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ABSTRACT: This paper presents algorithms for diagnosing the severity and location of damag
laboratory bridge modeWWe u® signal processing and machine learning approaches to analyzler#tien
responses collectdabth directly from thebridge model andhdirectly from avehiclepassing over the model
Features are selected using principal component angB€i8), and aregression iperformed usinghe
kernel regression methoWarious “damage’severitiesand positions are simulated anlaboratory bridge
model by placing additional mass the bridge. We perform twexperimentspne to measure our ability to
detect darage severityi.e. size of the mass), andsacond to measure our ability to detect damagation
(i.e. position of the mass)n the first experimet, we vary the magnitude dfie mass while keeping its
location constant. In the second experiment, we vary the locatithve oiass while keeping its magnitude
constant. In both casewe use a portion of our data to train the algoritiaimd another portion to test its
validity. We report the accuracy of correctly quantifying the nature of tlesfnoan thetest data as a mean
square errof(MSE).

severity and (5) prognosis of the damage (Rytter
1 INTRODUCTION 1993).
The vast majority ofmonitoring systems for
With aging infrastructure both ithe United States bridges require either wired or wirelesssensors
and abroadstructural health nonitoring (SHM) for  placed directly on the structure afterest These
civil applications has become a focus of intense techniques havehown some promising results but
research as a means to objectively determine thbey require significant capital investmentThis
condition of a structure. paper focuses onnaindirect monitoring paradigm
The AmericanSociety of Civil Engineersrepors  where the sensors are placed on a passing vehicle.
thatof the 600,000 bridgesvithin the United States This indirect approach is more economjeafleet of
one in nine bridges igted as structurally deficient vehicles couldpotentially monitor a large bridge
(ASCE 2013)In addition, the recent collapse of the inventory (Lin et al. 2005, Cerda et al. 2010).
I-5 Bridge in Wasimgton State and the earlier Previous work on the indirect monitoring
collapse of the -B5 Bridge in Minneapolis paradigm has examined detening the state of the
demonstrated the need fadvanced technologide  structure between two (binary classification) or
monitor bridges. Bseathers in the SHM several ases (multiclass classificatio(@erdaet al.
community have already made significant 2013). Cerda et hsimulateddamageby adding a
contributions towards developing sensing systems ‘proxy damagéto a laboratory scale modéh one
and damage detection algorithnm{®oebling et al. experiment, they varied the size and location of the
1996, Chang 2011 Frangopol et al. 2010Casciati proxy damage taneasureheir ability to determine
and Giordano 2010) (2) localization and (4) severity of the damage. They
The ultimate goal of SHM is to determine thequantified the accuracy using multiclass
remaining useful life of the structure. The state otlassification withseveral discretelasses.
the structure can be determined throughva-step In this paperwe expand on the work of Cerda
process (1) existence, (2) localization, (3) type, (4) et al. by performing a regression anarge dataset
of proxy damage locadns and proxydamage
severities using the samkaboratory modeéas Cerda
et al. Using this regression we can determine the
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state of the structure for an infinite number of massontrolled by National Instrumers® PXI system
locatiors and sizeswithin our training set. To  running LabView®. By using a single system, we
build the regressionye appy principal component can spatially aligrthe time series dafeom different
analysisto the accelerationsignak, andtrain the runs using the vehicle’s positioNore details about
kernel regressiomodel by the collected datarhis the experimental setup can be found in (Cerda et al.
model determing the size and the location of the 2013).

damage proxyusing the MSE as the evaluation

score

2 EXPERIMENTAL SETUP AID PROTOCOL
 Rotation Shaft

2.1 Experimental setup (Cerda et al. 2013; Wang et =\
al. 2013) '-

A general view of théaboratory modelsedin this
project is shown in Figure 1, and schematic of the | ==t Rl
setup is show in Figure 2 The model consists of a i =&, —
vehicle thatis pulled across the taiby a cable Mot e
system.The vehicle starts on ‘Ramp 1’, accelerates &
up to a constant speed, crosses the middle sectic
the “bridge,” then decelerates on ‘Ramp Zhe
vehicle has wired accelerometers so there is a cable  Figure 2. The illustration of the laboratory model
rail aboveto ensure these wires dotrinterfere with
its motion.

The “bridge” is amaluminum plate, 2438 mm (8
feet) long, with two angle beamacting as girders
and two rails to guide the vehicldhe velicle
model, as shown in Figurg, has an independent
suspension systenBoth the vehcle and the bridge
wereinstrumented with commercial accelerometers
On the vehicle, wo sensors are on the sprungf™
portion of the vehicle {tont chassis sensor’ and |
‘rear chassissensor}, and two sensors amn the
unsprung portion of the vehicle, rigydhttached to
the wheels front wheel sensor’and ‘rear wheel |
sensor’),as shown in Figure .30ne sensor was |
placed underneath the bridge deck at gpah
(‘bridge sensor’). e A

 Vehice Cabe Rl

% Front Wheel Sensor ‘?\\,
| c,.' / -

Sy

Figure 3. Details of the vehicle

2.2 Protocol

In this experimenthe damag@roxy is the presence

of amass on theleck We assume that as the mass
level changes gradually, the vibration characteristics
will change accordingly By mapping the
relationship between changes the acceleration
signal to changes in the magnitude of the mass, we
can determine the state of the bridge from an
acceleration signal involving a change in mass size
with our training rage The same assumption is
applied to the change of the positions.

; Nl We assume &eaver massmears more severe
Figure 1. The general view of the laboratory setup damage as it is a more significant change from the
baseline condition. In this paper, we use 31 mass
levels with an interval of 5 grams from ® 150

The motors governing the movement of the grams We ran the experimen& 2 different speeds.
vehicle and the dataacquisition systemsare both The bridge itself weighs 15.5kg so the added mass




varies from 0%L1% of the mass the bridge. For thes
severity tests, we have 31 (mass (speeds) 30
(iterations) =18€0 (trials).

To investigate damage localizatipra massof
200 gramswas placedat 30 locations with an
interval of 8 cm We ran the experiment at
different speeds.The positios of the massare
shownin Figure4. In total, for thelocdization tests,
we ran30 (locations)x 4 (speedsk 30 (iterations) =
3600 (trials).

Bridge
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Dimensionality
reduction

Acceleration
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Figure 5.The system of regression for structurersarios

3.2 Dimensionality reduction and visualization

Each acceleration signal is sampled at7.6f, and
the vehicle takes roughlg secondsto cross the
bridge (depending on its speed), it then contains over
3000signal samplesThe high dimensionality &sls
to the difficultyin visualizingand understandg the
distribution of acceleration signals; it is also hard
perform further analysis because of tls®-called
curse of dimensionalitfDuda et al. 2000). To solve
this, we usePCA (Duda et al. 2000jo reduce the
dimensionality. It finds anorthogonalinear
transformatiorfrom the given dataset and
transforms the signals into a neaordinate
systemsuch that the first coordinateaptures the
greatest variance, the secondrciate captures the
second greatest variance, and so on. The algorithm
to compute-PCAs asfollows.

x=1/m) x,

=1

Bridge Deck

Rail Mass Positions

Figure 4. lllustration of mass positions on the deck -
J P PCA (extract top k eigenvectors as fa&is):

3 REGRESSION FOR STRURAL Given dataX={x, ..., Xa},

SCENARIOS
3.1 The framework of the signalocessing system

1. Calculate the mean of eackolumn:

The goalof our signal processingpproach for this

experiment was talesign a mapo assaiate an
acceleration signal withts corresponding bridge
condition. In this experiment, we varied the bridge
condition in small increments so that we could
examine the evolution of the signal as the location of
the severity of the proxy damage chang®&)
mapping this relationship, we were able to record &
new acceleration signal of a previously unseen
bridge condition, and predict that conditioFhere
are two main challenges: the acceleration signals lig
in a highdimensional spacewhich is hard to
visualizeand furthemmodel there is no closkform
formula to describe the relationship between the
acceleration signals and the bridge conditiovg
solve the first challenge by usiiRfCA to reduce the

x= [1/’m]ixi

2. Subtract the meagfrom each vectok; and
get a new matrix.

3. Calculate the covariance mat&of X.
4. Calculate eigenvectors and eigenvalues
¥ and sort the eigenvectoscending orde

» based a the corresponding eigenvalues.

5. Selectthe first k principal components g
features.

5 of

dimensionality and solve the second one by using

kernel regression to build a

nonparametric The implementation detailof dimensionality

regression model. The sigAalocessing system thus reduction blockare & follows: we first take the
contains the dimensionality reduction block and theliscrete Fourier transform of each acceleration

regression block shown in Figure 5.

signal and compute the magnitudes of their

frequency spectrums; we then UBEA to analyze
the magnitudes of all the acceleration signals. As an
example, ér visualization, we oml preserve the first
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three coordinatesn Figure 6 to Figure 10Each "
subplot is the feature spectrum extracted from th ’
data collected from one position on the vehicle. The

. . . . 5
colors from red to blue indicate the increasing mas

120g
from O gram to 150 gramas @n be seen on the 3 |

colorbars.These figures show how the features of § -

the acceleratiosignab change as the severity of the — _, 1™
mass increases. We see a gradual change int =

features as the size of the proxy damage increase 1609
we can use these graphs to justdyr mapping

approach. For a given acceleration signal, we ca 20g
plot its featurs in this space, and can deduce the o0
condition of the bridgefrom the position of the ez e

features relative to known cases <160 1o 0g
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3.3 Signalreconstruction for verification

the ariginal signal in time domain framfront chasis

g 05 T T T T
To verify that using onlyfirst three principal £ of  Awmibimmiiombimipmsemiibioioin -
components will capture the characteristics of the® s " 2 : - .
original data, we reconstruct the signals basely e raconstuete sigant i e e domeint fomfront chasis
on these principal componesst In Figure 11, we § ** ‘ ' ‘ -
demonstrate that the asajority of the information § ° WWMWWWMWM ]
in the signal is in the first several principal * s r s : =5 p
components-the singular values is a measure of sulnglefsmealampmuae5pemmm:?ro’él“?un asing orkanal daa romons <hasi
information. Figures 146 show the reconstruction £ _ | |
the signal for each of the sensGhey demonstrate & |, Y T
that the characteristics tfe vibration, such as peak L L
occurrences, are Very Close to the Original datemo_m smghlafsidedan’:pl\tudespe:ctrumforc:nerur'lusirllgrecnnstrrjcteddata‘frumfrontc‘hasls
which meansthat to a certain extent, we can <.l JL ]
represent the originalataby the atures extracted 5 s b :
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Figure 15 Original and reconstructed signals of tback
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the eriginal signal in time domain frombridge sensor

I MWMWWMWWM Algorithm (Regression for Structural
» ‘ s . . Scenarios )

35 4 4.5 5 B.S5
tima
the reconstructed siganl in the time domainf frombridge sensor

‘ ' ‘ ' ' ' Input: Labeled training dataset and unlabeled
‘ . , , testing dataset.

5 4 45 a 5.5
time

acceleration
<

acceleration

L oo sin?\e—slded ?mplitudeslpectrum fo‘rone run u‘sing nr\giné:l datafromlhrldgesen‘sor Output. PredlCted msslabels for the teStlng
E dataset.
£
00 ) 100 200 300 40 i} 500 0 N “‘UV “‘ - .
_ equency Training phase:
single—sided amplitude spectrum far ane run using reconstructed data frombridge sen:
o .04 ‘ : . ‘ : : . :
£ oot 1. Compute the discrete Fourier transform| of
B S e e e each signal in the training dataset
freaensy 2. Conduct the principal component analysis

on the training dataset
3. Preserve the first three components of each
signal and the corresponding eigenvectors.

Figure 16 Original and reconstructed signals of the bridge

sensor 4. Train a kernel regression model by us
3.4 Regression Model the three components of each signal in the

training dataset and the corresponding class
Regression analysis is an approach thiatds labels.

possible connections among all the variables iand
then used ashe means of prediatig when a new | Testing phase:
daasetis presented tthe system. Many techniques
for regression analysis have been developed. The| 1. Compute the discrete Fourier transform| of
techniques are categorized as parametric and | €ach signal in the testing dataset.
nonparametric  regression(Wasserman 2005) | 2. Represent signals in the testing dataset by
Parametric regression asks for parameters in tfj Projecting them to the eigenvectors trained in
model and nonparaetric regression relies on the | the training phase.
functions that the user chooses, the basis for data | - F€€d the signals into the kernel regress
processing. model trained previously and get th
We use a nonparametric regression analysis predicted class label.
method, called kernel regression.After applying
PCA, the acceleration signals are represented in a
more compact ay by using the top three principal 4 RESULTS
components. Based on this, we then look for a
relationship between the acceleration signals and the
bridge condions. We train the regression model 41 Regression Testing Protocol
from the given dataset by using kel regresion ,
(Wasserman 2005). Theadvantage of kernel To_evaluate ourregression system, we perforan
regressions that itis a nonparametric method and it S€i€S of crossalidation experimentsFor each
finds a nofinear relatioship between a pair of SPeed and eaaensor, we randomly selected 90% of
variablesby averaginglocally. Noh et al. (2012) the acceleraﬂomgnalg fromall bridge conditions
used kernel regression to define fragility functions2nd usethem asthe training set.The other10% of
for damage classification moses. Kernel the S|gnaI§ form the test sé’hs randonselection $
regression worksn two phases, the training phase repeated in a@fold valld_atlon.For each case, we
and the testing phase. In the training phase, tH&POItMSEas the evaluation score
inputs of the kernel regression are tHast three 4.2 SeverityResults

coordinate®of the acceleration signals aftgoplying The goal is todetect the weight changeswith

PCA and their correspondingridge  conditions ifferent masseput on the bridge through analyzing

the output is the regression model. In the testinaﬁ'e acceleration sianalafter themodel is built. we
phase, the inputs are the unlabeled acceleratio 9 uilt,

signals and the regression model trained previgusl ra;ir:jdoerril:ly tﬁgor(;ie ethoef tsrggi?]ls (\;V;[Z ;ﬁscsalgnlat?:the
and the output is the predicted bridge condition. 9 9 9 u

on




MSE. These results are shown in Figure 17. MSE foindirect monitoring approach where sensors are
each sensor is found at two different speeds. Aplaced on the vehicle may be at least as effective as
MSE of zero would denote a perfect regression, and direct monitoring approach.

an MSE of 75 (=30/12) would denoteregression

thatwas no better at identifying the size of the mas: , mst

than a random guesErom the resultye see that | | " " MSpeec 1|
signals from thavheel have high MSE error so they m‘ 0 —
are less useful, while the signals from tieessis 60 MlSpeed 4
and the bridge have smallgredictionerror. i
70 MSE
| ! |-Speed‘l 40‘
0 |IMiSpeed 2 -
50| 20
40 10
3[] 2 Briclige FI’Oiit Wheel Baci:‘ii\iheel Front i:hasis Backéhasis .
2 Figure18. MSE result for the location regression
10|
5 CONCLUSIONs
0 Bridge aniWi‘eﬂl BackWheel Front Chaqs Back Chasis
Figure17. MSE result for the severity regression ~ We present the latest ressibf our research into
indirect structural health monitoringVe expand on
4.3 LocalizationResults our previous work on locating and quantifying

damagen a bridge by using thacceleration ignal
The goalhere iS to f|nd the |Ocation Oﬂ:he mass from a paSSIng Veh|CIe. Wh'le pi’eVIOUS i‘_eseai’Ch haS
through analyzing the acceleration signalse looked at several discrete locationsseverity levels

randomly choosesignals from locations within the USINg multiclass classificationpere we build a
training range and calculate the M®& shown in regressiommodel thatcan handle an infinite number

: . . of possible damage locations and severitighin a
Figure 18 Again, a perfect regression would have .
MgE of zegro ang a regrgeai that gave a particular range. We usd’CA to reduce the

letel g Id h MSE dimensionality of the signaand kernel eégression, a
completely random answer would have a €IMOhon-parametric approach, to map the signals to the

of 80.1(=31712). From the result, it is indicated in bridge condition. We obtain low errofguantified

the similar way with thdocation case that signals py MSE) for all sensors, in particular for chassis

from the chasis have smallerpredictionerrorthan  sensors. The error for the chassis sensors is lower

that of the signals from wheels.n& MSE for the  than the error for the bridge sensor, which indigate

chasis signals is around 16n average at different that an indirect monitoring approach may be

speeds. feasible. This work brings us one step closer to
providing a bridge diagnosis in an indirect fashion.

4.4 Analysis
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