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ABSTRACT

We propose an automated algorithm for classifying diagoasite-
gories of otitis media (middle ear inflammation); acuteistinedia,
otitis media with effusion and no effusion. Acute otitis nedep-
resents a bacterial superinfection of the middle ear fluidi atitis
media with effusion a sterile effusion that tends to subsioenta-
neously. Diagnosing children with acute otitis media ishéading
to overprescription of antibiotics that are beneficial diolychildren
with acute otitis media, prompting a need for an accurateaand-
mated algorithm. To that end, we design a feature set urodetst
by both otoscopists and engineers based on the actual visaal
used by otoscopists; we term thititis media vocabularyWe also
design a process to combine the vocabulary terms based dedhe
sion process used by otoscopists; we termdtitess media grammar
The algorithm achieves 84% classification accuracy, in dnge or
outperforming clinicians who did not receive special tiagn as well
as state-of-the-art classifiers.

Index Terms— otitis media, classification, vocabulary, gram-
mar

1. INTRODUCTION

Otitis media is a general term for middle-ear inflammatiod amay
be classified clinically as either acute otitis media (AOM)atitis
media with effusion (OME); AOM represents a bacterial sirgec-
tion of the middle ear fluid and OME a sterile effusion thatden
to subside spontaneously. Although middle ear effusiomésgnt in
both cases, this clinical classification is important beeaantibiotics
are generally beneficial only for AOM. However, proper diagjs of
AOM, as well as distinction from both OME and no effusion (NOE
require considerable training (see Figure 1 for examplgyaaa

AOM is the most common infection for which antimicrobial
agents are prescribed in children in the US. By age seven, &3%
children will have experienced one or more episodes ofsotite-
dia [1]. AOM results in significant social burden and indireosts
due to time lost from school and work. Estimated direct costs
AOM in 1995 were $1.96 billion and indirect costs were estida
to be $1.02 billion, with a total of 20 million prescriptiofisr an-
timicrobials related to otitis media [2].
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Fig. 1. Sample (cropped) images from the three diagnostic classes

(a) AOM.

(b) OME.

These considerations underscore the critical need for em- ac
rate classification algorithm, able to discriminate imagésym-
panic membranes (TM) obtained with an otoendoscope intaobne
three stringent diagnostic categories: AOM, OME and NOEo{o
knowledge, the only related work in this area is [3], where #u-
thors investigate the influence of color on the classificatiocura-
cies of individual classes, with the conclusion that th@calone is
not sufficient for accurate classification.

In this paper, we adopt the following guiding principlesrtha
inspired by [4]:

e \ocabulary.We aim to design a feature set understood by both
otoscopists and engineers based on the actual visual cadsbys
otoscopists; we term thigtitis media vocabulary (OMV)lo design
OMV, we use otoscopic findings listed in Table 1.

e Grammar.We aim to design a process to combine the vocab-
ulary terms based on the decision process used by otostopist
term thisotitis media grammarTo design the grammar, we use the
findings from [5], summarized in the next section.

We compare our algorithm designed following the above prin-
ciples to a universal classifier WND-CHARM [6] and a multies
lution classifier originally designed for biomedical ajgpliions [7].
The ground truth is provided by a panel of expert otoscopists

2. EPIDEMIOLOGY OF ACUTE OTITIS MEDIA

The number of AOM episodes has increased substantiallyeipaist
two decades, as have the associated costs. Approximateiylizi

visits are made to office-based physicians in the US forsatitédia
yearly, resulting in a total of 20 million prescriptions fantimicro-
bials related to otitis media [1]. Accurate diagnosis is érgtive
to ensure that antimicrobial therapy is limited to the appiaie pa-
tients; this, in turn, increases the likelihood of achigMaptimal out-



comes and minimizing the risk of encouraging antibioti¢stesce. Otitis media vocabularylf the otoscopist is able to identify a
To design a feature set based on the visual cues used by otdiagnostic category based on translated descriptions, ttre dis-

scopists, we need to understand what those cues are; wenljst o criminative power of the key terms and their correspondiomgu-

those that were found most relevant and that we use to desggn t tational interpretations is validated, and these termsbesincluded

features, see Table 1. For example, the presence of middlefle-  as OMV terms to create features.

sion is evidenced by TM abnormalities, such as white or yetcs- This feedback loop is iterated until a sufficient set of telrage

coloration and opacification. A diagnosis of AOM can be dighbd ~ been collected to formulate OMV:

when distinct fullness or bulging of the TM is noted in adulitito .
. . : concavity f. translucencyf: amber levelf,
evidence of middle-ear effusion. { grayscale variancé¢,  bubble presencég, light f, } :
AOM OME NOE Automated segmentation.Segmentation is a crucial step to ex-
tract relevant regions on which reliable features for d¢fasdion can
Color White, pale yellow, White, amber,  Gray, pink be computed. We now briefly summarize an active-contourdbase
markedly red gray, blue algorithm we implemented. We compute a snake potential ®f th
Position Distinctly full, Neutral, Neutral, grayscale version of the input, and then a set of forces thidine
bulging retracted retracted Fhe gradients and edges.. Then, the active contour algo'r!i;thr'!tial-
Translucency  Opacified Opacified, Translucent  12€d by a circumference in the center of the image, and thittign

iteratively grows this contour. The algorithm stops at adpfed
convergence criterion, which leaves an outline that cotlesele-
vant region in the image. This outline is used to generatditiad
mask that is applied to the input image; Figure 2 shows an pkam

®elo

semi-opacified

Table 1. Otoscopic findings associated with clinical diagnostic ca
egories on TM images.

To explore the diagnostic processes used, Drs. Shaikh and
Hoberman asked 7 expert otoscopists to independentlyidesti
findings and assign a diagnosis (AOM/OME/NOE) on a collectio
of 135 randomly selected TM images from an image library (see
Figure 1 for an example). To control for differences in calendi-
tion between computers, they mailed color-calibratedpgto each

expert. Just by evaluating still images, with no informatetbout (2) Original. (b) Segmented.

mobility or ear pain, the diagnosis (AOM vs. no AOM) endorsed Fig. 2. Automated segmentation of TM images.

by the majority of experts was in agreement with the live dsis

88.9% of the time, underscoring the limited role that symmand Concavity. To identify bulging, we design a feature detecting

mobility of the TM have in the diagnosis of AOM. Bulging of the the opposite, the concave region located centrally in the Wicall
TMwas the finding judged best to differentiate AOM from OMEL[5 it concavityfeature. The input is a grayscale version (Figure 3(a))
of the segmented original RGB imagé € R™*" as in Figure 2.
We use a sliding window to extract a local circular neighload
Xgr(m,n), of radiusR (R = 60 in our experiments). That circular
neighborhood is then transformed into its polar coordimétebtain
Xr(r,0),withr € {1, 2, ..., R},0 €0,2x], and

3. OTITIS MEDIA VOCABULARY

The expert otoscopist uses his specialized knowledge wiserird-
inating between the different diagnostic categories. Tdwd gf our
proposed methodology is to create a feature set—OMV, whidh w

mimic the visual cues of trained otoscopists closely.
Methodology. To design OMV, we follow the process from [8]:
Formulation of initial set of descriptionsWe obtain initial de-

scriptions of those characteristics best describing angili@gnostic

category from the summary of otoscopic findings in Table 1.
Computational translation of key termErom this set, the key

terms, such abulging, are translated into their computational syn- (a) Grayscale. (b) Polar. (c) Labeled.
onyms, creating a computational vocabulary (in our casecave
struct a feature describing the oppositencavity.

Computational translation of descriptionlsing the computa-
tional vocabulary, entire otoscopist’'s descriptions,hsasbulging (
and white are translated. r = V(m—me)?+ (n—nc)?, 0 = arctan

Verification of translated descriptionBased on these translated
descriptions, the otoscopist tries to identify the diagicosategory ~ where(m., n.) are the center coordinates of the neighborhaog
being described, emulating the overall system with traedlale-  In Figure 3(b), the resulting image hasas the horizontal axis and
scriptions as features and the otoscopist as the classifier. 0 as the vertical one. The concave region changes from dark to

Refinement of insufficient term#. the otoscopist is unable to bright from the center towards the periphery of the congauit po-
identify a diagnostic category based on translated dagmmig or if  lar coordinates this change from dark to bright occurs asdtiis
a particular translation is not understandable, then thastation is  grows, see Figure 3(b). Defining the bright regiBn= {(r,0) |
refined and presented again to the otoscopist for verifigatio r > R’} and the dark regioD = {(r,0) | » < R}, and with

Fig. 3. Computational steps for the concavity feature.
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R’ € [1/4R,3/aR], we compute the ratio of the two means,

E[ Xr(r,0) |(ro)en ]
E[ X&(r,0) |(royen |’
As the concave region is always centrally located, we erpantally

determine a square neighborhabtherel51 x 151) to compute the
concavity feature,

fC,R/ =

fc = gl,%}lifcﬁl?’-

Translucency. Translucency of the TM is the main character-
istic of NOE in contrast with opacity in AOM and semi-opacity
OME; it results in the clear visibility of the TM, which is pniar-
ily gray. We thus design the translucency feature to meathee
grayness of the TM. We do that by using a simple color-assanm
technique. As these images were taken under differentrigland
viewing conditions, according to [9], at least 6 images are needed
to characterize a structure/region under all lighting aiedving con-
ditions. We take the number of images tog = 20.

Then, we perform the following once to determine gray-level
clusters in translucent regions: We extraét pixels from translu-
cent regiong V; = 100) of Ny; RGB images by hand segmenta-
tion, to obtain a total ofV;; N, pixels from images (her2000). We
then cluster thesé&/;; N; pixels usingk-means clustering to obtain
K cluster centers, € R®, k = 1, 2,..., K, capturing variations
of gray in the translucent regions.

To compute the translucency feature for a given imagefor
each pixel(m, n), we computeX Euclidean distances of (m, n)
to the cluster centet,, k =1, 2, ..., K,

3

> (Xi(m,n) = cri)?,

=1

di(m,n) =

with ¢ = 1,2, 3 the color channel. If any of the computéd dis-
tances falls below a thresholfi (found experimentally), the pixel
is labeled as translucent and belongs to the redion= {(m,n) |
ming diy(m,n) < T:}. The binary imageX; is then simply the
characteristic function of the regid®;, X; = xr,. We then define
the translucency feature as the mearkof

Jr = E[X:].

Amber Level. We use that OME is predominantly amber or
pale yellow to distinguish it from AOM and NOE. We apply a aslo
assignment technique similar to that used for compulingo obtain

a binary imageX,, indicating amber and nonamber regions, and

define the amber feature as the mearXgf
fo = E[X.].

Grayscale Variance.Another discriminating feature is the vari-
ance of the intensities across the grayscale version ofitagéX,

fo = var(Xy);

for example, OME has a more uniform appearance than AOM an

This is followed by filtering and morphological operatiorts én-
hance edge detection and obtain smooth boundaries. We ¢fieie d
the bubble feature as the meanX,

fo = E[Xp].

Light. Examination of the TM is performed by an illuminated
otoendoscope. The distinct bulging in AOM results in nofomn
illumination of the TM, in contrast to the uniform illuminah in
NOE. Our aim is to construct a feature that will measure tbrsumi-
formity as the ratio of the brightly-lit to the darkly-lit gsons.

(a) Grayscale. (b) Contrast-enh. (c) Dominant orient.
Fig. 4. Computational steps for the light feature.

We start by performing contrast enhancement on the gragyscal
image in Figure 4(a) to make the nonuniform lighting promine
The resulting image in Figure 4(b) is thresholded'affound ex-
perimentally) to obtain a mask of the brightly-lit binary age X,
in Figure 4(c). To find the directiof¥max) perpendicular to the
maximum illumination gradient, we look at lines passingotigh
(me,ne) (the pixel coordinates at whicfi. is obtained) at anglé
with the horizontal axis. Defining the bright regigh= {(m,n) |
n > tan(8)(m — m.) + n.} and the dark regio = {(m,n) |
n < tan(6)(m—mc)+n.}, we compute the ratio of the two means,

E[ Xo(m,n) |(m,mes ]
E[ Xy (m,n) |(m,mep ]

Then, the direction perpendicular to the maximum illumioigra-
dient isfmax = arg max, r(#), and we define the light feature as

fl = 7"(emax)~

r(0) =

4. OTITIS MEDIA GRAMMAR

Inspired by [5], we design a decision process to combine ti&/ O
terms based on the decision process used by the otoscapidisrm

it otitis media grammar. The decision process has a hieicaicnee
scheme wherein we use the OMV to discriminate AOM/OME/NOE.
The hierarchy consist of two levels shown in Figure 5:

First Level. At the first level, we perform a coarse separation
based on bulging (concavity feature), translucency ard.lig/hile
ideally, if there is bulging present, the image should begifaed
as AOM, concavity feature alone cannot accomplish the task;
use the light feature as an aid as AOM will be nonuniformtyuh-
like OME/NOE, as we explained earlier. In the second splig, w
use translucency to discriminate NOE from the rest. Unfaately,
some of the OME images will show up in the same category due to
semi-translucency observed in mild infection. This precessults
¢h a separation into two superclasses: AOM/OME (acute/mfiec-

NOE, and has consequently a much lower variance that cangoe ustion) and NOE/OME (no/mild infection).

to distinguish it from the rest.

Bubble Presence. The presence of visible air-fluid levels, or
bubbles, behind the TM is an indication of OME. The algorithm
takes in red and green channels of the original RGB image and p
forms Canny edge detection [10], to place parallel bouedaon
either sides of the real edge, creating a binary im&gén between.

Second Level.At the second level, we use a weighted combi-
nation of four features, amber level, bubble presencesliaancy
and grayscale variancey, fo + ws fo + we fe + wo fo, 10 help sep-
arate superclasses into individual classes. During tiangphase,
we determine weights) that maximize the classification accuracy
of training data; these are then used in the testing phadadsify.
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6. CONCLUSIONS

We created an automated system for identification of thragndis-
tic classes of otitis media. Our guiding principle was toigesnd
use a vocabulary of features that mimics the actual visuzd aised
by the otoscopists in their diagnostic process. Resultodstrate
that our simple and concise 6-feature OMV is effective onpitad-

lem, underscoring the importance of using targeted, plogically-

meaningful features instead of a large number of genenglgse
features. The classification process, grammar, is a ht@caigpro-
cess mimicking in part the diagnostic process used by opistso
Our future work will focus on designing new features to prevais-

Grayscale variance

Grayscale variance

Fig. 5. A hierarchical classifier implementing otitis media graatm

5. RESULTS AND DISCUSSION [1]
Data Set. As part of a separate clinical trial, 826 TM images were
collected from children with AOM, OME and NOE. A panel of tere
experienced otoscopists examined these images and paothde
ground-truth labels. As mentioned before, these images poal-
lenges even for experienced otoscopists; thus a rather ggee-
ment in labeling the set. As having accurate ground-trubeliis
crucial, we asked the panel to provide a diagnosis confidEvet
for each image; levels between 80-100 indicated an almaftgie
example of its diagnostic class, while levels below 30 iatkd al-
most no confidence. Based on these, we selected a subset of 1g#]
images (48 of AOM, 63 of OME and 70 of NOE), by selecting those
for which all three experts agreed with confidence of over 60.

Results.

(2]
(3]

We compare our CFC WCM MRC SSC OMC -
algorithm, ofits  aom 766 682 535 856 813
media classifier ome 729 608 663 713 857
(OMC), to four  Nog 756 634 751 718 814
other classifiers:

Total 621 641  68.3  69.1 84.0

(2) In the corre-
lation filter clas-
sifier (CFC), the
image is trans-
formed into the polar domain, correlation is performed omcemtric
annular regions extracted from the polar-transformed @magd the
class label is assigned based on the correlation measQré/ND-
CHARM (WCM) [6] is a universal classifier that extracts a lkarg
number (4,008) of generic image-level features, then iflassvith

a nearest neighbor algorithm. (3) MRC (multiresolutiorssiéer),
originally designed for biomedical applications [7], degmses the
image into subbands using a multiresolution decompos(fmmex-
ample, wavelets or wavelet packets), followed by featuteaetion

and classification in each subband and a global decisiordbase
weighted individual subband decisions. We ran MRC with 2lgv
and 26 Haralick texture features on the grayscale image actu &

the 20 subbands (546 in total). (4) SSC (SIFT and shape geawi
classifier) extracts SIFT features and shape descriptotedoamage

and uses bag-of-words model, then classifies using suppotb
machine. We used a 5-fold cross validation setup. The CFC and
SSC are classifiers we developed in the course of this work.

Table 2 compares the performance of the five classifiers. Thgg)
OMC outperforms the four other classifiers by a fair margimisT
validates our methodology in that a small number of targeted
physiologically-meaningful features, vocabulary, is wisaneeded
for accurate classification.

(6]

Table 2. Classification accuracid%].

(8]

[9]

classification, as well as refining the hierarchical classifi
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