
 

 

1 INTRODUCTION  

In this paper, we explore whether the acceleration 
signals from vehicles moving over a bridge can be 
used for diagnostic purposes. The acceleration sig-
nals from the bridge and the vehicle are affected 
mainly by three different factors. These factors are: 
the dynamic properties of the bridge structure; the 
motion characteristics of the passing vehicle; and the 
dynamic properties from the vehicle. 

Traditionally, the Structural Health Monitoring 
(SHM) community uses the data measured directly 
from a structural system for diagnostic purposes. In 
such an approach, a number of sensors are deployed 
on the structure. We refer to this as a direct SHM 
approach. In contrast, the use of data not recorded 
directly from a structure is referred to as an indirect 
SHM approach (Lin et al. 2005, Cerda et al. 2010). 
The top block in Figure 1 shows this distinction in 
terms of the data acquisition approach. 

There are several practical reasons that drive our 
research on the indirect SHM approach. There is a 
need in most countries, and especially in the US, to 
monitor a large bridge stock in a reliable, objective 
and economically feasible way. The traditional di-
rect SHM approach requires installation, power and 
maintenance of an expensive electronic infrastruc-
ture on top of the physical bridge infrastructure.   

The indirect approach can gain leverage by using 
the equipment already located on board newer mod-
els of vehicles, or on a fleet of vehicles that can be 
equipped with sensors to collect the desired infor-
mation as they undergo their daily routines.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Block diagram of proposed system 

 
The indirect approach, however, has the disad-

vantage that the data are influenced by the motion of 
the vehicle and its dynamic properties.  

Through the use of an experimental setup which 
is described in the next section, we collected accel-
eration data from a particular scale bridge structure 
and a particular scale vehicle in order to compare the 
indirect and direct methods. These two data acquisi-
tion approaches are depicted in the first block of 
Figure 1 since both approaches for SHM were tested 
as part of the experiments described in this paper. As 
far we know, such comparisons have not been car-
ried out previously.  
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ABSTRACT:  

In this paper, we use a scale model to experimentally validate an indirect approach to bridge structural health 
monitoring (SHM). In contrast to a traditional direct monitoring approach with sensors placed on a bridge, the 
indirect approach uses instrumented vehicles to collect data about the bridge. Indirect monitoring could offer 
a mobile, sustainable, and economical complementary solution to the traditional direct bridge SHM approach. 
Acceleration signals were collected from a vehicle and bridge system in a laboratory-scale experiment for 
four different bridge scenarios and five speeds. These signals were classified using a simple short-time Fouri-
er transform technique meant to detect shifts in the fundamental frequency of the bridge due to changes in the 
bridge condition. Results show near-perfect detection of changes when this technique is applied to signals col-
lected from the bridge (direct monitoring), and promising levels of detection when one uses signals from sen-
sors on the vehicle (indirect monitoring) instead of those recorded on the bridge itself. 



 

 

To test the detection capability of the different 
approaches, we created four experimental scenarios. 
The first scenario considers the structure in a pristine 
while in each of the other three, we added mass to 
the bridge to simulate damage. Two different scenar-
ios are compared in each test. A pristine one, and a 
second one with the induced change to modify its 
dynamic properties. The second block in Figure 1 
shows the two scenarios considered.  

The data from the two scenarios is classified by 
means of a short-time Fourier transform-based 
change detection scheme aimed at detecting changes 
in the fundamental frequency of a bridge. We report 
the results of this work in terms of the detection rate. 
This quantity reflects the fraction of cases in which 
an actual change is detected. These two steps are 
represented in the last two blocks in Figure 1. 

Previous work includes a theoretical solution for 
the simplified case of a single degree of freedom os-
cillator travelling over a beam structure (Yang et al. 
2004). In a subsequent paper, Lin et al. (2005) were 
able to experimentally determine the natural fre-
quency of an actual bridge structure by analyzing the 
acceleration signals of a passing vehicle.  

An experimental setup was used by Kim to simu-
late the vehicle-bridge interaction and identify dam-
age scenarios (Kim et al. 2010). A particular meth-
odology, referred as the “pseudo static approach”, 
was used to identify damage using vibration data 

taken from the bridge structure at different locations 
along the bridge span (¼, ½ and ¾ of span length). 
This damage identification approach shows good ac-
curacy at determining a change of stiffness of the 
bridge. Being inspired by this experimental work, 
we decided to further pursue the identification of 
changes in the bridge structure using the indirect ap-
proach.  

In this paper, we concentrate on studying the in-
fluence of different vehicle velocities and sensor lo-
cations on the classification accuracy of different 
scenarios. The scenarios are produced in a laborato-
ry using a scaled physical model of a moving vehi-
cle over a simply supported bridge. The data is ob-
tained through multiple runs of the vehicle over the 
structure. Hereafter, we refer to this particular exper-
imental setup as the “scale bridge structure”.  

The following section contains a description of 
the experimental setup. This description includes the 
structural model, the vehicle model, the vehicle mo-
tion control system, and the data acquisition equip-
ment. The third section contains a description of the 
different scenarios that were compared in the detec-
tion experiments. In the fourth section, we describe 
the Fourier transform-based change detection ap-
proach, and in the fifth section, we present and dis-
cuss preliminary results. Our initial conclusions are 
given in the last section. 

 Figure 2. Structural components and vehicle from experimental setup 



 

 

2 EXPERIMENTAL SETUP  

The experimental setup simulates a passing vehi-
cle over a simply supported bridge structure. The 
vehicle-bridge interaction is studied by recording 
accelerations at four different locations on the vehi-
cle as well as at the midspan of the bridge. The 
whole system consists of several components: 1) the 
mechanical components consisting of the bridge, its 
approaches, and the vehicle, 2) the vehicle motion 
control system and 3) the data acquisition system.  

2.1 Mechanical components 

An overview of the mechanical components is 
given in Figure 2 (a). It consists of an acceleration 
ramp and a deceleration ramp that provide the run-
ning path for the vehicle, and a simply supported 
bridge. The acceleration and deceleration ramp are 
made from C Shape aluminum extrusions (2 x 1 x 
1/8 in). They are supported on each end by alumi-
num slotted extrusions. The slotted extrusion shown 
in Figure 2 (b) allows one to fix the ramps at differ-
ent locations along the slots. This flexibility will al-
low further research that will explore placing the 
ramps in the right or left lanes to study the effect of 
traffic-induced torsion.  

2.1.1 Vehicle 
The vehicle used on the experiment has two axles. A 
scheme of the vehicle is shown in Figure 2(c). The 
vehicle has four independent wheel suspensions. In 
this paper the vehicle properties are maintained at 
constant values shown in Table 1. The dynamic 
properties of the vehicle were obtained by capturing 
the dynamic response after an impulse force is ap-
plied.  
 
Table 1. Vehicle properties ________________________________________  
Properties with added mass   ________________________________________ 
Bouncing  frequency         5  Hz 
Front damping           5.9% 
Rear damping        5.9% 
Extra weight at midspan    5  lb) ________________________________________ 

 
The suspension system is designed so it can be 

easily modified to simulate different vehicle charac-
teristics. For example, a heavily loaded 2 axle vehi-
cle can be simulated by replacing the spring in the 
suspension shown in Figure 2(c) with a stiffer 
spring. 

2.1.2 Bridge 
The bridge structure is composed of an aluminum 

plate and two aluminum angles that act as beams. A 
cross-sectional view of the bridge is shown in Figure 
3. 

. 

 

Figure 3. Bridge section 
 
The bridge deck also has two angles on top that 

are used as rails for the vehicle. The properties of 
the bridge are shown in Table 2. 

 
Table 2.  Bridge properties ______________________________________  
Deck dimensions       8 x 2 x 1/8 in 
Beams dimensions      8 x 1 x 1/4 in 
Fundamental frequency    7.18 Hz 
Damping         1.35% ______________________________________ 

2.2 Motion control 

 A set of National Instrument® components was 
configured to reliably control the speed of the vehi-
cle. The individual components are shown in Figure 
4.  The PXI 7342 motion controller commands the 
NI 70360 driver that provides the signals to a double 
shaft stepper motor, model NEMA 34. The encoder 
attached to the shaft of the motor provides position 
feedback and closes the loop for the motion control 
system.  

Figure 4.Motion control equipment scheme (Images from 
www.ni.com) 
 

A list of the individual components is shown in 
the Table 3. 

 
Table 3. Motion equipment components ______________________________________________ 
Driver      NI 70360  
Motor     NEMA 34 
Motion Controller NI PXI 7342 
Interface    UMI 7772   _____________________________________________ 

2.3 Data acquisition equipment 

The data acquisition system for the moving vehi-
cle and bridge is wireless. Figure 5 shows the Mi-
crostrain® acceleration sensor nodes that communi-
cate to a base directly connected to the PXI 
controller. The data is transmitted in packets to the 
base after digitalization. The resolution of the accel-



 

 

eration data is 1.5mg RMS. The resolution of the 
digitization is 12 bit. 
 The components used in the data acquisition pro-
cess are described in Table 4. 
 
Table 4. Data acquisition components _____________________________________________ 
Acceleration nodes   MicroStrain G-Link mXrs 2G    
Wireless base MicroStrain WSDA mXrs  _____________________________________________ 
 

Figure 5. Data acquisition equipment 
 
The sensor on the bridge is located at the center 

of the midspan, as depicted in Figure 2 (a) by the 
node labeled N5. The vehicle sensor locations are 
labeled as N1, N2, N3, and N4 in  Figure 2 (c). Ta-
ble 5 lists the sensor locations and the corresponding 
node names shown in Figure 2 (a) and (c). 

 
Table 5. Node location ______________________________________________ 
Node Name    Node location ______________________________________________ 
N1     Front Suspension Front  
N2     Left Wheel front 
N3     Right Wheel front 
N4     Rear Suspension  
N5     Bridge _____________________________________________ 

The nodes located at the top of the suspension 
shaft, N2 and N3, transmit the vertical motion at the 
wheel level through the suspension shaft. 

3 EXPERIMENTAL SCENARIOS 

 In the work of Yang et al (2004), the authors de-
rived an explicit analytical solution for the interac-
tion of a simply supported beam with a traveling 
single degree of freedom oscillator. In this solution, 
the main interaction parameters are defined as S and 
: (1) S = v/Lb;(2)   = b/v, where S is a nor-
malized vehicle velocity; v = vehicle velocity; v = 
the vehicle (oscillator) vertical natural frequency; L 
= length of beam, and  b= fundamental natural fre-
quency of the beam.  

We explored the influence of these parameters by 
inducing changes to the bridge structure and running 
the moving vehicle at different travelling speeds 
over the bridge. The bridge was changed by adding 
mass at the midspan. Figure 6 shows the procedure 
by which different amounts of mass were clamped at 
the midspan of the bridge. For our structure, b is 
the fundamental natural frequency of the complete 
bridge system. 

The different conditions of the bridge and the cor-
responding changes that they produce in terms of the 
fundamental frequency of the bridge are summarized 
in Table 6. 
 
Table 6. Bridge scenarios ______________________________________________ 
Scenario Total added mass    fundamental freq 
    (lbs, % of bridge mass)  (Hz) ______________________________________________ 
1     0,   0%       7.18 
2     6,  16%       6.28 
3     10, 27%       5.93 
4     14, 38%       5.57 ______________________________________________ 
 

Figure 6. Added mass to the midspan of the experimental 
bridge structure.  

 
The speed of the vehicle under the different 

bridge scenarios ranged from 1 m/s to 3 m/s at 0.5 
m/s intervals. A total of 5 different speeds were 
studied.  
 The range of scenarios and speeds can be plotted 
in terms of the parameters S and  as depicted in 
Figure 7. 
 
 

Figure 7. S and µ cases studied experimentally.  



 

 

 
Each of the 20 dots in Figure 7 reflects a data set 

composed of 60 runs of the vehicle over the bridge. 
We compare the variation of the different data sets 
by performing detection experiments, as described 
in the next section. 

4 DETECTION OF STRUCURAL SCENARIOS 

The detection task is as follows. First, we use a 
training set of acceleration signals from a vehicle 
traveling over a known-to-be-healthy (pristine) scale 
bridge structure to set a baseline for the system. We 
then use a test set of different acceleration signals 
from the same bridge under different scenarios, to 
determine if the detection approach can detect 
whether the bridge has sustained a significant 
change since the collection of the training set. For 
the specific scenarios we are exploring, note that the 
induced change causes a decrease in the fundamen-
tal frequency of the bridge. We therefore hypothe-
size that a classification scheme based on detecting 
shifts in this frequency should work well. 

Figure 8 shows a typical signal obtained through 
the experimental setting and the corresponding por-
tion of the signal used for the classification, which is 
when the vehicle is completely between the supports 
of the bridge. 

Figure 8 Original acceleration signal. 

4.1 STFT Calculation.  

To detect changes in the bridge, we first extract 
the frequency spectrum of the bridge/vehicle system 
from an acceleration signal. As seen in Figure 9, tak-
ing the Fourier transform of the acceleration signal 
results in a frequency spectrum with a large amount 
of noise and little consistency between runs; this is 
because the time-domain signal contains numerous 
spikes and other transient signals. We instead com-
pute the spectrogram of the acceleration signal with 
a short-time Fourier transform (STFT) with overlap-
ping windows that are 250 samples in length. The 
spectrogram is shown in Figure 10. We then average 
the spectrogram over time, creating a frequency 
spectrum as depicted in Figure 11. This technique 
exploits the fact that the frequencies of interest are 
not transient, while much of the noise is. The time 

averaging should therefore remove noise and pre-
serve the signal. 

Figure 9. Fourier transform of an acceleration signal. 
 

Figure 10. Acceleration spectrogram. 
 

Figure 11. Spectrogram averaged across time. 

4.2 Classification System.  

For the training of our classification system, the 
data from each scenario at a particular speed is di-
vided into training and testing sets. The spectrum of 
each signal in the training set is calculated first, then 
all such signals are averaged across frequency. The 
result is a single reference spectrum representing the 
undamaged bridge. To determine whether a testing 
set of signals indicates a change in the structure, the 
spectrum is computed for each signal in the testing 
set and again averaged across frequency to create a 
signal candidate spectrum for each scenario at a par-
ticular speed. The portion of each spectrum corre-
sponding to the range 3.5-13 Hz is then extracted. 
The averaged candidate spectrum with the corre-
sponding extracted section is shown in Figure 12.  

The considered range is where our theoretical 
calculations suggest the fundamental frequency of 
the bridge should appear, and experimental explora-



 

 

tion confirms it. Finally, the trimmed reference and 
candidate spectra are shifted to be zero mean and 
their cross-correlation is computed. If the maximum 
value of the cross-correlation occurs when the spec-
tra are not shifted, then the test set is labeled as un-
changed. If the maximum value occurs at a shifted 
location, the test set is labeled as changed. 

Figure 12. Extracted candidate spectrum of unchanged scenar-
io. 

 
The plots in Figure 13 show the correlation coef-

ficients of two candidate spectrums compared 
against the unchanged reference spectrum. The cor-
relation for the unchanged candidate has a strong 
peak at the zero shift location, indicating that it 
matches the reference spectrum. The peak in the cor-
relation for the changed candidate spectrum is at a 
shifted location. 

Figure 13. Cross correlation between candidates for the un-
changed and changed scenario (SC3) with respect to the un-
changed reference spectrum. 

5 RESULTS AND DISCUSSION 

The proposed detection approach was tested us-
ing a data set generated with the experimental setup 
previously described. We now show some of the 
preliminary findings of this approach and the corre-
sponding results.  

5.1 Dataset.  

Our dataset consists of 60 acceleration signals 
from each of the five sensors (front suspension, back 
suspension, left wheel, right wheel, and bridge) col-
lected under four different change scenarios (un-
changed, +6 kg, +10 kg, +14 kg) and vehicle speeds 
(1 m/s, 1.5 m/s, 2 m/s 2.5 m/s 3 m/s). The signals 
were sampled at 256 Hz and vary in length from 1 to 
3 seconds. The variation in signal length occurs be-
cause of the time it takes the vehicle to travel over 
the bridge at different speeds. 

5.2 Experimental Setup. 

To evaluate our classification system, we per-
formed a series of cross-validation experiments. We 
first fixed a group size, N = 3, 4, …, 35. For each 
speed and each sensor, we randomly selected 20 
signals from the undamaged bridge and used them as 
our training set. We then randomly selected N sig-
nals from each of the changed scenarios and used 
them to form test sets. Additionally, we selected N 
of the remaining 40 signals from the unchanged sce-
nario and formed a test set with them. This random 
selection was repeated in a 1,000-fold validation. 

For each scenario, we report the detection rate as 
the percentage of folds in which the test set was la-
beled as changed. For the three changed scenarios, 
the detection rate represents the true positive rate 
(TPR), while for the unchanged bridge, it represents 
the false positive rate (FPR). A perfect system 
would have a TPR of 1 for each damage condition 
and a FPR of 0.  

5.3 Results and Discussion.  

Figure 14 shows the damage detection rate for 
each scenario and sensor location plotted across 
speed, with N=35. The four lines represent the de-
tection rate for the undamaged bridge and for each 
of the three damage scenarios. Ideally, we would see 
the FPR of 0 for the undamaged bridge, and the TPR 
of 1 for each of the damage scenario. 



 

 

The lowest speed consistently produces the best 
detection for all sensors, while the accuracy for oth-
er speeds is inconsistent across sensors. This may be 
due to increased noise or shorter signal duration 
(which reduce the effectiveness of our spectrum av-
eraging technique) for higher speeds. The sensor on 
the bridge detects damage nearly perfectly, validat-
ing our classification technique for the easier, direct-
monitoring case. Of the indirect sensors, those on 
the suspension were better than those on the wheel. 
This is likely because the suspension acts as a low-
pass filter, reducing the noise while preserving the 
low fundamental frequency of the bridge.  

 

  
Figure 15.The effect of the number of averaged runs on the de-
tection rate for the front suspension sensor at a speed of 1 m/s. 

Averaging a larger number of runs increases the TPR, while 
lowering the FPR. 

 
Figure 15 shows the effect of N on the classifica-

tion accuracy for the front suspension sensor at 1 
m/s. In general, accuracy increases as N increases. 
For some sensors and speeds, there was a clear di-
minishing-returns effect, while for others there was 
not. Contrary to what we would expect, scenario 4 is 
not consistently the easiest to detect. Inspection of 
the spectra reveal that the peak for the fundamental 
frequency appears wider and shorter as more mass is 
added to the bridge, decreasing the accuracy of the 
correlation matching method. 
 

6 CONCLUSIONS AND FUTURE WORK 

This paper presents initial work for detecting 
changes in bridge structures based on acceleration 
data from passing vehicles. We refer to this ap-
proach as indirect. We compare the results of the in-
direct with the traditional direct approach in which 
sensors are located on the bridge structure. 

An experimental setup that resembles a moving 
vehicle passing over a simply supported bridge was 
used to generate dynamic interaction data from sev-
eral physical scenarios. The scenarios consisted of 

Figure 14. Detection rate for each scenario and sensor location plotted across speed, averaging 35 runs. For each damage scenario, 
the curve represents the true positive rate (TPR), while for the normal (undamaged) case, the curve represents the false positive rate 
(FPR). Accuracy is consistently good at the lowest speed, with the sensors on the suspension providing the best accuracy of the indi-
rect sensors. 



 

 

changes in the mass of the bridge structure generated 
by adding a localized mass at midspan.  

A detection procedure was developed to capture 
the shifts in the fundamental frequency of the 
bridge.  

The detection capability of the proposed signal 
processing approach is more stable across different 
speeds for acceleration data gathered in a direct 
fashion rather than in the indirect one. 

For the particular experimental setup used in this 
work and the different scenarios simulated, the sen-
sor location on the vehicle has a strong influence in 
terms of the detection capability of the different sce-
narios. The sensor located at the front of the vehicle 
over the suspension system outperformed those of 
all other sensor locations. 

Lower travelling speeds of the vehicle seem to be 
better for identifying changes in the natural frequen-
cy of the bridge than higher traveling speeds. 

Regarding the number of runs averaged to calcu-
late the true positive detection rate (TPR), there is a 
mild linear increasing trend over the quality of the 
detection. More significant is the reduction of false 
positive rate when increasing the number of runs. 

Future work will include an exploration of the 
sensitivity of the approach to smaller changes in the 
bridge structural system.  

We are also interested in examining the con-
sistency of the TPR trends across different speeds. 
We will study this by populating our experimental 
data with smaller speed intervals. 

We will also explore other types of changes that 
resemble damage scenarios in a real bridge structure. 
Such scenarios will consider frozen bearings and 
cracks. The first will be modeled by increasing the 
rotational restraint at the supports of the simply sup-
ported bridge. The latter will be simulated by a sec-
tion reduction of the supporting beam elements of 
the bridge. 
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