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ABSTRACT

We propose an automated algorithm for classifying diagnostic cate-
gories of otitis media (middle ear inflammation); acute otitis media,
otitis media with effusion and no effusion. Acute otitis media rep-
resents a bacterial superinfection of the middle ear fluid and otitis
media with effusion a sterile effusion that tends to subsidesponta-
neously. Diagnosing children with acute otitis media is hard, leading
to overprescription of antibiotics that are beneficial onlyfor children
with acute otitis media, prompting a need for an accurate andauto-
mated algorithm. To that end, we design a feature set understood
by both otoscopists and engineers based on the actual visualcues
used by otoscopists; we term thisotitis media vocabulary. We also
design a process to combine the vocabulary terms based on thedeci-
sion process used by otoscopists; we term thisotitis media grammar.
The algorithm achieves 84% classification accuracy, in the range or
outperforming clinicians who did not receive special training, as well
as state-of-the-art classifiers.

Index Terms— otitis media, classification, vocabulary, gram-
mar

1. INTRODUCTION

Otitis media is a general term for middle-ear inflammation and may
be classified clinically as either acute otitis media (AOM) or otitis
media with effusion (OME); AOM represents a bacterial superinfec-
tion of the middle ear fluid and OME a sterile effusion that tends
to subside spontaneously. Although middle ear effusion is present in
both cases, this clinical classification is important because antibiotics
are generally beneficial only for AOM. However, proper diagnosis of
AOM, as well as distinction from both OME and no effusion (NOE)
require considerable training (see Figure 1 for example images).

AOM is the most common infection for which antimicrobial
agents are prescribed in children in the US. By age seven, 93%of
children will have experienced one or more episodes of otitis me-
dia [1]. AOM results in significant social burden and indirect costs
due to time lost from school and work. Estimated direct costsof
AOM in 1995 were $1.96 billion and indirect costs were estimated
to be $1.02 billion, with a total of 20 million prescriptionsfor an-
timicrobials related to otitis media [2].
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(a) AOM. (b) OME. (c) NOE.

Fig. 1. Sample (cropped) images from the three diagnostic classes.

These considerations underscore the critical need for an accu-
rate classification algorithm, able to discriminate imagesof tym-
panic membranes (TM) obtained with an otoendoscope into oneof
three stringent diagnostic categories: AOM, OME and NOE. Toour
knowledge, the only related work in this area is [3], where the au-
thors investigate the influence of color on the classification accura-
cies of individual classes, with the conclusion that the color alone is
not sufficient for accurate classification.

In this paper, we adopt the following guiding principles, partly
inspired by [4]:

• Vocabulary.We aim to design a feature set understood by both
otoscopists and engineers based on the actual visual cues used by
otoscopists; we term thisotitis media vocabulary (OMV). To design
OMV, we use otoscopic findings listed in Table 1.

• Grammar.We aim to design a process to combine the vocab-
ulary terms based on the decision process used by otoscopists; we
term thisotitis media grammar. To design the grammar, we use the
findings from [5], summarized in the next section.

We compare our algorithm designed following the above prin-
ciples to a universal classifier WND-CHARM [6] and a multireso-
lution classifier originally designed for biomedical applications [7].
The ground truth is provided by a panel of expert otoscopists.

2. EPIDEMIOLOGY OF ACUTE OTITIS MEDIA

The number of AOM episodes has increased substantially in the past
two decades, as have the associated costs. Approximately 25million
visits are made to office-based physicians in the US for otitis media
yearly, resulting in a total of 20 million prescriptions forantimicro-
bials related to otitis media [1]. Accurate diagnosis is imperative
to ensure that antimicrobial therapy is limited to the appropriate pa-
tients; this, in turn, increases the likelihood of achieving optimal out-



comes and minimizing the risk of encouraging antibiotic resistance.
To design a feature set based on the visual cues used by oto-

scopists, we need to understand what those cues are; we list only
those that were found most relevant and that we use to design the
features, see Table 1. For example, the presence of middle-ear effu-
sion is evidenced by TM abnormalities, such as white or yellow dis-
coloration and opacification. A diagnosis of AOM can be established
when distinct fullness or bulging of the TM is noted in addition to
evidence of middle-ear effusion.

AOM OME NOE

Color White, pale yellow, White, amber, Gray, pink

markedly red gray, blue

Position Distinctly full, Neutral, Neutral,

bulging retracted retracted

Translucency Opacified Opacified, Translucent

semi-opacified

Table 1. Otoscopic findings associated with clinical diagnostic cat-
egories on TM images.

To explore the diagnostic processes used, Drs. Shaikh and
Hoberman asked 7 expert otoscopists to independently describe TM
findings and assign a diagnosis (AOM/OME/NOE) on a collection
of 135 randomly selected TM images from an image library (see
Figure 1 for an example). To control for differences in colorrendi-
tion between computers, they mailed color-calibrated laptops to each
expert. Just by evaluating still images, with no information about
mobility or ear pain, the diagnosis (AOM vs. no AOM) endorsed
by the majority of experts was in agreement with the live diagnosis
88.9% of the time, underscoring the limited role that symptoms and
mobility of the TM have in the diagnosis of AOM. Bulging of the
TM was the finding judged best to differentiate AOM from OME [5].

3. OTITIS MEDIA VOCABULARY

The expert otoscopist uses his specialized knowledge when discrim-
inating between the different diagnostic categories. The goal of our
proposed methodology is to create a feature set—OMV, which will
mimic the visual cues of trained otoscopists closely.

Methodology. To design OMV, we follow the process from [8]:
Formulation of initial set of descriptions.We obtain initial de-

scriptions of those characteristics best describing a given diagnostic
category from the summary of otoscopic findings in Table 1.

Computational translation of key terms.From this set, the key
terms, such asbulging, are translated into their computational syn-
onyms, creating a computational vocabulary (in our case, wecon-
struct a feature describing the opposite,concavity).

Computational translation of descriptions.Using the computa-
tional vocabulary, entire otoscopist’s descriptions, such asbulging
and white, are translated.

Verification of translated descriptions.Based on these translated
descriptions, the otoscopist tries to identify the diagnostic category
being described, emulating the overall system with translated de-
scriptions as features and the otoscopist as the classifier.

Refinement of insufficient terms.If the otoscopist is unable to
identify a diagnostic category based on translated descriptions, or if
a particular translation is not understandable, then that translation is
refined and presented again to the otoscopist for verification.

Otitis media vocabulary.If the otoscopist is able to identify a
diagnostic category based on translated descriptions, then the dis-
criminative power of the key terms and their corresponding compu-
tational interpretations is validated, and these terms canbe included
as OMV terms to create features.

This feedback loop is iterated until a sufficient set of termshave
been collected to formulate OMV:
{

concavityfc translucencyft amber levelfa
grayscale variancefv bubble presencefb light fℓ

}

.

Automated segmentation.Segmentation is a crucial step to ex-
tract relevant regions on which reliable features for classification can
be computed. We now briefly summarize an active-contour based
algorithm we implemented. We compute a snake potential of the
grayscale version of the input, and then a set of forces that outline
the gradients and edges. Then, the active contour algorithmis initial-
ized by a circumference in the center of the image, and the algorithm
iteratively grows this contour. The algorithm stops at a predefined
convergence criterion, which leaves an outline that coversthe rele-
vant region in the image. This outline is used to generate thefinal
mask that is applied to the input image; Figure 2 shows an example.

(a) Original. (b) Segmented.

Fig. 2. Automated segmentation of TM images.

Concavity. To identify bulging, we design a feature detecting
the opposite, the concave region located centrally in the TM; we call
it concavityfeature. The input is a grayscale version (Figure 3(a))
of the segmented original RGB imageX ∈ R

M×N as in Figure 2.
We use a sliding window to extract a local circular neighborhood,
XR(m,n), of radiusR (R = 60 in our experiments). That circular
neighborhood is then transformed into its polar coordinates to obtain
XR(r, θ), with r ∈ {1, 2, . . . , R}, θ ∈ [0, 2π], and

(a) Grayscale. (b) Polar. (c) Labeled.

Fig. 3. Computational steps for the concavity feature.

r =
√

(m−mc)2 + (n− nc)2, θ = arctan
(n− nc)

(m−mc)
,

where(mc, nc) are the center coordinates of the neighborhoodXR.
In Figure 3(b), the resulting image hasr as the horizontal axis and
θ as the vertical one. The concave region changes from dark to
bright from the center towards the periphery of the concavity; in po-
lar coordinates this change from dark to bright occurs as theradius
grows, see Figure 3(b). Defining the bright regionB = {(r, θ) |
r > R′} and the dark regionD = {(r, θ) | r ≤ R′}, and with



R′ ∈ [1/4R, 3/4R], we compute the ratio of the two means,

fc,R′ =
E
[

XR(r, θ) |(r,θ)∈B

]

E
[

XR(r, θ) |(r,θ)∈D

] ,

As the concave region is always centrally located, we experimentally
determine a square neighborhoodI (here151×151) to compute the
concavity feature,

fc = max
R′∈I

fc,R′ .

Translucency. Translucency of the TM is the main character-
istic of NOE in contrast with opacity in AOM and semi-opacityin
OME; it results in the clear visibility of the TM, which is primar-
ily gray. We thus design the translucency feature to measurethe
grayness of the TM. We do that by using a simple color-assignment
technique. As these images were taken under different lighting and
viewing conditions, according to [9], at least3−6 images are needed
to characterize a structure/region under all lighting and viewing con-
ditions. We take the number of images to beNtl = 20.

Then, we perform the following once to determine gray-level
clusters in translucent regions: We extractNt pixels from translu-
cent regions(Nt = 100) of Ntl RGB images by hand segmenta-
tion, to obtain a total ofNtlNt pixels from images (here2000). We
then cluster theseNtlNt pixels usingk-means clustering to obtain
K cluster centersck ∈ R

3, k = 1, 2, . . . , K, capturing variations
of gray in the translucent regions.

To compute the translucency feature for a given imageX, for
each pixel(m,n), we computeK Euclidean distances ofX(m,n)
to the cluster centerck, k = 1, 2, . . . , K,

dk(m,n) =

√

√

√

√

3
∑

i=1

(Xi(m,n)− ck,i)2,

with i = 1, 2, 3 the color channel. If any of the computedK dis-
tances falls below a thresholdTt (found experimentally), the pixel
is labeled as translucent and belongs to the regionRt = {(m,n) |
mink dk(m,n) < Tt}. The binary imageXt is then simply the
characteristic function of the regionRt, Xt = χRt

. We then define
the translucency feature as the mean ofXt,

ft = E[Xt ] .

Amber Level. We use that OME is predominantly amber or
pale yellow to distinguish it from AOM and NOE. We apply a color-
assignment technique similar to that used for computingXt to obtain
a binary imageXa, indicating amber and nonamber regions, and
define the amber feature as the mean ofXa,

fa = E[Xa ] .

Grayscale Variance.Another discriminating feature is the vari-
ance of the intensities across the grayscale version of the imageXg,

fv = var(Xg) ;

for example, OME has a more uniform appearance than AOM and
NOE, and has consequently a much lower variance that can be used
to distinguish it from the rest.

Bubble Presence. The presence of visible air-fluid levels, or
bubbles, behind the TM is an indication of OME. The algorithm
takes in red and green channels of the original RGB image and per-
forms Canny edge detection [10], to place parallel boundaries on
either sides of the real edge, creating a binary imageXb in between.

This is followed by filtering and morphological operations to en-
hance edge detection and obtain smooth boundaries. We then define
the bubble feature as the mean ofXb,

fb = E[Xb ] .

Light. Examination of the TM is performed by an illuminated
otoendoscope. The distinct bulging in AOM results in nonuniform
illumination of the TM, in contrast to the uniform illumination in
NOE. Our aim is to construct a feature that will measure this nonuni-
formity as the ratio of the brightly-lit to the darkly-lit regions.

(a) Grayscale. (b) Contrast-enh. (c) Dominant orient.
Fig. 4. Computational steps for the light feature.

We start by performing contrast enhancement on the grayscale
image in Figure 4(a) to make the nonuniform lighting prominent.
The resulting image in Figure 4(b) is thresholded atTℓ (found ex-
perimentally) to obtain a mask of the brightly-lit binary imageXb

in Figure 4(c). To find the direction(θmax) perpendicular to the
maximum illumination gradient, we look at lines passing through
(mc, nc) (the pixel coordinates at whichfc is obtained) at angleθ
with the horizontal axis. Defining the bright regionB = {(m,n) |
n ≥ tan(θ)(m − mc) + nc} and the dark regionD = {(m,n) |
n < tan(θ)(m−mc)+nc}, we compute the ratio of the two means,

r(θ) =
E
[

Xb(m,n) |(m,n)∈B

]

E
[

Xb(m,n) |(m,n)∈D

] .

Then, the direction perpendicular to the maximum illumination gra-
dient isθmax = argmaxθ r(θ), and we define the light feature as

fl = r(θmax).

4. OTITIS MEDIA GRAMMAR

Inspired by [5], we design a decision process to combine the OMV
terms based on the decision process used by the otoscopists and term
it otitis media grammar. The decision process has a hierarchical tree
scheme wherein we use the OMV to discriminate AOM/OME/NOE.
The hierarchy consist of two levels shown in Figure 5:

First Level. At the first level, we perform a coarse separation
based on bulging (concavity feature), translucency and light. While
ideally, if there is bulging present, the image should be classified
as AOM, concavity feature alone cannot accomplish the task;we
use the light feature as an aid as AOM will be nonuniformly-lit un-
like OME/NOE, as we explained earlier. In the second split, we
use translucency to discriminate NOE from the rest. Unfortunately,
some of the OME images will show up in the same category due to
semi-translucency observed in mild infection. This process results
in a separation into two superclasses: AOM/OME (acute/mildinfec-
tion) and NOE/OME (no/mild infection).

Second Level.At the second level, we use a weighted combi-
nation of four features, amber level, bubble presence, translucency
and grayscale variance,wafa + wbfb + wℓfℓ + wvfv, to help sep-
arate superclasses into individual classes. During the training phase,
we determine weightsw that maximize the classification accuracy
of training data; these are then used in the testing phase to classify.
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Fig. 5. A hierarchical classifier implementing otitis media grammar.

5. RESULTS AND DISCUSSION

Data Set. As part of a separate clinical trial, 826 TM images were
collected from children with AOM, OME and NOE. A panel of three
experienced otoscopists examined these images and provided the
ground-truth labels. As mentioned before, these images pose chal-
lenges even for experienced otoscopists; thus a rather pooragree-
ment in labeling the set. As having accurate ground-truth labels is
crucial, we asked the panel to provide a diagnosis confidencelevel
for each image; levels between 80-100 indicated an almost perfect
example of its diagnostic class, while levels below 30 indicated al-
most no confidence. Based on these, we selected a subset of 181
images (48 of AOM, 63 of OME and 70 of NOE), by selecting those
for which all three experts agreed with confidence of over 60.

Results.
CFC WCM MRC SSC OMC

AOM 76.6 68.2 53.5 85.6 81.3
OME 72.9 60.8 66.3 71.3 85.7
NOE 75.6 63.4 75.1 71.8 81.4

Total 62.1 64.1 68.3 69.1 84.0

Table 2. Classification accuracies[%].

We compare our
algorithm, otitis
media classifier
(OMC), to four
other classifiers:
(1) In the corre-
lation filter clas-
sifier (CFC), the
image is trans-
formed into the polar domain, correlation is performed on concentric
annular regions extracted from the polar-transformed image, and the
class label is assigned based on the correlation measure. (2) WND-
CHARM (WCM) [6] is a universal classifier that extracts a large
number (4,008) of generic image-level features, then classifies with
a nearest neighbor algorithm. (3) MRC (multiresolution classifier),
originally designed for biomedical applications [7], decomposes the
image into subbands using a multiresolution decomposition(for ex-
ample, wavelets or wavelet packets), followed by feature extraction
and classification in each subband and a global decision based on
weighted individual subband decisions. We ran MRC with 2 levels
and 26 Haralick texture features on the grayscale image and each of
the 20 subbands (546 in total). (4) SSC (SIFT and shape descriptors
classifier) extracts SIFT features and shape descriptors for the image
and uses bag-of-words model, then classifies using support vector
machine. We used a 5-fold cross validation setup. The CFC and
SSC are classifiers we developed in the course of this work.

Table 2 compares the performance of the five classifiers. The
OMC outperforms the four other classifiers by a fair margin. This
validates our methodology in that a small number of targeted,
physiologically-meaningful features, vocabulary, is what is needed
for accurate classification.

6. CONCLUSIONS

We created an automated system for identification of three diagnos-
tic classes of otitis media. Our guiding principle was to design and
use a vocabulary of features that mimics the actual visual cues used
by the otoscopists in their diagnostic process. Results demonstrate
that our simple and concise 6-feature OMV is effective on theprob-
lem, underscoring the importance of using targeted, physiologically-
meaningful features instead of a large number of general-purpose
features. The classification process, grammar, is a hierarchical pro-
cess mimicking in part the diagnostic process used by otoscopists.
Our future work will focus on designing new features to prevent mis-
classification, as well as refining the hierarchical classifier.
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