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ABSTRACT

We propose an automated algorithm for segmentation of mitochon-
dria from widefield fluorescence microscopy images for quantitative
morphology characterization. Mitochondria are membrane-bound
organelles that are essential to cells of higher living organisms. Re-
liable and precise quantitative characterization of their shape is cru-
cial to understanding related physiology and disease mechanisms.
Building upon the active-mask framework developed for segmenta-
tion of confocal fluorescence microscope images, we propose a new
adaptive region-based distributing function to effectively address the
problem of halo artifacts that are common in widefield fluorescence
images. Such artifacts prevent the segmentation of weak features of
mitochondria using existing algorithms. We compare the algorithm
to the original active-mask algorithm as well as the geodesic active
contour algorithm based on hand-segmented ground truth, and find
that it performs significantly better both qualitatively and quantita-
tively.

Index Terms— segmentation, active masks, mitochondria

1. INTRODUCTION

Mitochondria are membrane-bound organelles that are essential to
eukaryotic cells of higher living organisms including humans. They
serve critical functions such as energy conversion and distribution as
well as intracellular signaling in many basic cellular processes [1].
To meet the changing needs of dynamic cellular processes, mi-
tochondria frequently undergo controlled shape changes [2]. Re-
liable and precise quantitative characterization of mitochondrial
shape is crucial to understanding related physiology and disease
processes [3]. This, in turn, requires reliable and precise image seg-
mentation to extract shapes of mitochondria from their microscopy
images. The main goal of this study is to segment fluorescently
tagged mitochondria, as depicted in Figure 1, from motor neurons
of Drosophila 3rd instar larvae.

Segmentation of fluorescence microscopy images has attracted
substantial attention in the past few years as it is a crucial first step in
quantitative image data analysis. In particular, fluorescence images
often have a punctate (dotted, unconnected) appearance, leading to
the lack of discernible edges and precluding the use of edge-based
algorithms. Two algorithms have been widely used: seeded water-
shed, designed as a general-purpose segmenter, and highly depen-
dent on the choice of initial seeds (for example, [4]), and Voronoi
segmentation (for example, [5]). Several attempts have also been
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Fig. 1. GFP-labeled mitochondria (arrows), imaged in axons within
segmental nerves of a dissected Drosophila 3rd instar larva.

made to use active-contour algorithms (for example, [6]), consid-
ered state-of-the-art in medical image segmentation. Active-contour
methods offer flexibility, allowing for the choice and/or design of
forces suited to a given application. In the segmentation work in our
lab, we added a multiresolution version to active contours, achiev-
ing an-order-of-magnitude increase in speed, as well as a multiscale
version to smooth punctate patterns and connect the dots (that is,
creating edges) [7]. These led to the active-mask framework [8] that
is the basis for the work in this paper.

In widefield fluorescence microscopy images, an artifact known
as halo (dim ring around a bright features appearing as a result of the
acquisition method) is often present. As its intensity is in the range
of the weak features of the mitochondria, it is a challenge to exclude
it during segmentation. In this paper, we present an algorithm for au-
tomated segmentation of fluorescently-tagged mitochondria, which
expands the active-mask framework to incorporate local statistical
properties of the image and solves the issue of confusing halos with
weak mitochondria features.

2. ACTIVE-MASK SEGMENTATION

Our previous efforts raised several questions: What is a contour in
a digital image? Since updating the level-set function in active-
contour algorithms can be very slow, how do we reconstruct it in
its multiresolution version? These questions led us to formulate a
set of requirements for a new algorithm that combines the flexibility
offered by active-contour methods, speed offered by multiresolution
methods, smoothing offered by multiscale methods, and statistical
modeling offered by region-growing methods.

Framework. We termed this algorithm active-mask segmenta-
tion [8], as we moved from the concept of a contour (ill-defined
for digital images) to that of a mask (well-defined). To preserve
topology (for example, separate touching image features), multi-
ple masks are introduced. Analogously to forces in active-contour
methods, we defined distributing functions, acting on each mask as
a whole. We initially designed two types of distributing functions:
the region-growing ones, which depend on the statistical properties
on the image, and the voting-based ones, which depend on the ge-
ometrical properties of the image. The region-based functions aim
to separate statistically different regions (background/foreground),
while the voting-based ones aim to separate foreground into multi-
ple masks (for example, features such as mitochondria). We embed



these into a multiscale block allowing the algorithm to find bound-
aries by going through multiple scales. A multiresolution block
serves to speed up the computation by segmenting quickly a coarse
version, then lifting up one resolution at a time to fine tune the result.
The entire algorithm is illustrated in Figure 2.
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Fig. 2. Active-mask algorithm [8].

Given is a d-dimensional image f with (M − 1) cells present.
Similarly to [9], a collection of M masks will be a function ψ that
assigns each pixel n a value ψn ∈ {1, . . . ,M}, where n belongs to
the mth mask if ψn = m. Each mask is a characteristic function of
the appropriate region, µm,n = 1 if ψn = m, and 0 otherwise.

Region-Based Distributing Functions. Let the first mask rep-
resent the background. The role of the region-based distributing
function R1 is to separate background from foreground by forcing
those points with a low average intensity into the background mask
µ1 (we assume Ri = 0 for i = 2, . . . ,M − 1),

R1,n = α sig
(
β
(
(f ? h)n − γ

))
, (1)

where h is a region-based lowpass filter, in [8] chosen to be

hn = e−|n|
2/a2

, (2)

and a > 0 is the scale of the region-based lowpass filter. The func-
tion sig is any sigmoid-type function, for example,

sig(x) = erf(x) =
2√
π

∫ x

0

e−t2/2 dt,

so that it is ±1 at ±∞, respectively. Function f ? h denotes convo-
lution adjusted for boundary issues, the skewing factor α ∈ (−1, 0)
should be close to −1, β determines the harshness of the threshold;

and average border intensity γ should be taken as the average inten-
sity of those pixels which lie on the boundary between being inside
every cell and being outside them all. Thus, for a pixel outside a cell,
(f ? h)n < γ, or R1,n ≈ −α ≈ 1. During voting described shortly,
this will skew it so that the background is chosen.

Voting-Based Distributing Functions. These functions basi-
cally perform majority voting based on statistical properties of lo-
cal regions. This is done by computing a convolution (adjusted for
boundary issues) with a voting-based lowpass filter g, for example,

gn = 1− erf(|n|2/b2 − 1),

where b is the scale of the voting-based lowpass filter. At iteration
step i, the voting-based distributing function Vm,i is

Vm,i,n = (µm ? g)n.

Basically, Vm,i,n tells us how much the pixel n wants to move to
mask m, given its local neighborhood.

Basic Block. Combining these functions, the basic iteration is

ψi+1,n = argmax
m=1,...,M

[
Vm,i,n +Rm,n

]
.

Thus, if α ≈ −1 and a pixel is inside a cell, R1 will prejudice
the voting so that any mask but background one is chosen. Simi-
larly, if a pixel is outside a cell, R1 will sway the voting towards
the background. The algorithm can be initialized randomly. The
first few iterations will typically produce a rough separation of
background/foreground, followed by a fine separation of individual
masks.

Multiscale Block. Changing the scale a of the region-based
lowpass filter h in (2) can help overcome the problem of splits.
Choosing a large a allows the algorithm to converge quickly, though
the resulting masks may be larger than the cells they are segment-
ing. However, such a result can be used as a starting point for a new
iteration with a smaller a.

Multiresolution Block. To speed up the algorithm we first seg-
ment the coarse version and then gradually lift up the resolution and
segment again. The lifting is done by upsampling and filtering, for
example using a simple Haar filter [8].

3. ADAPTIVE ACTIVE-MASK SEGMENTATION

Given the flexibility offered by the active-mask segmentation, we ex-
tend the framework to capture the mitochondrial morphology from
the fluorescence image data as shown in Figure 1. Unlike the con-
focal microscopy images in [8], the images of mitochondria were
obtained from widefield epifluorescence microscopy. The segmenta-
tion challenge posed by these images is that the level of fluorescence
intensity varies significantly among mitochondria. Consequently,
the foreground signal is far from uniform. The signal-to-noise ra-
tios of certain mitochondria are so low that it is difficult to visually
determine their boundaries (Figure 3). More importantly, widefield
fluorescence images also contain halos as we explained earlier (see
Figure 3 for an example). Whereas the halos are generally dimmer
than the area inside the mitochondrion, some halos are as bright as or
even brighter than the dimmer mitochondria. This effect could be at-
tributed to a combination of out-of-focus fluorescence and scattered
background fluorescence. When we attempted to segment the image
using the active-mask algorithm (and several other segmentation al-
gorithms such as global thresholding, active contours), this became
a problem. If we determined a value of γ in (1) to exclude the halo,



(a) (b)

Fig. 3. (a) Two mitochondria (arrows), a very bright one on the left
and a very dim one on the right, from Figure 1 (contrast-enhanced
for visibility). (b) The hand-segmented mask of the brighter mito-
chondrion (black area) is overlaid on the same image. A halo sur-
rounding the brighter mitochondrion has intensity values similar to
those of the dimmer one.

we would be excluding the dimmer object as well. Conversely, if
we captured the dimmer objects, we would be capturing the halo as
well. The solution is to extend the active-mask framework to pre-
cisely segment the mitochondria while excluding the halos. While
there exist studies addressing similar problems in different imaging
modalities [10, 11], we prefer a simple and computationally efficient
version of the region-based distributing function.

Adaptive Region-Based Distributing Function. Inspired
by [12], we propose a new distributing function R1; we call it
adaptive region-based distributing function,

R1,n = α sig
(
β
(
(f ? h)n − ((f ? p)n + γa)

))
, (3)

for some region-based lowpass filter h and adaptive threshold low-
pass filter p. We choose h as in (2) and p as

pn = e−|n|
2/c2 ,

where c > 0 is called the scale of the adaptive threshold lowpass
filter. In the above, f ? p denotes convolution designed for local
weighted average intensity and threshold adjustment γa indicates the
adjustment of adaptive threshold from local weighted average which
is determined as γa = (µf − µb)/2, where µf is the average inten-
sity of the dim object, and µb is that of the background. The idea here
is to compare the intensity value of a given pixel with the weighted
average of the intensities in some neighborhood (a disk area with
the radius of three times the scale c). For such an R1, for a typical
pixel n inside a mitochondrion, (f ? h)n > ((f ? p)n + γa), and
so R1,n ≈ α ≈ −1. During the voting described earlier, R1,n then
skews the voting so that any mask but the background one is chosen.
On the other hand, for a typical pixel n in the area of the halo, the
local weighted average intensity is raised depending on the distance
between the pixel and the closest mitochondrion. Therefore, simi-
larly to those pixels in the background, (f ? h)n < ((f ? p)n + γa),
and soR1,n ≈ −α ≈ 1 (see Figure 4). During the voting,R1,n then
skews the voting so that the background is chosen.

4. RESULTS AND DISCUSSION

Data Set. Mitochondria, fluorescently tagged with GFP, from motor
neurons of dissected Drosophila 3rd instar larvae were imaged. The
data set we used in this study consists of 45 images selected from 15
movie sequences. Each movie sequence consists of 181 frames (var-
ied sizes, about 1300 × 300) containing 10–25 mitochondria each.
Three frames (#20, #100, and #180) from the beginning, middle, and
end of each sequence were used for testing so that potential impact
of photobleaching can be examined. The effective pixel size is 64.5
nm. To generate ground truth, we used images hand-segmented by
outlining splines enclosing each mitochondrion.

0

50

100

0 10 20 30 40

−1

0

1

n
1
 [px]

n
2
 [px]

R

(a) (b)

Fig. 4. (a) Illustration of the effect of the adaptive threshold plane
((f ? p)n + γa) (red) versus the global threshold plane γ (blue)
overlaid on the smoothed image (f ? h)n in 3D. (b) The resulting
soft-thresholded image in 3D as in (3).

Experimental Setup. We compare the performance of the
proposed algorithm to our original active-mask algorithm and a
geodesic active contour (GAC) algorithm from [13]. GAC begins
with an initial level set, given by the region of the interest, and
evolves the contour according to the speed image, created by a sig-
moid function of the soft-threshold image, S = tanh

(
(f ?h)−γ`

)
,

where f ? h is defined previously and γ` is determined by the statis-
tical properties of the images. The output level set generated by the
GAC is then binary thresholded to produce the segmentation.

All algorithms are implemented in MATLAB except the GAC
level-set evolving function, for which we use ITK through MATITK
[14]. The runtime for the adaptive active-mask algorithm remains
roughly the same as the original active-mask algorithm, which is
about 2 minutes for the finest resolution, while the one for the GAC
level-set algorithm is about 30 seconds. All computations were per-
formed on a desktop workstation (2x Intel Xeon E5503 2.00 GHz
and 16GB RAM).

We used similar parameters as in [8] for both original active-
mask and adaptive active-mask algorithms with the initial number
of masks M = 256, initial resolution level K = 3, final resolution
level K0 = 0, scale parameters a = 3.5, b = 8, c = 5, and skew-
ing factor α = −0.9. For the original active-mask algorithm, as in
[8] we determined β and γ based on one image from each movie se-
quence and used the same numbers for all the other images from that
movie, and similarly for γa for the adaptive active-mask algorithm.
For GAC, the following parameters were used: ωadvection = 1,
ωcurvature = 1, and ωpropagation = 10 (see [15] for more details).

Qualitative Performance Evaluation. We compare the results
of the adaptive active-mask, the original active-mask, and the level-
set algorithms against the hand-segmented masks, shown in Figure
5. As previously noted, the original active-mask algorithm performs
poorly on the image which contains both dim objects and halos. In
Figure 5(c) and (d), we can see that even with different levels of
threshold-based tuning, it cannot produce precise segmentations. It
either loses dim objects or includes halos to create a larger area than
that marked by hand segmentation for brighter objects. The GAC
level-set algorithm also shares similar problems. On the other hand,
the adaptive active-mask algorithm produces segmentations match-
ing the ground truth better than the other two algorithms.

Quantitative Performance Evaluation. We used two standard
performance measures: the recall (R)/precision (P) and area similar-
ity (AS) [16] by comparing the algorithm-produced segmentations
(SG) to the ground truth (GT) for each mitochondrion in each im-
age. The recall/precision rates are calculated as follows:

R =
|TP|
|GT| , P =

|TP|
|SG| ,



where a true positive (TP) refers to a mitochondrion correctly seg-
mented; a false positive (FP) to background area false segmented;
and a false negative (FN) to a mitochondrion not segmented.

The AS normalizes twice the area of the intersection of the SG
and the GT by their total area. This measure will penalize the al-
gorithm that produces larger or smaller regions. According to [16],
performance of the AS ≥ 70% generally implies a good agreement
of the algorithm’s result with the ground truth.

Results. A summary of the
GAC AM AAM

AS 48.99 32.19 70.54
R 74.48 57.04 91.02
P 83.63 86.45 90.82

Table 1. Segmentation re-
sults [%].

results based on these methods is
given in Table 1. All measures have
been averaged over all mitochon-
dria and all images. In terms of
recall and precision, which roughly
measure the percentage of usable
segmentation, the adaptive active-
mask algorithm outperforms the
others by a fair margin. Note that recall and precision only present
coarse results, as they do not take into account the fit of the seg-
mented area to that marked by hand segmentation. From the AS
results for each algorithm, as expected, the adaptive active-mask
algorithm maintains good agreements with the ground truth (AS =
70.54%) with higher recall and precision rates. This is because the
adaptive threshold enables the region-based function to exclude ha-
los without losing the dimmer objects, while the other two algorithm
can only trade off one for the other.

5. CONCLUSIONS

We present an automated algorithm for segmentation of mitochon-
dria in widefield fluorescence images. The algorithm extends our
previous work on active-mask segmentation, originally developed
for confocal fluorescence microscope images. It adaptively extends
active-mask segmentation by introducing a region-based distributing
function that allows for dim artifacts such as halos to be discarded
while still preserving dim objects of interest. The algorithm per-
forms well when benchmarked using hand-segmented ground truth
and significantly outperforms the original active-mask algorithm and
the GAC algorithm both qualitatively and quantitatively.
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(a) Hand-segmented image.

(b) GAC level-set algorithm.

(c) Active-mask algorithm with higher threshold level.

(d) Active-mask algorithm with lower threshold level.

(e) Adaptive active-mask algorithm.

Fig. 5. Segmentation results. Each colored region corresponds to a
different mitochondrion, overlaid on the hand-segmentation masks
in white for comparison. Colors are selected randomly.


