expect local histograms to have great potential in our classi-
fication scheme because textures such as cartilage, connective tissue and pseudovascular are distinguishable by
their distinct color distributions.

The occlusion of a set of N images {fn}N−1
n=0 ∈ `(X ,Y) with respect to a given label function ϕ ∈ `(X ,ZN ) is:(

occϕ{fn}N−1
n=0

)
(x) := fϕ(x)(x), (2)

where ZN denotes the cyclic group of integers modulo N . That is, at any pixel location x, the label ϕ(x)
determines which of the potential pixel values {fn(x)}N−1

n=0 actually appears in the composite image occϕ{fn}N−1
n=0

at that point. The occlusion model Φ is a random variable version of ϕ, meaning there exists a probability density
function PΦ : `(X ,ZN )→ [0, 1] such that

∑
ϕ∈`(X ,ZN ) PΦ(ϕ) = 1. The role of the occlusion model Φ is to assign

a probability to each of these possible ϕ’s in a manner that emphasizes those textures one expects to appear in
a given tissue while de-emphasizing the rest.

Our main results6 are concerned with when the local histograms (1) of a composite image (2) are related
to the local histograms of the individual fn’s. Specifically, we show that by averaging over all possible label
functions ϕ, the local histograms of the composite image is exactly a convex combination of the local histograms
of each image provided our occlusion model Φ is flat, meaning that on average, the probability that Φ chooses
label n at a given pixel location x is equal to the probability of choosing n at any other x′; formally, Φ is flat if
there exists scalars {λn}N−1

n=0 such that: ∑
ϕ∈`(X ,ZN )
ϕ(x)=n

PΦ(ϕ) = λn, ∀x ∈ X . (3)

Note that for any fixed x ∈ X , summing (3) over all n yields that
∑N
n=1 λn = 1. Indeed, at any given pixel

location x, the value λn represents the probability that the random label function Φ will have label n at that x.
These concepts in hand, we present one of our main results, which formally claims that, on average, the local
histograms of composite images produced from flat occlusion models are but mixtures of the local histograms of
the source images:



Theorem 1. If Φ is flat as in (3), then the expected value of the local histogram transform (1) of a composite
image (2) is a convex combination of the local histograms of each individual image:

∑
ϕ∈`(X ,ZN )

PΦ(ϕ)(LHwoccϕ{fn}N−1
n=0 )(x, y) =

N−1∑
n=0

λn(LHwfn)(x, y). (4)

By Theorem 1, it is reasonable to decompose local histograms into convex combinations of more basic distri-
butions and use these distributions to segment and classify: given a new image, we assign a label at any given
point by determining which particular set of learned distributions its local histogram is most consistent with.

The remainder of our main results are in support of this interpretation of using Theorem 1 to solve Problem 1.
Specifically, the next section discusses local histograms: their basic properties and how to efficiently compute
them. Additionally, we give a generalization of Theorem 1 to the non-flat case, namely Theorem 2, discuss a few
methods used to construct flat occlusion models, and present a special version of flatness used to compute the
variance of the local histograms of a composite image. The final section discusses the results of a preliminary
segmentation-and-classification algorithm inspired by Theorem 1 in which local histograms are decomposed using
principal component analysis (PCA).

2. LOCAL HISTOGRAMS OF RANDOMLY-GENERATED TEXTURES

Computing local histograms can be time consuming, especially as X and Y become large. In particular, for a
general window w, a direct computation of (1) requires O(|X |2|Y|) operations: O(|X |) operations for each x ∈ X
and y ∈ Y. A more efficient method, which is proven in earlier work,4,6 gives that (1) can be computed as a
system of |Y| convolutions over X , which only requires O(|X ||Y| log |X |) operations if discrete Fourier transforms
are used. In particular, we filter the characteristic function of the graph of f , namely 1f : X × Y → R,

1f (x, y) := 1f−1{y}(x) = δy(f(x)) =
{

1, f(x) = y,
0, f(x) 6= y,

(5)

with the reversal of w ∈ `(X ,R), namely w̃(x) := w(−x). Therefore, local histograms (1) are computed as

(LHwf)(x, y) = (w̃ ∗ 1f−1{y})(x).

Local histograms possess several other basic properties: the levels of their transform sum to 1, they commute
with spatial translation, they are shifted along the group of pixel values when a constant is added to the image,
and they are binned when the image is quantized; the proofs of these basic properties are given in earlier work.4

Now fix any set of N source images {fn}N−1
n=0 and let Φ be any occlusion model as defined in the introduction.

That is, let Φ be a random variable version of a label function ϕ : X → ZN , as defined by a probability density
function PΦ : `(X ,ZN ) → [0, 1] where

∑
ϕ∈`(X ,ZN ) PΦ(ϕ) = 1. In the results that follow, a useful quantity to

consider is the expected value—with respect to PΦ—of the characteristic function 1ϕ obtained by letting f = ϕ
in (5):

1Φ(x, n) :=
∑

ϕ∈`(X ,ZN )

PΦ(ϕ)1ϕ(x, n) =
∑

ϕ∈`(X ,ZN )
ϕ(x)=n

PΦ(ϕ).

When compared with the definition of flatness (3), we see that Φ is flat if and only if there exist scalars {λn}N−1
n=0

such that 1Φ(x, n) = λn for all x ∈ X and n ∈ ZN . That is, Φ is flat if and only if 1Φ(x, n) is constant with
respect to pixel location x. Having this concept, we present one of our main results:

Theorem 2. For any sequence of images {fn}N−1
n=0 ∈ `(X ,Y), weighting function w and any N -image occlusion

model Φ, the expected value of the local histogram (1) of the composite image (2) with respect to w is:

EΦ(LHwoccΦ{fn}N−1
n=0 )(x, y) =

N−1∑
n=0

1Φ(x, n)(LHwfn)(x, y) + ε, (6)



where the error term ε is bounded by |ε| ≤
N−1∑
n=0

∑
x′∈X

w(x′)|1Φ(x+ x′, n)− 1Φ(x, n)|. Moreover,

N−1∑
n=0

1Φ(x, n) = 1, (7)

and so (6) states that, on average, the local histograms of the composite image occϕ{fn}N−1
n=0 can be approximated

by convex combinations of local histograms of each individual image fn.

When Φ is flat, (6) simplifies to (4); a comparison of these computations is demonstated in Figures 4 and 5 of
the accompanying journal article.6 Thus, flatness is indeed an important theoretical assumption for the analysis
of local histograms of textures generated via random occlusions. It nevertheless remains to be shown that flatness
is also a realistic assumption from the point of view of our motivating application.

In previous work,4,6 we show that flat occlusion models can be built in several ways. In particular, we show
that if an occlusion model Φ is translation-invariant, that is, if PΦ(Txϕ) = PΦ(ϕ) for all ϕ ∈ `(X ,ZN ) and for
all x ∈ X , then Φ is flat (3). We also present two operators that can be used to construct flat occlusion models:
the expansion operator and the overlay operator.

Given any ϕ ∈ `(X ,Z2) and {ψx}x∈X ∈ [`(X ,Z2)]X , the expansion of ϕ by {ψx}x∈X is ϕ?{ψx}x∈X ∈ `(X ,Z2),

(ϕ ? {ψx′}x′∈X )(x) :=
{

1, x = x′ + x′′, ϕ(x′) = 1, ψx′(x′′) = 1,
0, else,

and given any occlusion models Φ and Ψ from X into Z2, the expansion of Φ by Ψ is the occlusion model Φ ?Ψ
whose probability density function is PΦ?Ψ : `(X ,Z2)→ [0, 1],

PΦ?Ψ(σ) :=
∑

ϕ∈`(X ,Z2)

{ψx}x∈X∈[`(X ,Z2)]X

ϕ?{ψx}x∈X=σ

PΦ(ϕ)
∏
x∈X

PΨ(ψx).

We can show that4,6 Φ ?Ψ is flat (3), if either Φ or Ψ is flat and Φ and Ψ are effectively disjoint :

If PΦ(ϕ) > 0 and PΨ(ψx) > 0 for all x ∈ X , then ϕ ? {ψx}x∈X =
∑
x∈X
ϕ(x)=1

Txψx. (8)

Meanwhile, for any ϕ ∈ `(X ,ZNϕ), ψ ∈ `(X ,ZNψ ) and σ ∈ `(X ,Z2), the overlay of ϕ over ψ with respect to
σ is ϕ#σψ ∈ `(X ,ZNϕ+Nψ ),

(ϕ#σψ)(x) :=
{
ϕ(x), σ(x) = 0,
ψ(x) +Nϕ, σ(x) = 1,

and given probability density functions PΦ, PΨ and PΣ on `(X,ZNΦ), `(X,ZNΨ) and `(X,Z2), respectively, the
overlay of the occlusion model Φ over Ψ with respect to Σ is the new occlusion model Φ#ΣΨ whose probability
density function is PΦ#ΣΨ : `(X ,ZNϕ+Nψ )→ [0, 1],

PΦ#ΣΨ(υ) :=
∑

ϕ∈`(X ,ZNϕ )

ψ∈`(X ,ZNψ )

σ∈`(X ,Z2)
ϕ#σψ=υ

PΦ(ϕ)PΨ(ψ)PΣ(σ).

We can show that4,6 if Φ, Ψ, and Σ are flat (3), then Φ#ΣΨ is also flat.



In our current work, we compute the variance of the local histograms of a composite image. In order to do
this, we make use of the definition of 2-flatness: Φ is 2-flat if there exists scalars {λn}N−1

n=0 such that:

λn′λn′′ =
∑

ϕ∈`(X ,ZN )

PΦ(ϕ)1ϕ(x′, n′)1ϕ(x′′, n′′), ∀n′, n′′ ∈ ZN ,∀x′, x′′ ∈ X , x′ 6= x′′. (9)

In other words, Φ is 2-flat if, on average, the probability that Φ chooses labels n′ and n′′ at two separate pixel
locations is equal to the probability of choosing n′ and n′′ at any other two separate pixel locations. Having
this property of 2-flatness allows us to express the variance of the local histograms of a composite image as a
combination of the local histograms of each image with respect to the square of the weighting function:

Theorem 3. Let {fn}N−1
n=0 ∈ `(X ,Y) be any sequence of images such that fn′(x) = fn′′(x) implies n′ = n′′, w

be any weighting function, and Φ be any N -image occlusion model. If Φ is 2-flat as in (9), then the variance of
the local histogram transform (1) of a composite image (2) is:

VΦ(LHwoccΦ{fn}N−1
n=0 )(x, y) =

N−1∑
n=0

λn(1− λn)(LHw2fn)(x, y).

Two-flatness is important in order to understand the variance of the local histograms of a composite image
and as such, we must consider if 2-flatness is a realistic assumption in terms of our motivating application.
Indeed, just as flat occlusion models were constructed from the expansion and overlay operators, we can also
construct 2-flat occlusion models from such operators. In particular, for the expansion operator, we have that
Φ ?Ψ is 2-flat (9) if Φ and Ψ are effectively disjoint (8) and 2-flat, while for the overlay operator, we have that
Φ#ΣΨ is 2-flat if Φ, Ψ, and Σ are 2-flat.

3. LOCAL HISTOGRAM-BASED SEGMENTATION-AND-CLASSIFICATION

In this section, we present the results of a proof-of-concept segmentation-and-classification scheme that is inspired
by Theorem 1 which decomposes local histograms using PCA. In the algorithm,6 local histograms are the only
image features that are computed. That is, the decision of which label to assign to a given pixel is based purely
on the distribution of color in its surrounding neighborhood. We do this to demonstrate the validity of the
concept embodied by Theorem 1 as an image processing tool.

Two runs of this classification algorithm are depicted in Figure 2. For our particular set of histology images,
we experimentally found that we could still obtain good accuracies even if we discard the green channel of
our purple-pink images, and moreover quantize the 8-bit red and blue channels down to 3-bits apiece. For
computational advantages, in the first run, we train the classifier on the quantized version of Figure 1(a) which
is given in Figure 2(a); for the sake of readability, a 3-bit quanitized version of the unused green channel was
included in this rendering. For the sake of simplicity, we restrict ourselves to classifying 3 tissue types: cartilage,
connective tissue and pseudovascular tissue; all other tissue types are ignored in the confusion matrices given
below. Using our PCA-based algorithm6 to segment and classify Figure 2(a) results in the per-pixel labels given
in Figure 2(c) for 4 principal components. Comparing Figure 2(c) and the ground truth of Figure 2(b), we
see both the power and limitations of local histograms: color is a big factor in determining tissue type, but by
ignoring shape, we suffer from oversmoothing. The accuracy percentages for various choices of the number of
principal components N are given by a confusion matrix:

N = 1 N = 2 N = 3 N = 4
Ca Co Ps Ca Co Ps Ca Co Ps Ca Co Ps

Ca 77 22 1 87 11 2 96 3 1 96 3 1
Co 0 95 5 0 91 9 3 94 3 3 92 5
Ps 2 11 87 2 8 90 6 7 87 5 5 90

Here each row of the matrix tells us the percentage a certain tissue was labeled as cartilage (Ca), connective
tissue (Co), and pseudovascular tissue (Ps). In particular, the first three entries of the first row of this table
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Figure 2. An example of using PCA of local histograms to perform segmentation and classification of the image given
in (a), which is a 3-bit quantized version of Figure 1(a). A manually segmented and labeled version of (a) is shown in
(b) where black represents cartilage, light gray represents connective tissue, dark gray represents pseudovascular tissue,
and white represents other tissues that have been ignored in this proof-of-concept experimentation. Using (a) as both
the training and testing image in our PCA-based classification scheme, we obtain the labels shown in (c). A similar, but
less-accurate classification of (a) can still be obtained if we instead train on (d), resulting in the labels given in (e).

tell us that when using a single principal component, those points labeled as cartilage by a medical expert in
Figure 2(b) are correctly labeled as such by our algorithm 77% of the time, while 22% of it is mislabeled as
connective tissue and 1% of it is mislabeled as pseudovascular tissue. Note here that we have trained and tested
on the same image; such experiments indicate the feasibility of our approach in a semi-automated classification
scheme.

The second run of this algorithm is almost identical to the first, with the exception that we use a distinct
image (Figure 2(d)) in the training phase. We then apply the principal components obtained from Figure 2(d)
to generate labels (Figure 2(e)) for Figure 2(a) using our PCA-based algorithm. Compared to the first run, the
algorithm’s performance here is a better indication of its feasibility as a fully automated classification scheme,



and is summarized by the following confusion matrix:

N = 1 N = 2 N = 3 N = 4
Ca Co Ps Ca Co Ps Ca Co Ps Ca Co Ps

Ca 90 9 1 91 4 5 90 5 5 83 11 6
Co 25 61 14 10 62 28 7 79 14 8 70 22
Ps 30 12 58 4 10 86 4 50 46 2 17 81

Though the performance in the second run is understandably worse than that of the first, it nevertheless demon-
strates the real-world potential of the idea exemplified by Theorem 1: the local histograms of certain types
of textures can be decomposed into more basic distributions, and this decomposition can serve as an image
processing tool.

We conclude by noting that for algorithms intended for real-world use, color information should be combined
with morphological data—size, local and global shape, orientation and organization—in order to obtain better
classification accuracies. An example of such an algorithm, accompanied by thorough testing and comparisons
against other state-of-the-art methods, is given in earlier work;2 these facts are not reprinted here.
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