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ABSTRACT

We propose a novel recovery algorithm for signals with com-
plex, irregular structure that is commonly represented by
graphs. Our approach is a generalization of the signal inpaint-
ing technique from classical signal processing. We formulate
corresponding minimization problems and demonstrate that
in many cases they have closed-form solutions. We discuss
a relation of the proposed approach to regression, provide an
upper bound on the error for our algorithm and compare the
proposed technique with other existing algorithms on real-
world datasets.

Index Terms— Signal processing on graphs, signal in-
painting, total variation, semi-supervised learning.

1. INTRODUCTION

The problem of collecting, processing and analyzing data ob-
tained from or represented by networks has been receiving a
constantly increasing interest due to the abundance of such
data in various research fields. An integral part of solving this
problem is the development of new models and techniques that
can be applied to datasets with complex irregular structures.

Recently, a theoretical framework called signal processing
on graphs has emerged as a new approach to analyze signals
with irregular structure [1, 2, 3, 4]. Its key idea is to repre-
sent the structure of a signal with a graph by associating signal
coefficients with graph nodes and analyzing graph signals by
using appropriately defined signal processing techniques, such
as Fourier transform, filtering, and wavelets.

In this paper, we study the problem of signal recovery, that
is, reconstruction or estimation of signal coefficients that are
missing, unmeasurable, or corrupted by noise, a task often re-
ferred to as signal inpainting [5, 6, 7].

Previous work on this topic has primarily come when
missing signal coefficients are unknown labels that need to
be learned [8, 9]. Existing approaches are often based on
the graph Laplacian operator and take roots in spectral graph
theory [10]. From the perspective of signal processing, they
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seek to minimize a total variation function based on the graph
Laplacian, which measures how much signal coefficients dif-
fer from other relevant coefficients. A major limitation of the
graph Laplacian based method is its restriction to undirected
graphs with real, non-negative edge weights.

We propose a novel approach to graph signal inpainting. It
seeks to minimizes a total variation function that is based on a
graph shift, which is a fundamental signal processing concept
that can be defined for signals represented by any graph [1, 2].
As a result, our proposed technique is applicable to a much
broader class of graphs. In this paper, we offer two formula-
tions of the signal inpainting on graphs as minimization prob-
lems and demonstrate that in many cases these problems have
exact closed-form solutions. We also discuss a connection of
our approach to regression on graphs, derive an upper bound
on the signal inpainting error produced by our technique, and
demonstrate on real-world datasets that our approach can lead
to better signal recovery and signal classification than other
existing approaches.

2. DISCRETE SIGNAL PROCESSING ON GRAPHS

In this section, we briefly review relevant concepts of discrete
signal processing on graphs; a thorough introduction can be
found in [1, 2]. Discrete signal processing on graphs is a theo-
retical framework that generalizes classical discrete signal pro-
cessing from regular domains, such as lines and rectangular
lattices, to irregular structures that are commonly described
by graphs.

Consider a graph G = (V,A), where V = {vn}Nn=1 is the
set of nodes and A ∈ CN×N is a graph shift, or an adjacency
matrix, that is, an elementary filtering operation that replaces
a signal coefficient at a node with a weighted linear combina-
tion of coefficients at its neighboring nodes. Each edge weight
Ai,j characterizes the relation between the ith node and the jth
node. For example, they can quantify similarities and depen-
dencies between nodes, or indicate communication patterns in
networks. The graph shift operation is written as

x→ Ax.

where a graph signal x is defined as a mapping

x : V → Cn,



that assigns a signal coefficient xn ∈ C to the graph node vn.
Smoothness of graph signals is expressed by a graph total

variation function

TVA(x) =

∣∣∣∣∣∣∣∣x− 1

|λmax(A)|
Ax

∣∣∣∣∣∣∣∣
1

, (1)

where λmax(A) denote the eigenvalue of A with the largest
magnitude. For notational simplicity, assume that graph shift
A has been normalized to satisfy λmax(A) = 1. Note that
when the graph shift A is the cyclic permutation matrix, rep-
resenting time-series signals, (1) follows the same definition
in classical signal processing. We define the quadratic form of
graph total variation as follow1:

S2(x) =
1

2
||x−Ax||22 . (2)

Since a quadratic form is easy for computation, we use (2) to
measure the smoothness of a graph signal in this paper.

3. SIGNAL INPAINTING ON GRAPHS

Signal inpainting is a process of recovering missing or cor-
rupted signal coefficients from a known part of the signal. In
discrete-time signal processing, a signal, such as a time series
or a digital image, is typically assumed to be smooth, and the
missing part is recovered through regularization or lowpass fil-
tering [5, 6, 7].

3.1. Problem formulation

The graph total variation (1) allows us to generalize the in-
painting process from lines and rectangular lattices to arbitrary
graphs. We work with graph signals of the form

x =

[
xM
xU

]
, (3)

where xM ∈ CM is the known part of the signal and xU ∈
CN−M is the unknown part (without loss of generality, we
assume that the known coefficients s1, . . . , sM correspond to
the first M graph nodes v1, . . . , vM ; this arrangement can al-
ways be achieved by reordering nodes). Assuming that (3) is
a smooth signal, that is, its variation is small, we recover the
missing part xU by solving the following minimization prob-
lem:

x∗ = argmin S2(x̂), (4a)
subject to ||x̂M − xM||22 ≤ ε2. (4b)

The condition (4b) controls how well the known part of the
signal is preserved.

1We omit the constant 1/2 in the following context, since the algorithms
we consider in this paper do not affected by this factor

3.2. Graph total variation regularization

Alternatively, the graph signal inpainting (4) can be formu-
lated as an unconstrained problem,

x∗ = argmin ||x̂M − xM||22 + λ S2(x̂), (5)

where the tuning parameter λ controls the trade-off between
two parts of the objective function. Equation (5) is called
as graph total variation regularization (GTVR). Small values
of λ emphasize fitting the estimates to the known measure-
ments more than the smoothness on the graph; large values of
λ lead to smoother solutions of (5).

Note that (5) is a convex quadratic problem and has a
closed-form solution. For many values of ε in (4) we can find
a corresponding value of λ for which (5) yields an equivalent
solution.

We now derive a closed-form solution to (5). For nota-
tional simplicity, assume that matrix A has been normalized
to satisfy λmax(A) = 1, so we can write the variation func-
tion (1) as

S2(x) = ||x−Ax||22.
= xH(I−A)H(I−A)x,

= xHÃx, (6)

where I is the identity matrix and Ã = (I−A)H(I−A). The
objective function in (5) is thus a linear combination of two
quadratic functions of x̂. The derivative of the objective func-
tion in (5) is:

∂

∂x̂

(
||x̂M − xM||22 + λ S2(x̂)

)
=

∂

∂x̂

(
(x̂− x)H

[
IM 0
0 0

]
(x̂− x) + λx̂HÃx̂

)
= 2

[
IM 0
0 0

]
(x̂− x) + 2λÃx̂. (7)

By setting (7) to zero, we then obtain the closed-form solution
as follows:

x∗ =

([
IM 0
0 0

]
+ λÃ

)−1 [
xM
0

]
. (8)

3.3. Graph total variation minimization

When the known part of the signal needs to be preserved intact,
we must solve (4) directly for ε = 0,

x∗ = argmin S2(x̂), (9a)
subject to x̂M = xM. (9b)

Equation (9) is called as graph total variation minimization
(GTVM). By writing Ã in a block form as

Ã =

[
ÃMM ÃMU
ÃUM ÃUU

]
, (10)



we can rewrite the objective function in (9) as

S2(x̂) = x̂HÃx̂

=
[
x̂H
M x̂H

U
] [ÃMM ÃMU

ÃUM ÃUU

] [
x̂H
M x̂H

U
]

= x̂H
MÃMMx̂M + x̂H

U ÃUMx̂M (11)

+ x̂H
MÃMU x̂U + x̂H

U ÃUU x̂U .

Since x̂M = xM, as specified by (9b), the minimum of the ob-
jective function (11) is found by setting its derivative to zero,
which yields the closed-form solution

x̂U = −Ã
−1
UU ÃUMxM. (12)

4. DISCUSSION

We now discuss several properties of our proposed signal in-
painting algorithms.

4.1. Connection to Graph-based Regression

We can construct a graph to represent a dataset and a set of la-
bels by associating each dataset element with a node and view-
ing labels as a signal on this graph. In this setting, graph sig-
nal inpainting becomes analogous to a regression, since it es-
timates a regression function that assigns a label to each node.

In general, the graph-based regression has the form [11, 9,
8]

x∗ = argmin ||x̂M − xM||2 + λx̂H G x̂, (13)

where G is a smoothing matrix that can be defined in differ-
ent ways depending on the context. For instance, if G is the
graph Laplacian matrix, then (13) solves Laplacian regular-
ization [9]. If, in addition, x̂M = xM, then the minimiza-
tion (13) is based on the Laplacian harmonic functions [8].
Since our approach (5) uses the total variation defined by the
graph shift, we use G = (I−A)H(I−A) in (13).

4.2. Error Analysis

We now derive an upper bound on the estimation error of graph
signal inpainting algorithm (4).

Let x0 be the true graph signal that we are trying to esti-
mate by signal inpainting. Assume that S2 (x0) = η2 and x0

satisfies (4b), so that ||x0
M − xM||22 ≤ ε2. Also, write A in a

block form similarly to (10).

Lemma 1. The estimation error w = x0 − x∗ of the signal
inpainting algorithm (4) is bounded by the unmeasured part of
the signal as

||w||2 ≤ q

2
||wU ||2 + p|ε|+ |η|, (14)

where

p =

∣∣∣∣∣∣∣∣[IMM+AMM
AUM

]∣∣∣∣∣∣∣∣
2

, q =

∣∣∣∣∣∣∣∣[ AMU
IUU +AUU

]∣∣∣∣∣∣∣∣
2

,

and || · ||2 for matrices denotes the spectral norm.

Proof. Since ||wM||2 = ||x0
M − x∗M||2 ≤ ||x0

M − xM||2 +
||xM − x∗M||2 = 2|ε|, we obtain

||(I+A)w||2 =

∣∣∣∣∣∣∣∣[IMM+AMM AMU
AUM IUU +AUU

] [
wM
wU

]∣∣∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣∣∣[IMM+AMM

AUM

]∣∣∣∣∣∣∣∣
2

· ||wM||2

+

∣∣∣∣∣∣∣∣[ AMU
IUU +AUU

]∣∣∣∣∣∣∣∣
2

· ||wU ||2

= p||wM||2 + q||wU ||2
= 2p|ε|+ q||wU ||2.

Since both x0 and x∗ satisfy (4b), then S2(x
∗) ≤ S2(x

0),
and we obtain

||(I−A)w||2 = ||(I−A)(x0 − x∗)||2
≤ ||(I−A)x0||2 + ||(I−A)x∗||2
≤ 2||(I−A)x0||2
≤ 2|η|.

Combining these inequalities, we get

||w||2 =

∣∣∣∣∣∣∣∣12(I+A+ I−A)w

∣∣∣∣∣∣∣∣
2

≤ 1

2
(||(I+A)w||2 + ||(I−A)w||2)

≤ 1

2
(2p|ε|+ q||wU ||2 + 2|η|),

which yields (14).

Theorem 1. If q < 2, then the estimation error on the un-
known part is bounded by

||wU ||2 ≤ 2p|ε|+ 2|η|
2− q

. (15)

Proof. Using Lemma 1, we have

||wU ||2 ≤ ||w||2 ≤ p|ε|+ q

2
||wU ||2 + |η|. (16)

By rearranging the terms in (16), we obtain (15).

The condition q < 2 in Theorem 1 may not hold for some
matrices. However, if A is symmetric, we have q ≤ || I+A ||2
≤ || I ||2 + ||A ||2 = 2, since ||A ||2 = 1. Also, note that

the upper bound is related to the smoothness of the true graph
signal and the noise level of the measured part. A central
assumption of any inpainting technique is that the true signal
x0 is smooth. If this assumption does not hold, then the up-
per bound is large and useless. When the noise level of the
measured part is smaller, the measurements from the known
part are closer to the true values, which leads to a smaller
estimation error.



Method Ratio of known labels
λ 0.5% 1% 2% 5% 10%

GTVM 80.25 94.76 95.18 95.28 95.20
GTVR 0.01 80.16 94.68 95.09 95.18 95.13

0.1 79.99 94.47 95.11 95.19 95.15
1 75.64 92.62 94.99 95.26 95.25

10 61.68 68.13 89.02 95.15 95.43
100 61.59 57.26 54.72 73.62 92.28

HF 51.58 53.15 60.75 86.05 94.68
LapR 0.01 51.47 53.48 60.79 85.90 94.62

0.1 50.64 54.40 61.14 85.22 94.55
1 50.25 56.49 60.50 79.29 93.94

10 50.07 49.84 54.39 62.83 80.69
100 51.29 49.74 50.16 52.04 55.95

AGF 84.81 88.36 94.08 95.00 95.10

Table 1: Accuracy of political blog classification.

Method Ratio of known masses
λ 0.5% 1% 2% 5% 10%

GTVM 20.18 9.67 5.29 3.93 3.54
GTVR 0.01 14.71 9.28 4.92 3.88 3.52

0.1 12.89 8.97 4.95 3.92 3.49
1 10.12 9.11 5.14 3.58 3.24

10 8.84 10.49 4.12 3.08 2.84
100 15.70 7.13 3.80 3.00 2.80

HF 38.66 19.44 5.29 3.31 2.9
LapR 0.01 38.75 19.49 5.30 3.32 2.9

0.1 39.52 19.99 5.42 3.34 2.9
1 46.29 24.78 6.83 3.65 2.95

10 74.38 52.64 22.90 9.44 5.13
100 96.32 85.43 66.84 47.86 32.1

Table 2: The mean square error for the bridge condition iden-
tification.

5. EXPERIMENTS

We now apply the proposed algorithm to the classification of
online blogs and to the bridge condition identification for in-
direct bridge structural health monitoring. We compare the
proposed algorithm with Laplacian regularization (LapR) and
harmonic functions (HF) discussed in Section 4.1. In classi-
fication of online blogs, we also compare the proposed algo-
rithm with adaptive graph filtering (AGF) [12, 13], which is
a semi-supervised classifier that combines the decisions from
multiple graph filters using a semi-supervised weighting func-
tion.

5.1. Classification of online blogs

We consider the problem of classifying N = 1224 online po-
litical blogs as either conservative or liberal [14]. We represent
conservative labels as +1 and liberal ones as −1.

The blogs are represented by a graph in which nodes repre-
sent blogs, and directed graph edges correspond to hyperlink
references between blogs. For a node vn its outgoing edges
have weights 1/ deg(vn), where deg(vn) is the out-degree of
vn (the number of outgoing edges). We randomly labeled
0.5%, 1%, 2%, 5% and 10% of blogs and applied the inpaint-
ing algorithms to estimate the labels for remaining nodes. Es-

timated labels were thresholded around zero, so that positive
values were set to +1 and negative to −1.

Classification accuracies of GTVM, GTVR, HF, LapR and
AGF averaged over 30 tests for each labeling ratio are shown
in Table 1. For proper evaluation, values of λ ranging between
0.01 and 100 were used for GTVR and LapR. In most cases,
GTVM provides the most accurate classification. Note that
GTVR is less sensitive to the value of λ than LapR, and our
proposed methods achieve significantly higher accuracy than
LapR and HF for low labeling ratios.
5.2. Bridge condition identification

We next consider the bridge condition identification prob-
lem [15, 16, 17]. To validate the feasibility of indirect bridge
structural health monitoring, a lab-scale bridge-vehicle dy-
namic system was built. Accelerometers were installed on
a vehicle that travels across the bridge; acceleration signals
were then collected from those accelerometers. To simulate
different bridge conditions in a lab-scale bridge, masses with
various weights were put on the bridge. We collected 30 ac-
celeration signals for each of 31 mass levels, with an interval
of 5 grams from 0 to 150 grams, to simulate different severity
of damages, for a total of 930 acceleration signals. For more
details, see [18].

The recording are represented by an 8-nearest neighbor
graph, in which nodes represent recordings, and each node is
connected to eight other nodes that represent the most simi-
lar recordings. The graph shift A are constructed as Ai,j =
Pi,j /

∑
i Pi,j , where

Pi,j = exp
−N2||si − sj ||2∑

i,j(||si − sj ||2)
,

and si is a vector representation of the ith recording. We ran-
domly assigned known masses to 0.5%, 1%, 2%, 5% and 10%
of recordings and applied the inpainting algorithms to estimate
the masses for remaining nodes.

The mean square errors for estimated masses averaged
over 30 tests for each labeling ratio are shown in Table 2. The
proposed GTVR approach yields the lowest errors and is less
sensitive than LapR to the change of the tuning parameter
λ. Overall, our proposed method achieve noticeably smaller
errors than Laplacian-based method for low labeling ratios.

6. CONCLUSION

We presented a new algorithm for signal inpainting on graphs
that, unlike previous approaches, is applicable to arbitrary
graphs. We formulated corresponding minimization problems
and derived closed-form solutions, as well as calculated an
upper bound on the resulting error. We identified the relation
between our approach and previous methods via regression on
graphs. Experiments on real-world datasets of online political
blogs and indirect bridge structural health monitoring showed
that the proposed algorithm outperforms the graph Laplacian
based method.
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tion classification with semi-supervised learning for in-
direct bridge structure health monitoring,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process., Vancouver,
Canada, May 2013, pp. 3412–3416.

[18] G. Lederman, Z. Wang, J. Bielak, H. Noh, J. H. Garrett,
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