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ABSTRACT

Image segmentation is fundamentally a discrete problem. It consists
of finding a partition of the image domain such that the pixels in
each element of the partition exhibit some kind of similarity. The
optimization is obtained via integer optimization which is NP-hard,
apart from few exceptions. We sidestep from the discrete nature
of image segmentation by formulating the problem in the Bayesian
framework and introducing a hidden set of real-valued random fields
determining the probability of a given partition. Armed with this
model, the original discrete optimization is converted into a convex
program. To infer the hidden fields, we introduce the Segmentation
via the Constrained Split Augmented Lagrangian Shrinkage Algo-
rithm (SegSALSA). The effectiveness of the proposed methodology
is illustrated with hyperspectral image segmentation.

Index Terms— Image segmentation, hidden Markov measure
fields, hidden fields, alternating optimization, Constrained Split
Augmented Lagrangian Shrinkage Algorithm (SALSA).

1. INTRODUCTION

Image segmentation plays a crucial role in many hyperspectral imag-
ing applications [1]. The image segmentation problem consists in
finding a partition of the image domain such that the image prop-
erties in a given partition element, expressed via image features or
cues, are similar in some sense. Because image segmentation is al-
most invariably an ill-posed inverse problem, some form of regular-
ization (a prior in Bayesian terms) is usually imposed on the solution
with the objective of promoting solutions with desirable characteris-
tics.

The type of regularization and the estimation criteria used to in-
fer a partition are relates issues. In the Bayesian framework, the seg-
mentation is often obtained by computing the maximum a posteriori
probability (MAP) estimate of the partition, which maximizes the
product of likelihood function (i.e., the probability of the observed
image given the partition) with the prior probability for the partition,
usually a Markov Random Field (MRF) [2].

Images of integers are natural representations for partitions.
With this representation, the MAP segmentation is an integer op-
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timization problem that, apart from a few exceptions, is NP-hard
and thus impossible to solved exactly. In the last decade, a large
class of powerful integer minimization methods based on graph cuts
[3] and based on convex relaxations[4] has been proposed to solve
approximately MAP estimation problems of discrete MRFs.

In this paper, inspired by the “hidden Markov measure fields”
introduced by [5], we sidestep the hurdles raised by the discrete
nature of image segmentation by (a) formulating the problem in the
Bayesian framework and (b) introducing a hidden set of real-valued
random fields conditioning the probability of a given partition.
Armed with this model, we compute the marginal MAP (MMAP)
estimate of the hidden fields, which is, under suitable conditions, a
convex program. From the MMAP estimate of the hidden fields and
the conditional probability of the partition, we obtain a soft and a
hard estimate of the partition.

In the hidden field model, the prior on the partition is indirectly
expressed by the prior on the hidden fields. In this paper, we use a
form of vectorial total variation (VTV) [6, 7], which promotes piece-
wise smooth segmentations and promotes sharp discontinuities in the
estimated partition.

In [8] the image segmentation problem is approached by closely
following the “hidden Markov measure fields” paradigm [5], being
the main difference the statistical link, based on the multinomial lo-
gistic model, and the prior on the hidden fields, based on wavelets. In
[9] a multi-class labeling is approximately solved using tools from
convex optimization. The approach proposed there has links with
ours in that it also uses a VTV regularizer and the optimization im-
poses constraints similar to ours. However, the data terms are dif-
ferent: ours is derived in under the a Bayesian framework whereas
theirs is introduced heuristically. In addition, our optimization algo-
rithm exploits the SALSA algorithm [10] splitting flexibility to avoid
double loops as those shown in [9]. Finally, we mention [11], which
also uses non-isotropic total variation as a regularizer and imposes
constraints similar to ours.

The main contributions of the paper are the proposal of the VTV
as prior on the hidden fields, and the introduction of an instance of
the SALSA [10] algorithm, which we term SegSALSA, to compute
the exact MMAP estimate of the partition with O(Kn lnn) com-
plexity, where K is the cardinality of the partition and n the number
of image pixels.

The paper is organized as follows. Section 2 formulates the
problem, introduces the hidden fields, the MMAP of the hidden
fields, the statistical link between the class labels and the hidden
fields, and the VTV prior. Section 3 presents the SegSALSA algo-
rithm, which is an instantiation of SALSA to the problem in hand.



Section 4 presents a number of experimental results with hyperspec-
tral images. Finally, Section 5 presents as few concluding remarks
and pointers to future work.

2. PROBLEM FORMULATION

To formulate the segmentation problem in mathematical terms, we
start by introducing notation. Let S ≡ {1, · · · , n} denote a set of
integers indexing the n pixels of an image and x ≡ [x1, · · · ,xn] ∈
Rd×n a d× n matrix holding the d-dimensional image feature vec-
tors. Given x, the goal of image segmentation is to find a partition
P ≡ {R1, . . . , RK} of S such that the feature vectors with indices
in a given set Ri, for i = 1, . . . ,K, be similar in some sense1.
Associated with a partition P , we introduce the image of class la-
bels, also termed segmentation, y ≡ (y1, · · · , yn) ∈ Ln, where
L ≡ {1, . . . ,K} , such that yi = k if and only if i ∈ Rk. We
remark that there is a one-to-one correspondence between partitions
and segmentations.

2.1. Maximum a posteriori probability segmentation

We adopt a Bayesian perspective to the segmentation problem. The
MAP segmentation is given by

ŷMAP = arg max
y∈Ln

p(y|x) = arg max
y∈Ln

p(x|y)p(y), (1)

where p(y|x) is the posterior probability2 of y given x, p(x|y) is the
observation model, and p(y) is the prior probability for the labeling
y. Under assumption of conditional independence, we have

p(x|y) =
n∏

i=1

p(xi|yi) =
K∏

k=1

∏
i∈Rk

pk(xi), (2)

where pk(xi) = p(xi|yi = k). We assume that the class densities
pk, for k ∈ L are known or learned from a training set in a super-
vised fashion.

Various forms of Markov random fields (MRFs) have been
widely used as prior probability for the class labels y. A paradig-
matic example is the multilevel logistic/Potts model (MLL) [2].
These models promote piecewise smooth segmentations, i.e., seg-
mentations in which it is more likely to have neighboring labels of
the same class than the other way around.

The maximization in (1) is an integer optimization problem, im-
possible to solve exactly for more than two classes. Various algo-
rithms to approximate ŷMAP have been introduced in the last decade
of which we highlight the graph cuts based α-expansion [3], the se-
quential tree-reweighted message passing (TRW-S) [12], the max-
product loopy belief propagation (LBP) [13], and convex relaxations
[14].

2.2. Hidden fields

The MAP formulation regarding the class labels y raises a series
of difficulties regarding (a) the high computational complexity in-
volved in computing the solution of the integer optimization problem
(1), (b) the selection of prior p(y) and (c) the learning of unknown

1We recall that a partition of a set S is a collection of sets Ri ⊂ S, for
i = 1, . . . ,K, where ∪i=1Ri = S and Ri ∩Rj = ∅, i 6= j.

2To keep the notation light, we denote both probability densities and prob-
ability distributions with p(·). Furthermore, the random variable to which
p(·) refers is to be understood from the context.

parameters θ parameterizing the model p(x,y,θ). In [5], the orig-
inal segmentation problem is reformulated in terms of real-valued
hidden fields conditioning the random field y and endowed with a
Gaussian MRF prior promoting smooth fields. The segmentation
is obtained by computing the marginal MAP (MMAP) estimate of
the hidden fields, which corresponds to a soft segmentation. This
approach converts an integer optimization problem into a smooth
constrained convex problem, simpler to solve exactly using convex
optimization.

2.3. Marginal MAP estimate of the hidden fields

To formulate the hidden field concept, and following closely [5],
let z = [z1, . . . , zn] ∈ RK×n denote a K × n matrix holding a
collection of hidden random vectors, zi ∈ RK , for i ∈ S, and
define the joint probability p(y, z) = p(y|z)p(z), with p(y|z) =∏n

i=1 p(yi|zi). The joint probability of (x,y, z) is given by

p(x,y, z) = p(x|y)p(y|z)p(z), (3)

from which we may write the marginal density with respect to (x, z)
as

p(x, z) =

n∏
i=1

∑
yi∈L

p(xi|yi)p(yi|zi)

 p(z). (4)

The MMAP estimate of the of the hidden field z is then given by

ẑMMAP = argmax
z
p(x, z). (5)

From ẑMMAP , we obtain the soft segmentation p(y|ẑMMAP ). A
hard segmentation may be then obtained by computing the labelling
that maximizes the soft segmentation.

2.4. Statistical link between class labels and hidden fields

The conditional probabilities p(yi|zi), for i ∈ S, play a central role
in our approach. As in [5], we adopt the following model

p(yi = k|zi) ≡ [zi]k i ∈ S, k ∈ L, (6)

where the [a]k is the k-th element of vector a. Given that [zi]k, for
k ∈ L, represents a probability distribution, then the hidden vectors
zi, for i ∈ S, satisfies the component-wise nonnegativity constraint
zi ≥ 0, and the sum-to-one constraint 1T

Kzi = 1.

2.5. The prior

We adopt form of vector total variation (VTV) [6, 7] regularizer,

− ln p(z) ≡ λTV

∑
n∈S

√∥∥Dhz[n]
∥∥2 + ∥∥Dvz[n]

∥∥2 + cte, (7)

where λTV > 0 is a regularization parameter, and Dh,Dv are linear
operators computing horizontal and vertical first order differences,
respectively. The regularizer (7) has a number of desirable proper-
ties: (a) it promotes piecewise smooth hidden fields; (b) it tends to
preserve discontinuities aligning them among classes; (c) it is con-
vex, although not strictly, allowing optimization via proximal meth-
ods relying on Moreau proximity operators [15].



3. OPTIMIZATION ALGORITHM

Considering the model (6) and the prior (7), we may write the
MMAP estimation of z as

ẑMMAP = arg min
z∈RK×n

n∑
i=1

− ln
(
pT
i zi
)
+

+ λTV

∑
n∈S

√∥∥Dhz[n]
∥∥2 + ∥∥Dvz[n]

∥∥2 (8)

subject to: z ≥ 0, 1T
Kz = 1T

n ,

where pi ≡ [p(xi|yi = 1), . . . , p(xi|yi = K)]T and it was as-
sumed that pT

i zi > 0 for zi in the feasible set. As the Hessian
matrix of − ln

(
pT
i zi
)

is a semipositive definite matrix, (8) is con-
vex. In this section, we develop an instance of the Split Augmented
Lagrangian Shrinkage (SALSA) methodology introduced in [10] to
compute ẑMMAP . We start by rewriting the optimization (8),

min
z∈RK×n

4∑
i=1

gi(Hiz), (9)

where gi, for i = 1, . . . , 4, denote, closed, proper, and convex func-
tions, and Hi, for i = 1, . . . , 4, denote linear operators. The partic-
ular definitions of these entities for our problem are as follows:

H1 = I, H2 =

(
Dh

Dv

)
, H3 = I, H4 = I,

g1(ξ) =
∑

n∈S − ln
(
pT
nξn

)
+
,

g2(ξ) = λTV

∑
n∈S

√∥∥ξh[n]
∥∥2 + ∥∥ξv[n]

∥∥2,
g3(ξ) = ι+(ξ), g4(ξ) = ι1(1

T
Kξ),

(10)

where I denotes the identity operator, ξ are dummy variables whose
dimensions depend on the functions gi, for i = 1, 2, 3, 4, (x)+ is
the positive part of x, and ln(0) ≡ +∞. The function ι+ denotes
the indicator in the set in RK×n

+ , i.e., ι+(ξ) = 0 if ξ ∈ RK×n
+ and

ι+(ξ) = ∞ otherwise. By the same token ι1(ξ) is the indicator in
the set {1n}.

We now introduce the variable splitting ui = Hiz, for i =
1, 2, 3, 4, in (9) and convert the original optimization into the equiv-
alent constrained form

min
u,z

4∑
i=1

gi(ui) subject to u = Gz, (11)

where G : RK×n 7→ R5K×n is the linear operator obtained by
columnwise stacking the operators H1, H2, H3, and H4.

The next step consists in applying the SALSA methodology [10]
to (11). SALSA is essentially an instance of the alternating method
of multipliers (ADMM) designed to optimize sums of an arbitrary
number of convex terms. Solving (11), becomes equivalent to solv-
ing the following decoupled problem

zk+1 = argmin
z

∥∥Gz− uk − dk
∥∥2
F
, (12)

uk+1 = argmin
u
f(u) +

µ

2

∥∥Gzk+1 − u− dk
∥∥2
F
, (13)

dk+1 = dk −
[
Gzk+1 − uk+1], (14)

with d denoting the scaled Lagrange multipliers. Solving the
quadratic optimization problem is dominated by computing in-
dependent cyclic convolutions on each image of z (corresponding

to the VTV prior), which can be efficiently done in the frequency
domain using the fast Fourier transform (FFT) with O(Kn lnn)
complexity. A distinctive feature of SALSA is that optimization
with respect to u is decoupled into optimization problems with re-
spect to the blocks ui, for i = 1, 2, 3, 4, whose solutions are the
so-called Moreau proximity operators (MPOs) [15] for the respec-
tive convex functions gi, for i = 1, 2, 3, 4. Solving for ui can be
done efficiently by computing the proximity operators for gi, which
have a closed form (finding a root for g1, soft thresholding for g2,
projection on positive orthant for g3, and projection on a simplex
g4), corresponding to a O(Kn) complexity.

We term the resulting algorithm Segmentation via Augmented
Lagrangian Shrinkage Algorithm (SegSALSA). SegSALSA con-
verges for any µ > 0, having a complexity of O(Kn lnn). Re-
garding the stopping criterion, we impose that the primal and dual
residuals be smaller than a given threshold.We have observed, that
a fixed number of iterations of the order of 200 provides excellent
results.

4. RESULTS

We use the SegSALSA algorithm to classify the ROSIS Pavia scene
(Fig. 1). This hyperspectral image was acquired by the ROSIS opti-
cal sensor on the University of Pavia, Italy. It is a 610× 340 image
with a spatial resolution of 1.3m/pixel, and 103 spectral bands. The
image contains nine exclusive land-cover classes, with the accuracy
of the classification being measured on those nine classes. The class
models are learned using the LORSAL algorithm [16]. We run the
SegSALSA algorithm for four training sets of different dimensions
(20, 40, 200, and 500 samples per class randomly selected). The
accuracy is computed from 10 Monte Carlo runs. We present in Ta-
ble 1 the overall accuracy and average accuracy. The value of overall
accuracy = 96.23% ± 0.65% obtained with 200 samples per class
is considered state-of-the-art [1].

Table 1. Accuracy on ROSIS Pavia scene after 10 Monte-Carlo runs
with varying training set size.

Training samples Overall accuracy Average accuracy
per class

20 89.10%± 3.67 91.48%± 2.51

40 92.85%± 2.27 93.15%± 1.01

200 96.23%± 0.65 94.96%± 0.53

500 97.19%± 0.52 95.77%± 0.51

5. CONCLUDING REMARKS

In this paper, we introduce a new approach to supervised image seg-
mentation that avoids the discrete nature of problem present in many
formulations. This is achieved by leveraging on the “hidden Markov
measure field” introduced by [5] in 2003. The proposed approach
relies on four main ingredients: (a) formulating the image segmen-
tation in the Bayesian framework; (b) introducing a hidden set of
real-valued random fields determining the probability of a given par-
tition; (c) adopting an form of isotropic vector total variation; and (d)
introducing the Segmentation via the Constrained Split Augmented
Lagrangian Shrinkage Algorithm (SegSALSA) to effectively solve
the convex program which constitutes the marginal MAP inference
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Fig. 1. Classification of the ROSIS Pavia scene with varying dimension of the training set. Top row: (1) False color composition of the
ROSIS Pavia scene, (2) ground truth containing the 9 mutually exclusive land-cover classes, (3) classification for 200 training samples per
class (98.5% accuracy), (4) latent probabilities (hidden field) for “meadow” class for 200 training samples per class.

of the hidden field. Future work will focus on extending the pro-
posed methodology to unsupervised and semi-supervised scenarios.

Acknowledgments The authors would like to thank Prof. P.
Gamba for providing the ROSIS Pavia scene.

6. REFERENCES

[1] J. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders,
N. Nasrabadi, and J. Chanussot, “Hyperspectral remote sens-
ing data analysis and future challenges,” Geoscience and Re-
mote Sensing Magazine, IEEE, vol. 1, no. 2, pp. 6–36, 2013.

[2] S. Li, Markov random field modeling in computer vision,
Springer-Verlag New York, Inc., 1995.

[3] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy
minimization via graph cuts,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 23, no. 11, pp. 1222–
1239, 2001.

[4] A. Martins, M. Figueiredo, P. Aguiar, N. Smith, and E. Xing,
“An augmented Lagrangian approach to constrained MAP in-
ference,” in Proceedings of the 28th International Conference
on Machine Learning (ICML-11), 2011, pp. 169–176.

[5] J. Marroquin, E. Santana, and S. Botello, “Hidden Markov
measure field models for image segmentation,” Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on, vol. 25,
no. 11, pp. 1380–1387, 2003.

[6] X. Bresson and T. Chan, “Fast dual minimization of the vec-
torial total variation norm and applications to color image pro-
cessing,” Inverse Problems and Imaging, vol. 2, no. 4, pp.
455–484, 2008.

[7] B. Goldluecke, E. Strekalovskiy, and D. Cremers, “The natural
vectorial total variation which arises from geometric measure
theory,” SIAM Journal on Imaging Sciences, vol. 5, no. 2, pp.
537–563, 2012.

[8] M. Figueiredo, “Bayesian image segmentation using wavelet-
based priors,” in Computer Vision and Pattern Recognition,
2005. CVPR 2005. IEEE Computer Society Conference on.
IEEE, 2005, vol. 1, pp. 437–443.

[9] J. Lellmann, J. Kappes, J. Yuan, F. Becker, and C. Schnörr,
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