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ABSTRACT

We propose a new algorithm for classification that merges classifi-
cation with reject option with classification using contextual infor-
mation. A reject option is desired in many image-classification ap-
plications requiring a robust classifier and when the need for high
classification accuracy surpasses the need to classify the entire im-
age. Moreover, our algorithm improves the classifier performance by
including local and nonlocal contextual information, at the expense
of rejecting a fraction of the samples. As a probabilistic model, we
adopt a multinomial logistic regression. We use a discriminative ran-
dom model for the description of the problem; we introduce reject
option into the classification problem through association potential,
and contextual information through interaction potential. We vali-
date the method on the images of H&E-stained teratoma tissues and
show the increase in the classifier performance when rejecting part
of the assigned class labels.

Index Terms— image classification, reject option, discrimina-
tive random fields

1. INTRODUCTION

Classification is a ubiquitous image processing task that aims to sep-
arate a group of objects into different classes. In classification, small,
unbalanced, or incomplete training sets can lead to low performance
of the classifier. As in many applications, the need for high accuracy
surpasses the need to classify all the samples, in those applications,
we classify while rejecting a portion of the class labels [1]. To aid
in the process, one can exploit the similarity between samples and
the spatial context, providing useful cues when classifying. Clas-
sifying with rejection as well as using spatial contextual informa-
tion are both applicable in the automated identification of tissues in
histopathology [2, 3, 4], where the cost of creating a large and rep-
resentative training set is high, the presence of unknown classes is a
possibility, and the similarity between tissues belonging to the same
class is high.

Our goal is thus to improve classifier performance by adding
a reject option and contextual information as follows:
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e Partition the image; perform feature extraction in each partition.

e Estimate class probabilities for each partition and the risk associ-
ated with each class.

e Classify each partition using contextual information and the reject
option.

The paper is organized as follows: Section 2 provides the back-
ground on partitioning, feature extraction and classification tech-
niques. Section 3 introduces the concept of rejection while Sec-
tion 4 describes our classification method with reject option using
contextual information. Section 5 presents experimental results and
Section 6 concludes the paper.

2. BACKGROUND

We now briefly describe the background necessary for our work in
terms of image partitioning, feature extraction procedures, and the
classification methods used. A generic classifier consists of a feature
extraction function that maps a high-dimensional input space into a
lower-dimensional feature space, and a classification function that
maps the feature space into the class label space. The partitioning
of the image can be considered as a preprocessing method, mapping
the image space into the partition space.

Partitioning To reduce the dimensionality of the problem, we par-
tition the data, which also allows us to efficiently use graph-based
methods. The partitioning of the image is performed by overseg-
menting the image and creating superpixels [S]; this allows us not
only to reduce the dimension of a problem by a factor of the order of
1000, but also guarantees that there is class and appearance coher-
ence in each partition, due to the small dimension of each superpixel
(each superpixel is of average size 5 x 10 pixels, corresponding to
4 x 10 partitions in a 1600 x 1200 image). One drawback of this
partitioning method is the nonuniformity of the partitions in shape
and size.

Feature Extraction We use two different types of features in our
work: application-specific features and similarity features. We nor-
malize features from each partition by its mean and standard de-
viation. As application-specific features we use the histopathology
vocabulary (HV) containing features with physiological relevance,



designed based on expert knowledge [4, 3]: nucleus size (1D), nu-
cleus eccentricity (1D), nucleus density (1D), nucleus color (3D),
red blood cell coverage (1D), and background color (3D). Similarity
features reflect similarities not taken into account by the HV; we use
the image color.

Classification Given the set of partitions S and associated sets of
features, we want to classify each partition into a single class. As we
need probability estimates for that task, we use multinomial logistic
regression (MLR) [6]. A linear combination of kernels is used as the
nonlinear regression function to include both the application-specific
as well as the similarity features.

Multinomial Logistic Regression. We model the a posteriori
probability p(y; | fi, W) with MLR, where f; is the feature vec-
tor of the ith partition, £ = {1, 2, ..., N} set of class labels that
can be assigned to each partition, y; € L the class label assigned
to the ith partition, and W the regression matrix with columns w;,
i=1,2,..., N (since W is translation invariant, we arbitrarily set
wpy = 0). Let 7 be the set of indices of the partitions present in the
training set and Fr = {f; }ic7. Then, the MLR models a posteriori
probabilities as
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where k(fi, F7) is a kernel vector obtained by concatenating two
length-| 7| vectors of application-specific features k.(f;, F’r) and
similarity features ks (f;, F'r).

LORSAL. To avoid overfitting and ensure generalization capac-
ity of the classifier, we adopt an element-wise independent Laplacian
prior for the MLR vector and compute the maximum a posteriori es-
timate of W by solving the optimization problem

W = arg max (l(W) 4 logp(W)), (D

with (W) = ) logp(y: | f W), p(W) = ae I,
=

where ) is the regularization parameter. Note that log p(W) is pro-
portional to the negative of the £; norm of W, which promotes sparse
regression matrices, controlled by A. The maximization (1) is per-
formed with the LOgistic Regression via Splitting and Augmented
Lagrangian (LORSAL) algorithm [7], which solves the equivalent
problem

arg max (I(W) + logp(2)), subjectto W = Q.

3. REJECT OPTION

To improve accuracy at the expense of not classifying all the par-
titions, we classify while rejecting. Let £ = £ U {N + 1} be an
extended set of partition class labels with an extra label. We consider
two different class rejection concepts: uninteresting class, present in
the training set, trained as a regular class and uninteresting to the ob-
server (corresponding to the class label y; = 1), and unknown class,
which arises from an inability of the classifier to correctly classify
all labels (corresponding to the class label y; = N + 1).

Let C and 7 be the sets of labels of correctly and incorrectly
classified samples, respectively, and r¢ and 77 be the rejection ratios
for correctly and incorrectly classified samples, respectively. Define
the accuracy of nonrejected samples as
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Note that r, ¢ and rz are, respectively, the estimates for the prob-
ability of rejection, conditional probability of rejection given that
the partition is correctly classified, and conditional probability of re-
jection given that the partition is incorrectly classified. Ay is the
estimate of the conditional probability of correctly classifying given
that the partition was not rejected. Ideally, 7z = 1 and r¢ = 0,
that is, reject all of the incorrectly classified samples and none of the
correctly classified ones.

Reject Option by Risk Minimization Let 5(f;, W) = [p(y; =
1| fi, W) ... p(yi = N | fi;,W)]T be the estimate of the proba-
bility vector for all possible true class labels for the ith partition. Let
c(yi) = [cy;1 --- ¢y, N]T be the cost vector of assigning the class
label y; to the ¢th partition, where ¢, ; is the cost of assigning the
class label j to the ¢th partition with the correct class label y; , and
p the cost of the unknown class label. The expected risk of selecting
the class label y; € £’ in the partition is
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‘We can now obtain the vector of estimated class labels ¢ by min-
imizing (2) over all possible partition labelings £S!,
§ = arg min Y log(r(ys | fi, W)). ©)
verSliss

Note that if ¢y,,; = 1 —§,,—;, with §,, the Kronecker delta function,
minimizing (3) yields
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In other words, if the the maximum element of the estimate of the
probability vector is rather large, we are reasonably sure of our deci-
sion and assign the label as the index of the element; otherwise, we
are uncertain and thus assign the unknown-class label.

4. CLASSIFICATION WITH REJECT OPTION

We are now ready to include rejection concepts in an approach where
contextual information is used in classifying with rejection.

Problem Formulation The entire classification problem can now
be posed as an energy minimization problem of two potentials over
the set of partitions S, represented by an undirected graph G(V, &),
with V the set of vertices each corresponding to an individual par-
tition, and £ the set of edges corresponding to the connections be-
tween partitions. Rejection is included in the association potential
Va and the contextual information in the interaction potential V7,
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The minimization of energy in the discriminative random fields is
performed by graph cuts [8, 9, 10].



Association Potential We introduce reject option into the classifi-
cation problem through association potential. Given the risk function

r(yi | fi, W) from (2), the association potential is
Va(yi) = log(r(yi | fi, W)).

Interaction Potential We introduce contextual information into
the classification problem through interaction potential [11] of
neighborhoods. A local neighborhood E; ; C & is the set of edges
connecting partition ¢ and its immediate neighbors. A nonlocal
neighborhood &; , C & is the set of edges connecting partition ¢ and
other partitions with high similarity. This similarity is determined
by the similarity function s : (¢, j) — [0, 1] that assigns a similarity
value between two partitions ¢ and j. The similarity function is
based on features that better assess similarity, which are not being
present in the classifer. For example, we can feed the image into a
Gabor filter bank and then make a similarity decision based on the
Gabor coefficients of the two partitions.

Let ¢ be a transition function between two partitions, and vy,
1y, the weights associated with local and nonlocal neighborhoods,
respectively. Then, the interaction potential can be written as a sum
of individual (possibly overlapping) interaction potentials,

D Vi) = e Y Swey) +vn Y dYiu;)
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The transition function ¢ enforces (1) piecewise smoothness (in a
given concept of neighborhood), (2) ease of transition to the un-
known class (y; = N + 1), (3) and ease of transition between the
uninteresting (y; = 1) and unknown (y; = N + 1) classes,
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0, otherwise.

The local neighborhood enforces a local piecewise smoothness of

the labeling, while the nonlocal neighborhood enforces a nonlocal
piecewise smoothness of the labeling.

5. EXPERIMENTAL RESULTS

For each image in the data set, the method is applied multiple times
with randomized training sets. We test the method using training sets
based on both a single image as well as the entire data set.

Data Set The data set consists of 36 1600 x 1200 images of H&E-
stained teratoma tissues imaged at 40X magnification containing 23
classes. We show results on three representative images in Figure 1,
using the entire data set for the training samples in the multiple-
image training set approach.

Methods We analyze the performance based on the following cri-
teria: the comparison between the initial accuracy A;n; obtained by
the labeling resulting from a maximum a posteriori p( f;, W) and the
final accuracy Asn, obtained by the labeling (4); the improvement ra-
tio Aimp = Asn/Aini; the rejection rate 7; and rejection ratios for
correctly and incorrectly classified samples r¢ and rz, respectively,
and the ratio between the two, rz /r¢.

For each image X; we define four training sets: (1) 751 consists
of 60 randomly selected partitions of X; (~ 1.5% of X;). (2) Ts2
consists of 600 randomly selected partitions of X; (~ 15% of X,).
Let us consider an auxiliary training set T,ux consisting of 30 ran-
domly selected partitions all the images except X;. (3) T consists

of the union of Ts; and T,ux. (4) T2 consists of the union of Tgo
and Tohux.

Results From Table 1, we see that there is a substantial accuracy
improvement by including the reject option and contextual informa-
tion in the classification. Table 2 shows the effect of different rejec-
tion ratios on the accuracy of the labeling for a single example image.
There is a tradeoff between accuracy improvement, the performance
of the rejection option (quantified by rz /r¢) and the overall rejection
rate. Note that A;,; in Table 2 is obtained for a single instantiation
of Ts1, and is thus different from that in Table 1, which is obtained
as the average of 30 instantiations of 7s;. Figure 1 shows results on
the three example images.

Images Aini Agn Aimp r rT re
Training set T

(@)) 0.7872 0.8396 1.0671 0.0905 0.2930 0.0388

2) 0.6053 0.7272 1.2043 0.2156 0.4178 0.0746

3) 0.6169 0.7316 1.1884 0.1967 0.4098 0.0618
Training set Tgo

(1) 0.9068 0.9431 1.0401 0.0555 0.3726 0.0247

2) 0.7856 0.8885 1.1310 0.1295 0.4913 0.0303

3) 0.8256  0.9137 1.1068 0.1086 0.4997 0.0279
Training set Thi1

(1) 0.6628 0.8240 1.2448 0.2060 0.5417  0.0407

2) 0.4463 0.5888 1.3392 0.3145 0.4701 0.1054

3) 0.3620 0.5041 1.4111 0.3561 0.4998 0.1123
Training set T2

(€)) 0.7275 0.8613 1.1940 0.1678 0.5391 0.0341

2) 0.7176  0.8337 1.1651 0.1640 0.4727 0.0364

3) 0.7296 0.8812 1.2131 0.1853 0.5943 0.0317

Table 1. Average values for the performance metrics for single-
image and multiple-image training sets obtained after 30 randomized
runs of the classification method corresponding to example images
(1), (2) and (3) in Figure 1.

Aini =0.8165
p 10° 0.9300 0.5300 0.1300 0.010 0.001
r 0.0000 0.0503 0.1009 0.1992 0.5715 0.6739
rT 0.0000 0.1677 0.3468 0.5403 0.9274 0.9677
re 0.0000 0.0239 0.0457 0.1224 0.4915 0.6078
rz/re 7.0167 7.5886 4.4142 1.8869 1.5921
Afin 0.8390 0.8582  0.8687 0.8947 0.9689  0.9819

Table 2. Effect of changing the parameter p in (2) for Image (1) in
the Ts; training set.

6. CONCLUSIONS AND FUTURE RESEARCH

The inclusion of a reject option using spatial contextual informa-
tion greatly improves the accuracy of the classification. The relative
high weight of the rejection rate for incorrect classifications com-
pared to the rejection rate for correct classifications ( rz/r¢ ) points
to a good behavior of the reject option. These encouraging results
point towards potential utility in large-scale automated tissue iden-
tification of histological slices. Possible future research directions
are: (1) Use of a partitioning algorithm that includes more specific
features (with physiological relevance). (2) Modeling the transition
function ¢ using expert knowledge of tissue transitions in normal
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(a) Original image.

(b) Ground truth.

(c) Classification result.

Fig. 1. Example images of H&E stained samples of teratomas imaged at 40X magnification containing multiple tissues: (1) bone, cartilage and
fat; (2) cartilage, fat, smooth muscle, epithelium, connective, and squamous tissue; and (3) fat, gastrointestinal, smooth muscle, epithelium,
connective, and squamous tissue. Training set consists of Tso for each example image. Dark blue denotes trained rejection (uninteresting
class) and black denotes rejected partitions (unknown class).

and abnormal histological images. (3) Inclusion of multiscale parti-
tioning, classification and rejection in the interaction and association
potentials.
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