
 
1 INTRODUCTION 
 
With aging infrastructure both in the United States 
and abroad, structural health monitoring (SHM) for 
civil applications has become a focus of intense 
research as a means to objectively determine the 
condition of a structure.  

The American Society of Civil Engineers reports 
that of the 600,000 bridges within the United States, 
one in nine bridges is rated as structurally deficient 
(ASCE 2013). In addition, the recent collapse of the 
I-5 Bridge in Washington State and the earlier 
collapse of the I-35 Bridge in Minneapolis 
demonstrated the need for advanced technologies to 
monitor bridges. Researchers in the SHM 
community have already made significant 
contributions towards developing sensing systems 
and damage detection algorithms (Doebling et al. 
1996, Chang 2011, Frangopol et al. 2010, Casciati 
and Giordano 2010) 

The ultimate goal of SHM is to determine the 
remaining useful life of the structure. The state of 
the structure can be determined through a five-step 
process: (1) existence, (2) localization, (3) type, (4) 
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severity and (5) prognosis of the damage (Rytter 
1993).  

The vast majority of monitoring systems for 
bridges require either wired or wireless sensors 
placed directly on the structure of interest. These 
techniques have shown some promising results but 
they require significant capital investment. This 
paper focuses on an indirect monitoring paradigm 
where the sensors are placed on a passing vehicle. 
This indirect approach is more economical; a fleet of 
vehicles could potentially monitor a large bridge 
inventory (Lin et al. 2005, Cerda et al. 2010).  

Previous work on the indirect monitoring 
paradigm has examined determining the state of the 
structure between two (binary classification) or 
several cases (multiclass classification) (Cerda et al. 
2013). Cerda et al simulated damage by adding a 
‘proxy damage’ to a laboratory scale model. In one 
experiment, they varied the size and location of the 
proxy damage to measure their ability to determine 
(2) localization and (4) severity of the damage. They 
quantified the accuracy using multiclass 
classification with several discrete classes. 

 In this paper, we expand on the work of Cerda 
et al. by performing a regression on a large dataset 
of proxy damage locations and proxy damage 
severities, using the same laboratory model as Cerda 
et al. Using this regression we can determine the 
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ABSTRACT: This paper presents algorithms for diagnosing the severity and location of damage in a 
laboratory bridge model. We use signal processing and machine learning approaches to analyze the vibration 
responses collected both directly from the bridge model and indirectly from a vehicle passing over the model. 
Features are selected using principal component analysis (PCA), and a regression is performed using the 
kernel regression method. Various “damage” severities and positions are simulated on a laboratory bridge 
model by placing additional mass on the bridge. We perform two experiments; one to measure our ability to 
detect damage severity (i.e. size of the mass), and a second to measure our ability to detect damage location 
(i.e. position of the mass). In the first experiment, we vary the magnitude of the mass while keeping its 
location constant. In the second experiment, we vary the location of the mass while keeping its magnitude 
constant. In both cases, we use a portion of our data to train the algorithm, and another portion to test its 
validity. We report the accuracy of correctly quantifying the nature of the mass from the test data as a mean 
square error (MSE).  



state of the structure for an infinite number of mass 
locations and sizes within our training set.  To 
build the regression, we apply principal component 
analysis to the acceleration signals, and train the 
kernel regression model by the collected data. This 
model determines the size and the location of the 
damage proxy using the MSE as the evaluation 
score.  

2 EXPERIMENTAL SETUP AND PROTOCOL  

2.1 Experimental setup (Cerda et al. 2013; Wang et 
al. 2013) 

A general view of the laboratory model used in this 
project is shown in Figure 1, and schematic of the 
setup is shown in Figure 2. The model consists of a 
vehicle that is pulled across the rails by a cable 
system. The vehicle starts on ‘Ramp 1’, accelerates 
up to a constant speed, crosses the middle section, 
the “bridge,” then decelerates on ‘Ramp 2.’ The 
vehicle has wired accelerometers so there is a cable 
rail above to ensure these wires do not interfere with 
its motion.  

The “bridge” is an aluminum plate, 2438 mm (8 
feet) long, with two angle beams acting as girders 
and two rails to guide the vehicle. The vehicle 
model, as shown in Figure 3, has an independent 
suspension system. Both the vehicle and the bridge 
were instrumented with commercial accelerometers. 
On the vehicle, two sensors are on the sprung 
portion of the vehicle (‘front chassis sensor’ and 
‘rear chassis sensor’), and two sensors are on the 
unsprung portion of the vehicle, rigidly attached to 
the wheels (‘front wheel sensor’ and ‘rear wheel 
sensor’), as shown in Figure 3. One sensor was 
placed underneath the bridge deck at midspan 
(‘bridge sensor’).   
 
 

 
Figure 1. The general view of the laboratory setup. 

 
 
The motors governing the movement of the 

vehicle and the data-acquisition systems are both 

controlled by National Instrument’s○R  PXI system 
running LabView○R . By using a single system, we 
can spatially align the time series data from different 
runs using the vehicle’s position. More details about 
the experimental setup can be found in (Cerda et al. 
2013). 

 

 
Figure 2. The illustration of the laboratory model. 

 
 

 
Figure 3. Details of the vehicle. 

 

2.2 Protocol 

In this experiment, the damage proxy is the presence 
of a mass on the deck. We assume that as the mass 
level changes gradually, the vibration characteristics 
will change accordingly. By mapping the 
relationship between changes in the acceleration 
signal to changes in the magnitude of the mass, we 
can determine the state of the bridge from an 
acceleration signal involving a change in mass size 
with our training range.  The same assumption is 
applied to the change of the positions.  

We assume a heavier mass means more severe 
damage as it is a more significant change from the 
baseline condition. In this paper, we use 31 mass 
levels, with an interval of 5 grams from 0 to 150 
grams. We ran the experiments at 2 different speeds. 
The bridge itself weighs 15.5kg so the added mass 



varies from 0%-1% of the mass the bridge. For these 
severity tests, we have 31 (mass) × 2 (speeds) × 30 
(iterations) = 1860 (trials). 

To investigate damage localization, a mass of 
200 grams was placed at 30 locations, with an 
interval of 8 cm. We ran the experiment at 4 
different speeds. The positions of the mass are 
shown in Figure 4. In total, for the localization tests, 
we ran 30 (locations) × 4 (speeds) × 30 (iterations) = 
3600 (trials).  
 
 

 
Figure 4. Illustration of mass positions on the deck. 

3 REGRESSION FOR STRUCTURAL 
SCENARIOS  

3.1 The framework of the signal-processing system 

The goal of our signal processing approach for this 
experiment was to design a map to associate an 
acceleration signal with its corresponding bridge 
condition. In this experiment, we varied the bridge 
condition in small increments so that we could 
examine the evolution of the signal as the location or 
the severity of the proxy damage changed. By 
mapping this relationship, we were able to record a 
new acceleration signal of a previously unseen 
bridge condition, and predict that condition. There 
are two main challenges: the acceleration signals lie 
in a high-dimensional space, which is hard to 
visualize and further model; there is no closed-form 
formula to describe the relationship between the 
acceleration signals and the bridge conditions. We 
solve the first challenge by using PCA to reduce the 
dimensionality and solve the second one by using 
kernel regression to build a nonparametric 
regression model. The signal-processing system thus 
contains the dimensionality reduction block and the 
regression block shown in Figure 5. 
 

 
 

Figure 5. The system of regression for structural scenarios. 
 

3.2 Dimensionality reduction and visualization 

Each acceleration signal is sampled at 1667 Hz, and 
the vehicle takes roughly 2 seconds to cross the 
bridge (depending on its speed), it then contains over 
3000 signal samples. The high dimensionality leads 
to the difficulty in visualizing and understanding the 
distribution of acceleration signals; it is also hard to 
perform further analysis because of the so-called 
curse of dimensionality (Duda et al. 2000). To solve 
this, we use PCA (Duda et al. 2000) to reduce the 
dimensionality. It finds an orthogonal linear 
transformation from the given dataset and 
transforms the signals into a new coordinate 
system such that the first coordinate captures the 
greatest variance, the second coordinate captures the 
second greatest variance, and so on. The algorithm 
to compute PCA is as follows. 

  
 

 
The implementation details of dimensionality 

reduction block are as follows: we first take the 
discrete Fourier transform of each acceleration 
signal and compute the magnitudes of their 
frequency spectrums; we then use PCA to analyze 
the magnitudes of all the acceleration signals. As an 
example, for visualization, we only preserve the first 

PCA (extract top k eigenvectors as features): 
 
Given data X={x 1, …, xn}, 
 
1. Calculate the mean of each column: 

.   
2. Subtract the meanfrom each vector xi and 
get a new matrix X. 
 
3. Calculate the covariance matrix Σ of X. 
 
4. Calculate eigenvectors and eigenvalues of 
Σ and sort the eigenvectors ascending order 
based on the corresponding eigenvalues. 
 
5. Select the first k principal components as 
features. 

http://en.wikipedia.org/wiki/Orthogonal_transformation
http://en.wikipedia.org/wiki/Linear_transformation
http://en.wikipedia.org/wiki/Linear_transformation
http://en.wikipedia.org/wiki/Coordinate_system
http://en.wikipedia.org/wiki/Coordinate_system


three coordinates in Figure 6 to Figure 10. Each 
subplot is the feature spectrum extracted from the 
data collected from one position on the vehicle. The 
colors from red to blue indicate the increasing mass 
from 0 gram to 150 grams as can be seen on the 
colorbars. These figures show how the features of 
the acceleration signals change as the severity of the 
mass increases. We see a gradual change in the 
features as the size of the proxy damage increases; 
we can use these graphs to justify our mapping 
approach. For a given acceleration signal, we can 
plot its features in this space, and can deduce the 
condition of the bridge from the position of the 
features relative to known cases.  

 
Figure 6. Visualization using first three principal components 

from bridge sensor accelerometer signals. 

 

Figure 7. Visualization using three principal components from 
back wheel sensor accelerometer signals. 

 
Figure 8. Visualization using first three principal components 

of the back chassis sensor accelerometer signals. 

 
Figure 9. Visualization using first three principal components 

from front chassis sensor accelerometer signals. 

 
Figure 10. Visualization using three principal components from 

front wheel sensor accelerometer signals. 
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3.3 Signal reconstruction for verification 

To verify that using only first three principal 
components will capture the characteristics of the 
original data, we reconstruct the signals based only 
on these principal components. In Figure 11, we 
demonstrate that the vast majority of the information 
in  the signal is in the first several principal 
components—the singular values is a measure of 
information. Figures 12-16 show the reconstruction 
the signal for each of the sensor. They demonstrate 
that the characteristics of the vibration, such as peak 
occurrences, are very close to the original data, 
which means that to a certain extent, we can 
represent the original data by the features extracted 
from the PCA. 

 
Figure 11. Singular value analysis. 

 

Figure 12. Original and reconstructed signals of the front wheel 
sensor. 

 

 
Figure 13. Original and reconstructed signals of the front 

chassis sensor. 

 
Figure 14. Original and reconstructed signals of the back wheel 

sensor. 

 
Figure 15. Original and reconstructed signals of the back 
chassis sensor. 



 

Figure 16. Original and reconstructed signals of the bridge 
sensor. 

3.4 Regression Model 

Regression analysis is an approach that finds 
possible connections among all the variables and is 
then used as the means of predicting when a new 
dataset is presented to the system. Many techniques 
for regression analysis have been developed. These 
techniques are categorized as parametric and 
nonparametric regression (Wasserman 2005). 
Parametric regression asks for parameters in the 
model and nonparametric regression relies on the 
functions that the user chooses, as the basis for data 
processing.  

We use a nonparametric regression analysis 
method, called kernel regression. After applying 
PCA, the acceleration signals are represented in a 
more compact way by using the top three principal 
components. Based on this, we then look for a 
relationship between the acceleration signals and the 
bridge conditions. We train the regression model 
from the given dataset by using kernel regression 
(Wasserman 2005). The advantage of kernel 
regression is that it is a nonparametric method and it 
finds a nonlinear relationship between a pair of 
variables by averaging locally. Noh et al. (2012) 
used kernel regression to define fragility functions 
for damage classification purposes. Kernel 
regression works in two phases, the training phase 
and the testing phase. In the training phase, the 
inputs of the kernel regression are the first three 
coordinates of the acceleration signals after applying 
PCA and their corresponding bridge conditions;  
the output is the regression model. In the testing 
phase, the inputs are the unlabeled acceleration 
signals and the regression model trained previously, 
and the output is the predicted bridge condition. 

 

 

 

4 RESULTS  
 

 

4.1 Regression Testing Protocol 

To evaluate our regression system, we perform a 
series of cross-validation experiments. For each 
speed and each sensor, we randomly selected 90% of 
the acceleration signals from all bridge conditions 
and use them as the training set. The other 10% of 
the signals form the test set. This random selection is 
repeated in a 30-fold validation. For each case, we 
report MSE as the evaluation score. 

4.2 Severity Results 

The goal is to detect the weight changes with 
different masses put on the bridge through analyzing 
the acceleration signals. After the model is built, we 
randomly choose the signals with the mass on the 
bridge in the range of training data and calculate the 

Algorithm (Regression for Structural 
Scenarios ) 

 
Input: Labeled training dataset and unlabeled 
testing dataset. 
 
Output: Predicted class labels for the testing 
dataset. 
 
Training phase: 
 
1. Compute the discrete Fourier transform of 
each signal in the training dataset.  
2. Conduct the principal component analysis 
on the training dataset. 
3. Preserve the first three components of each 
signal and the corresponding eigenvectors. 
 
4. Train a kernel regression model by using 
the three components of each signal in the 
training dataset and the corresponding class 
labels. 
 
Testing phase: 
 
1. Compute the discrete Fourier transform of 
each signal in the testing dataset.  
2. Represent signals in the testing dataset by 
projecting them to the eigenvectors trained in 
the training phase. 
3. Feed the signals into the kernel regression 
model trained previously and get the 
predicted class label. 



MSE. These results are shown in Figure 17. MSE for 
each sensor is found at two different speeds. An 
MSE of zero would denote a perfect regression, and 
an MSE of 75 (=302/12) would denote regression 
that was no better at identifying the size of the mass 
than a random guess. From the result, we see that 
signals from the wheel have high MSE error so they 
are less useful, while the signals from the chassis 
and the bridge have smaller prediction error.  

 
Figure 17. MSE result for the severity regression. 

 
4.3 Localization Results 
 
The goal here is to find the location of the mass 
through analyzing the acceleration signals. We 
randomly choose signals from locations within the 
training range and calculate the MSE as shown in 
Figure 18. Again, a perfect regression would have 
MSE of zero, and a regression that gave a 
completely random answer would have a MSE error 
of 80.1 (=312/12). From the result, it is indicated in 
the similar way with the location case that signals 
from the chassis have smaller prediction error than 
that of the signals from wheels. The MSE for the 
chassis signals is around 15 on average at different 
speeds.  
 
4.4 Analysis 
 
From the above results, we conclude that for the 
signal processing approach used in this paper, 
signals from the chassis perform better than signals 
from the wheels in terms of the prediction error. One 
possible explanation is the low-pass filtering 
function of the spring supporting the chassis. As the 
vehicle is traversing, the spring has the function to 
filtrate the signal to keep signals with relative low 
frequencies and filter out signals with relative high 
frequencies, which associate with noise. 

It is also worth noting that the signals from the 
chassis outperform the signals from the 
accelerometer located at the midspan of the bridge. 
This supports our overarching hypothesis that an 

indirect monitoring approach where sensors are 
placed on the vehicle may be at least as effective as 
a direct monitoring approach. 
 

 
Figure 18. MSE result for the location regression. 

5 CONCLUSIONS 
 

We present the latest results of our research into 
indirect structural health monitoring. We expand on 
our previous work on locating and quantifying 
damage in a bridge by using the acceleration signal 
from a passing vehicle. While previous research has 
looked at several discrete locations or severity levels 
using multiclass classification, here we build a 
regression model that can handle an infinite number 
of possible damage locations and severities within a 
particular range. We use PCA to reduce the 
dimensionality of the signal, and kernel regression, a 
non-parametric approach, to map the signals to the 
bridge condition. We obtain low errors (quantified 
by MSE) for all sensors, in particular for chassis 
sensors. The error for the chassis sensors is lower 
than the error for the bridge sensor, which indicates 
that an indirect monitoring approach may be 
feasible. This work brings us one step closer to 
providing a bridge diagnosis in an indirect fashion. 
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