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ABSTRACT

We present a multiresolution classification framework with
semi-supervised learning for the indirect structural health mon-
itoring of bridges. The monitoring approach envisions a sens-
ing system embedded into a moving vehicle traveling across
the bridge of interest to measure the modal characteristics of
the bridge. To enhance the reliability of the sensing system,
we use a semi-supervised learning algorithm and a semi-su-
pervised weighting algorithm within a multiresolution clas-
sification framework. We show that the proposed algorithm
performs significantly better than supervised multiresolution
classification.

Index Terms— multiresolution classification, semi-super-
vised learning, bridge structural health monitoring

1. INTRODUCTION

Bridge structural health monitoring (SHM) has been an in-
tense research area for some time. Traditional, direct ap-
proaches, are to collect acceleration signals by installing sen-
sors on a bridge. The drawback of such direct approaches is
that they require a sophisticated and expensive electronic in-
frastructure with installation, maintenance and power support.
Recently, indirect approaches have been proposed [1, 2, 3],
suggesting the use of moving vehicles to collect data from
accelerometers inside the vehicles, a far less expensive and
complex solution (see Figure 1).

In indirect approaches less data is collected and the data
is noisier (as it is farther from the source); thus, data analy-
sis plays a crucial role. Moreover, although it is easy to get
a large number of data samples, it is expensive to label them
(which involves physically inspecting the bridge and deter-
mining its health); thus, very few data samples are actually
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Fig. 1: Indirect bridge SHM system. Acceleration signals are
collected from a moving vehicle and sent to a classification
system, which identifies the bridge status and reports it to a
transportation authority.

labeled. This real-world constraint turns the indirect bridge
SHM into a semi-supervised classification problem.

We propose a novel semi-supervised classification frame-
work that takes advantage of supervised multiresolution clas-
sification (MRC) [4], which extracts hidden features in lo-
calized time-frequency regions (subbands), and a semi-super-
vised learning algorithm [5], which uses both labeled and
unlabeled samples. This is followed by a semi-supervised
weighting algorithm that combines information from all the
subbands of all the signals to make a global decision.

The outline of the paper as follows: Section 2 states the
problem and gives a brief overview of MRC and semi-super-
vised learning; Section 3 describes our proposed algorithm,
which is validated in Section 4 on acceleration signals col-
lected from a lab-scale bridge-vehicle dynamic system. Sec-
tion 5 concludes with pointers to future directions.

2. BACKGROUND AND PROBLEM FORMULATION

Classification. Our task in bridge SHM is to label acceler-
ation signals as belonging to different classes of structural
change or damage, a task known as classification [6]. Let
X = {x(i) ∈ RN}ni=1 be the given dataset with n signals,
l labeled and u unlabeled; Y = {y(i) ∈ {1, 2, . . . , C}}`i=1



i sample index
X = {x(i)} input dataset i = 1, . . . , n

Y = {y(i)} ground-truth labels for L i = 1, . . . , `

L = {(x(i), y(i))} labeled dataset i = 1, . . . , `

U = {x(i)} unlabeled dataset i = `+ 1, . . . , n
F feature extraction function
f (i) feature vector i = 1, . . . , n

q(i) ground-truth vector i = 1, . . . , `

ŷ(i) estimated label i = `+ 1, . . . , n

q̂(i) confidence vector i = `+ 1, . . . , n

Ŷ = {ŷ(i)} estimated labels for U i = `+ 1, . . . , n

Table 1: Parameters used in a generic classification system.

the ground-truth labels for the labeled dataset L = {(x(i) ∈
X , y(i) ∈ Y)}`i=1; and U = {x(i) ∈ X}ni=`+1 the unla-
beled dataset. Then, the problem can be formulated as de-
signing a map that associates an input signal to a class la-
bel with a certain probability. Typically, a generic classifi-
cation system will have an intermediate block between the
two, a feature extractor F (FE), aimed at reducing the di-
mensionality of the problem; this is followed by a classi-
fier C. The outputs of the classifier are the estimated labels
Ŷ = {ŷ(i) ∈ {1, 2, . . . , C}}ni=`+1 for the unlabeled dataset
U . If the classifier is supervised, we denote the block by SC
(see Figure 2).

Note that a label can also be viewed as a posterior prob-
ability vector q̂ of size C × 1, where the cth component of
the vector, q̂(c), is the probability that a sample belongs to
the cth class. Since q̂ gives a confidence to an assigned label,
we name it a confidence vector. The confidence vector for a
labeled sample is called the ground-truth vector, q.

MRC. MRC is a supervised classification framework (see
Figure 2), originally proposed for bioimaging applications [4,
7, 8]. It decomposes images into S localized space-frequency
subbands using wavelet packets, a data-adaptive MR techni-
que [9]. In each subband, MRC extracts features, classifies
them, and produces a local classification decision. A super-
vised weighting algorithm combines all local decisions into a
global decision (see Algorithm 1).

Fig. 2: Supervised MRC decomposes images into localized
space-frequency subbands using wavelet packets (MR), fol-
lowed by feature extraction (FE) and supervised classification
(SC) in each subband, yielding a local classification decision.
A supervised weighting algorithm (SW) combines all local
decisions into a global decision.

Algorithm 1 MRC
Input X = {x(i)} input dataset
Output Ŷ = {ŷ(i)} estimated labels for X

s subband index s = 1, 2, . . . , S
Ds MR function
a
(i)
s MR coefficients
f
(i)
s feature vector
Cs supervised classification function
q̂
(i)
s confidence vector
W supervised weighting function
w weighting vector ‖w‖1 = 1

q̂(i) confidence vector after weighting

MRC(X )

MR a
(i)
s = Ds(x(i))

FE f
(i)
s = F(a(i)s )

SC q̂
(i)
s = Cs(f (i)s )

SW q̂(i) =W([q̂
(i)
1 , q̂

(i)
2 , . . . , q̂

(i)
s ])

ŷ(i) = argmaxc {q̂(i)(c)}
return Ŷ

(Only parameters different from Table 1 are listed.)

MRC provides various options: the choice of the filter
bank D used in the MR block [10], the feature extraction
method F used in the FE block, and the supervised classi-
fier C used in the SC block. In the sth subband, the function
producing the filter bank output is denoted by Ds and the su-
pervised classifier by Cs (different classification boundaries
in different subbands). To combine the subbands’ classifi-
cation decisions, we collect subbands’ individual confidence
vectors q̂(i)s into a C × S confidence matrix Q̂(i), and define
the weighting functionW as

q̂(i) = W(Q̂(i)) = Q̂(i)w,

where the weighting vector w, which assigns weight to each
subband according to its discriminative power, is chosen by
optimizing a supervised weighting objective function

w = argmin
ω
{
∑̀
i=1

‖q(i) − Q̂(i)ω‖}. (1)

The optimization is performed over all labeled data samples
with the constraint that ‖w‖1 = 1.

Semi-Supervised Learning. Semi-supervised learning is
a technique for training classifiers with both labeled and un-
labeled data that assumes that unlabeled data can provide dis-
tribution information to build a stronger classifier. It includes
generative mixture models with expectation maximization, co-
training, transductive support vector machine and graph-based
approaches [5]; we focus here on label propagation [11, 12],
one of graph-based approaches. It assumes that, while the
measured samples exist in a high-dimensional space, they are
distributed in a low-dimensional manifold. Based on this, a
graph is constructed to analyze the distribution of all sam-
ples; by understanding how labels propagate on this graph,
classification can be achieved (see Algorithm 2).



Algorithm 2 Label propagation
Input X = {x(i)} input dataset
Output Ŷ = {ŷ(i)} estimated labels for X

A adjacency matrix
ρ local measurement
σ scaling coefficient
P transition matrix
t transition time

Label propagation(X )

Construction Aij = exp (−ρ(x(i), x(j))/σ)
Normalization P = D−1A, Dii =

∑
j Aij

Initialization Q̂, with Q̂y(i),i = 1, i = 1, . . . , `

Diffusion Q̂← Q̂P t

Labeling ŷ(i) = argmaxc{q̂(i)(c)}
return Ŷ

(Only parameters different from Algorithm 1 are listed.)

3. PROPOSED ALGORITHM

MRC analyzes data to uncover hidden information; in its orig-
inal form, it uses supervised classification, and can thus train
on labeled samples only. When the labeled set is small or con-
tains improperly labeled samples, the classification bound-
ary and the weights assigned to subbands can be unreliable.
Semi-supervised learning, on the other hand, uses the en-
tire dataset to help classification, but works on one resolution
level only. We thus propose to merge these two frameworks
and gain the best of both worlds: a semi-supervised MRC.

Semi-Supervised Classification. The MR and FE blocks
from Figure 2 work as before. The first change is that the su-
pervised classifier block, SC, is replaced by a semi-supervised
one, SSC (see Figure 3), using both labeled and unlabeled
samples to make a labeling decision in each subband.

Semi-Supervised Weighting. We now explain how to
weigh decisions from all the subbands to get a global decision
in a semi-supervised manner. Labeled samples contribute to
weighting directly by fitting their confidence vectors from all
the subbands to the ground truth; unlabeled samples cannot do
the same as they do not have the ground truth. We could use
Shannon entropy to measure the confidence of labeling an un-
labeled sample; if the entropy is small (less uncertainty, high
confidence), it is easy to assign a label to the sample, and vice
versa. In the label propagation algorithm, Algorithm 2, we
label each sample by finding the largest element in its confi-
dence vector; we could thus normalize each confidence vector
to sum to 1 to measure its entropy. We encounter a problem,
however; for example, let q̂(1) =

[
0.5 0.5 0

]T
and q̂(2) =[

0.5 0.25, 0.25
]T

be confidence vectors. While we can
label q̂(2) as Class 1 but cannot make a decision for q̂(1), the
entropy measure tells us that we can label q̂(1) with higher
confidence (less uncertainty) because its entropy is lower. To
resolve this issue, we define a new uncertainty measure,

M(q̂) = H(q̂) (χd>T + λ(d)χd≤T ),

Algorithm 3 Semi-supervised MRC
Input X = {x(i)} input dataset
Output Ŷ = {ŷ(i)} estimated labels for X

C semi-supervised classification function
W semi-supervised weighting function

SSMRC(X )

MR a
(i)
s = Ds(x(i))

FE f
(i)
s = F(a(i)s )

SSC q̂
(i)
s = Cs(f (i)s )

SSW q̂(i) =W([q̂
(i)
1 , q̂

(i)
2 , . . . , q̂

(i)
s ])

ŷ(i) = argmaxc {q̂(i)(c)}
return Ŷ

(Only parameters different from Algorithm 1 are listed.)

Fig. 3: Semi-supervised MRC. Classification and weighting
algorithm in Figure 2 are replaced with their semi-supervised
versions so that unlabeled data can contribute to classification.

where H(q̂) is the entropy of confidence vector q̂, χI is the
indicator function of an interval I , d = |q̂(1) − q̂(2)| with
q̂(1), q̂(2) the first and second largest element in q̂, respec-
tively, T is the threshold, and λ(d) is a penalty function that
is large when the first and second largest elements are close.
Let M (i)

s be the uncertainty of the sth subband to label the ith
sample. Since entropy is additive, the total uncertainty of a
subband when classifying unlabeled samples is the mean un-
certainty over all the unlabeled samples in this subband. Thus,
the total uncertainty of the sth subband is

ms =
1

u

l+u∑
i=l+1

M (i)
s .

Define the normalized confidence of the sth subband as

gs =
e−βms∑S
k=1 e

−βmk

,

where β is the decaying coefficient. When the uncertainty of
a subband is large, the confidence is small and the subband
gets assigned a low weight, and vice versa. This confidence
is the discriminative power of a given subband.

To combine confidences of all subbands into a global de-
cision, we choose the weighting vector by optimizing a semi-
supervised weighting objective function,

w = argmin
ω
{α
`

∑̀
i=1

‖q(i) − Q̂(i)ω‖

+ (1− α)‖ω − g‖}, (2)



wherew is as defined before and α is the labeling ratio defined
as α = `/(`+u). The first term in (2) is exactly (1), represent-
ing the contribution from labeled samples. In the second term,
we fit weights to subbands’ confidences, representing the con-
tribution from the unlabeled samples. We use the labeling ra-
tio to balance these two terms; when we have a large number
of labeled samples, the first term dominates, otherwise, the
second one does. Since this is a convex optimization problem,
it is numerically efficient to solve. After getting the weights,
we can get the global decision as ŷ(i) = argmaxc q̂

(i)(c),
where q̂(i) = Q̂(i)w (see Algorithm 3).

4. EXPERIMENTAL RESULTS

Dataset. We built a lab-scale bridge-vehicle dynamic system.
put a sensor on a vehicle, and let it move across the bridge. We
collected 30 samples for each of 13 different bridge damage
scenarios, 8 different speeds and 2 different vehicles [13].

Experimental Setup. Given a specific vehicle driven at a
specific speed, we want to classify 13 scenarios, in particular
with a low labeling ratio. We consider 16 vehicle-speed cases
for each of which there are 30 samples per 13 of the scenar-
ios, and vary the labeling ratio as 10%, 30%, 50%, 70% and
90%; the final accuracy is the average over the 13 scenarios.
We compare the performance of our proposed algorithm to
the supervised MRC as well as the label propagation algo-
rithm. We choose a Coiflet filter bank [14] with 4 levels in
the MR block, principal component analysis in the FE block,
naive Bayes, logistic regression and radius kernel SVM in the
SC block [15], and label propagation in the SSC block. For
label propagation, we choose the local measurement ρ to be
the cosine distance, scaling coefficient σ = 1, transition time
t = 8. For computational efficiency, we construct a k = 4
regular graph (each vertex connects to 4 neighbors). In semi-
supervised weighting function, we choose penalty threshold
T = 0.02 and the penalty term λ(d) = 1 + 5(d/T − 1)2. We
performed a 30-fold cross-validation and found that parame-
ters do not influence the results too much.

Results. Table 2 compares the performance of different
classifiers with the low labeling ratio of 10%. We use V for
vehicle, S for speed, SMRC for supervised MRC, LR for
logistic regression, NB for naive Bayes, KSVM for kernel
SVM, LP for label propagation, SSMRC for semi-supervised
MRC and LP-W for label propagation with a semi-supervised
weighting algorithm in (2). We see that when the labeling ra-
tio is low, supervised MRC performs poorly, label propaga-
tion works well, and semi-supervised MRC works the best.

Figure 4 shows the dependence of classification accuracy
on the labeling ratio for 2 vehicles averaged across 8 speeds.
Both figures show similar trends; as the labeling ratio de-
creases, accuracy drops sharply for all algorithms except for
semi-supervised MRC, which consistently outperforms them
all and whose performance stays relatively flat even at very
low labeling ratios.

V S SMRC LP SSMRC
LR NB KSVM LP-W

1 1 47.8 62.4 84.1 81.3 99.8
2 57.0 62.9 84.5 86.2 99.9
3 52.4 60.9 84.7 86.0 99.4
4 66.2 63.2 89.1 90.8 99.9
5 48.0 46.5 81.8 85.2 94.5
6 34.2 45.7 74.8 86.0 93.5
7 37.4 46.8 66.0 69.0 72.2
8 38.8 43.4 59.0 75.9 82.5

2 1 40.9 58.5 76.2 75.6 85.9
2 37.7 57.7 61.6 68.3 80.5
3 58.1 65.6 81.3 81.7 94.7
4 46.7 56.2 73.1 80.0 87.3
5 47.9 59.0 72.5 76.5 88.1
6 44.4 54.5 73.3 78.6 83.8
7 48.3 63.7 76.9 83.3 88.2
8 54.2 62.3 79.1 90.4 93.8

Table 2: Accuracy comparison of Vehicles (V) 1 and 2, with
Speeds (S) 1, 2, . . . , 8, and labeling ratio of 10%.

(a) Vehicle 1. (b) Vehicle 2.

Fig. 4: Accuracy as a function of the labeling ratio.

5. CONCLUSIONS AND FUTURE WORK

We presented a framework and algorithm for indirect bridge
SHM. Compared to our previous work [2, 3], we added two
new ingredients: (1) We analyze signals in MR spaces, in-
stead of only in frequency domain. (2) We focus on semi-su-
pervised learning setting, instead of supervised learning. Our
system combines MR techniques and semi-supervised learn-
ing by using a semi-supervised weighting algorithm. The new
system performs consistently better than supervised MRC,
and significantly better when the labeling ratio is small.

Some near-future tasks are to use more features in each
time-frequency subband, prune wavelet packet tree to achieve
faster implementation, use stronger semi-supervised classi-
fiers and test the framework on real-world bridge-vehicle dy-
namic system.
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tiresolution approach to automated classification of pro-
tein subcellular location images,” BMC Bioinformatics,
vol. 8, no. 210, 2007.

[5] X. Zhu, “Semi-supervised learning literature survey,”
Tech. Rep. 1530, Univ. Wisconsin-Madison, 2005.

[6] R. Duda, P. Hart, and D. Stork, Pattern Classification,
John Wiley & Sons, Englewood Cliffs, NJ, 2001.

[7] R. A. Kellogg, A. Chebira, A. Goyal, P. A. Cuadra,
S. F. Zappe, J. S. Minden, and J. Kovačević, “To-
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