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ABSTRACT

Localization-based super-resolution techniques are revolu-
tionizing biological research by breaking the diffraction limit
of fluorescence microscopy. Each super-resolution image
is reconstructed from a time series of images of randomly
activated fluorophores. Here, a fundamental question is to
determine the minimal imaging length so that the recon-
structed image faithfully reflects the biological structures
under observation. So far, proposed methods focus entirely
on image resolution, which reflects localization uncertainty
and fluorophore density, without taking into account the fact
that images of biological structures are structured rather than
random patterns. Here, we propose a different approach to
determine imaging length based on direct quantification of
image structural information using Gabor filters. Experimen-
tal results show that this approach is superior over approaches
that only account for image-intensity distribution, confirming
the importance of using structural information. In contrast
to resolution-based methods, our method does not require an
artificial selection of image resolution and provides a statisti-
cally rigorous strategy for determining imaging length based
on image structural information.

Index Terms— Super-resolution microscopy, STORM,
fluorescence imaging, determining imaging length

1. INTRODUCTION

The resolution of conventional optical microscopy is limited
by the diffraction of visible light to ~200nm, the Rayleigh
limit. Recent advances in super-resolution microscopy tech-
niques have made it possible to break this limit to reach
~20nm in resolution and are revolutionizing biological re-
search by resolving subcellular structures at nanometer reso-
lution.

Localization-based methods such as stochastic optical re-
construction microscopy (STORM) [1] and photoactivated lo-
calization microscopy (PALM) [2] achieve super resolution
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Fig. 1. STORM images of microtubules and mitochondria. (A, B)
Reconstructed images with different imaging lengths (the number of
frames, fs). (C, D) Estimated resolutions determined by FRC. Black
arrows indicate images shown in (A, B); estimated resolutions are
also shown below the frame numbers. Scale bars, S00nm.

by randomly activating separate fluorophores and computa-
tionally determining their locations at nanometer resolution.
Each super-resolution image is assembled from a time series
of images of randomly activated fluorophores (Fig. 1A, B).
In this paper, we attempt to answer the following fun-
damental question: What is the minimal imaging length
needed for image analysis so that the reconstructed super-
resolution image faithfully reflects the biological struc-
tures under observation? Avoiding unnecessary imaging
is essential for many reasons, especially minimizing photo-
damage. Fig. 1A shows a sequences of STORM images of



microtubules with different imaging lengths. At 2,000 frames
or fewer, the detections are insufficient to provide useful in-
formation, while after 6,000 frames the increasing structural
information provided from the image is almost identical.
Similar observations can be made on images of mitochondria
in Fig. 1B. These two examples are representative of a wide
variety of 1D and 2D biological structures, respectively.

Currently, the common practice is to choose the number
of frames to image a priori. This risks acquiring either too
few (not enough information) or too many (wasting time or
even damaging the imaging samples by photobleaching or
photo-toxicity) frames than needed for a given application.
Moreover, reducing the imaging length required for a single
high-resolution frame is crucial to achieving live imaging.

So far, solutions proposed for this problem focused en-
tirely on image resolution, which reflects localization un-
certainty and fluorophore density. A representative of these
methods is Fourier ring correlation (FRC), which is used
to determine the image resolution from the localized fluo-
rophore data [3, 4]. FRC measures the level of details of
reconstructed images. It does not, however, directly consider
the structure being imaged.

Specifically, in determining imaging length using FRC,
the selection of achieved resolution is arbitrary. For example,
although at 2,000 frames, the resolution of 93nm (Fig. 1A) is
beyond the Rayleigh limit, the structure of the microtubules
is not properly captured. Fig. 1C, D show the resolutions es-
timated by FRC from the reconstructed images of both ex-
amples with different imaging lengths. In particular, the ex-
pected microtubule thickness of 25nm in the first example
(Fig. 1A) is ~60nm considering the size of labeling antibod-
ies. From Fig. 1C, FRC suggest to collect 11,000 frames,
which is unnecessary since the structure of microtubules sta-
bilizes after 6,000 frames, and similarly for Fig. 1B, D.

In this paper, we present a structure-based method that
uses structural information present in the image for determin-
ing imaging length. We extract this structural information us-
ing the orientation histogram with Gabor filters and perform
a statistical test to determine whether information has satu-
rated. Equipped with this method, we develop an acquisition
system that determines the imaging length adaptively.

2. DETERMINING IMAGING LENGTH

Problem definition For localization-based super-resolution
imaging, randomly activated fluorophores from each fluores-
cent image are first collected. At a given imaging time ¢, a
high-resolution image I; is reconstructed using the detections
in all frames up to time ¢. The goal of determining imag-
ing length is to extract useful image information and then de-
termine whether there is significant information change be-
tween [; and the reconstructed image at the previous time
point I;_1; if not, imaging stops.

Intensity-based analysis One way of summarizing image
information is to compute image-intensity-based information
metrics such as image entropy, a measure that is frequently
used to determine the information gain in the field of informa-
tion theory. Specifically, image entropy E of a given image 1
is defined as E; = — . hy(i)log(hz(4)), where h; denotes
the histogram entry of intensity value ¢ in image I.

Another intuitive way to determine imaging length is to
compare the normalized intensity histogram changes. We hy-
pothesize that if at time ¢ the information has saturated, the
information at time ¢ + 1 should be virtually the same, that is,
the normalized intensity distribution remains the same from
timettot+ 1.

Our experiments show that the intensity-based methods
generally fail to determine adequate imaging length, as they
typically do not take structural information into account. Sim-
ilarly to FRC, these methods are highly sensitive to noise
(Fig. 2I-L). Other information-theoretic methods based on
intensities, such as mutual information and K-L divergence,
share the same problem and fail as well (data not shown).

Structure-based analysis From our preliminary data, we
observed that the object contour information tends to stabilize
after certain imaging time. We hypothesize that by properly
measuring the statistics of the contour information, we should
be able to determine adequate imaging length.

We first tested the histogram of oriented gradients (HOG)
features method [5], which is widely used to characterize lo-
cal object appearance and shape within an image. The HOG
features are computed by taking the orientation histograms
of the image gradients over dense grids of the image. Unlike
natural images, however, STORM images are mostly punctate
in appearance in the foreground area (Fig. 1A, B), and thus,
taking the gradient often results in a number of local random
gradient orientations instead of the structural information we
aim to extract.

Inspired by the HOG features, we extend the idea of tak-
ing the orientation histogram over gradient image to taking
the orientation histogram over the orientation map detected
by the Gabor filters [6],

2 2,12 /
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where 2’ = zcosf+ysinf,y’ = —xsinf+ycosb. Each
filter represents a Gaussian kernel function modulated by a
complex plane wave whose wavelength and orientation are
defined by A and 6, respectively. The parameter  specifies
the spatial aspect ratio of the Gabor function, where o is the
standard deviation of the Gaussian kernel; we control it by
setting 0 = 0.56)\. We use eight different orientations, =
k/8m, with k = 0, 1, ..., 7, and four different scales, A\ =
2, 4, 6, 8, resulting in a filter bank of 32 Gabor filters.

After convolving the image with the Gabor filter bank,
the orientation histogram is obtained by placing the maximum
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Fig. 2. Comparison of different image-information metrics for de-
termining imaging length. (A, C) Ground truth. (B, D) Simulated
STORM images at 200 frames. (E, F) Segmentation results, (G, H)
estimated resolutions by FRC, (I, J) image entropies, (K, L) inten-
sity histogram differences, (M, N) HOG feature differences, and (O,
P) proposed orientation histogram differences with different imag-
ing lengths. These methods have also been tested on real STORM
data (data not shown). Dashed lines indicate the determined imag-
ing lengths by the proposed method with KS test at p-value < 0.01.
Scale bars, 500nm.

orientation at each pixel to the orientation bin (Fig. 3). Specif-
ically, let My(x, y) be the filter response at orientation ¢, then
the maximum orientation map Oy,.x (2, y) is

Omax(2,y) = argmax (Mp(z,y)).

The orientation histogram is then obtained by voting over the
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Fig. 3. Gabor filter-based orientation histogram.

entire map Oy,,x (2, y) for each orientation as

h9 = Zle(emax(l‘vy))’

where 6 = k/8m, k=0, 1, ..., 7, and 15(0) is the indicator
function that is 1 when @ = 0 and 0 otherwise.

Stopping criterion At each time ¢, we use a statistical test
to determine whether there is additional gain in terms of im-
age information. For both the intensity histogram and the pro-
posed orientation histogram, given the histogram H; at time
t and H;_1 at time ¢t — 1, we use the Kolmogorov—Smirnov
(KS) test to test whether H; and H;_; are from the same dis-
tribution; if so, the imaging stops. This statistical test makes
histogram-based methods more suitable for setting a global
criterion than setting an arbitrary measure, for example, the
distance of HOG features.

3. EXPERIMENTS AND RESULTS

We performed experiments on both simulated and real STORM
images of microtubules and mitochondria. With the ground

truth provided from simulated images, we evaluate the per-

formance of determining imaging length by examining the

segmentation results.

Simulated data We simulated the molecule detections that
are generated by STORM imaging from given ground-truth
samples. Two different synthetic sample structures, micro-
tubules and mitochondria (Fig. 2A, C), were produced to sim-
ulate common scenarios of biological structures. We assume
a uniform fluorophore distribution within the structure, from
which the detections of the randomly activated fluorophores
are drawn with a photon count sampled from a geometric dis-
tribution. For each structure, we simulated the STORM imag-
ing of 200 frames, where in each frame 50 detections inside
the structure area and random noise in the background area



are generated (Fig. 2B, D). This simulated imaging was di-
vided into 20 steps, at which a high-resolution image is re-
constructed by accumulating the detections starting with the
first frame.

At each step, we compare the results with FRC, the inten-
sity-based methods and the proposed structure-based meth-
ods as shown in Fig. 2G-P. To examine the performance of
determining imaging length, we used the segmentation of the
underlying structure as the standard; in other words, the re-
constructed image at an adequate stopping point should lead
to good segmentation. Specifically, we segment each recon-
structed image using active-mask segmentation algorithm and
compare the segmentation result to the ground truth using area
similarity [7]. In Fig. 2E, F, the performance of segmentation
increases as more frames are used and saturates when the im-
age is reconstructed with more than 90 frames.

As shown in Fig. 2G, H, FRC gives unstable resolution
estimates for mitochondria data while the estimate for micro-
tubule data stabilizes only after 130 frames. For intensity-
based methods applied to both sample structures, the entropy
values increase monotonically, the intensity histogram differ-
ences between steps (measured by the Lo distance) decrease
monotonically, and the KS tests of the intensity histograms
give no stopping points (Fig. 2K-L).

For structure-based methods, the results of the proposed
method and the HOG feature difference between steps both
stabilize after about 100 frames (Fig. 2M-P). Furthermore,
the statistical testing for the proposed method (dashed lines
in Fig. 2) suggests to stop at about 90 and 110 frames for mi-
crotubules and mitochondria respectively, where the segmen-
tation of the corresponding reconstructed image surpasses the
accuracy of 90% compared to the ground truth. Moreover, the
suggested imaging length also matches well with the imag-
ing length where segmentation performance saturates, indi-
cating that our method can capture the structural information
and determine whether the detections are adequate for image-
analysis methods to be applied.

Real data Next, we tested the proposed method on the real
STORM images in Fig. 1. For this data, HeLa cells with flu-
orescently labeled microtubules and mitochondria were im-
aged on a Nikon N-STORM system. Our current implemen-
tation is written in MATLAB and takes around 1 second for
each reconstructed image. In Fig. 4, the proposed method
again provides good stopping points at 5,200 frames for mi-
crotubules and 30,000 frames for mitochondria, which are
both consistent with the visual determination from Fig. 1.

4. CONCLUSIONS

We presented a structure-based approach to determine imag-
ing length in super-resolution localization microscopy imag-
ing. The method uses the orientation histogram with a Gabor
filter bank to determine the required imaging length based on
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Fig. 4. Results of the proposed method on the real STORM data.
Dashed lines indicate the determined imaging lengths by the pro-
posed method with KS test at p-value < 0.01. Scale bars, 500nm.

a rigorous statistical test of structural information present in
the image. Compared to methods based entirely on image
resolution, our method provides a reliable way of determin-
ing imaging length. Because of the incorporation of image
structural information, this method is particularly well suited
to applications that involve subsequent computational image
analysis. The proposed approach does not depend on specific
image structure and can thus be used in a broad range of bio-
logical applications of super-resolution imaging.
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