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ABSTRACT

Super-resolution localization microscopy (SRLM) is a new
imaging modality that is capable of resolving cellular struc-
tures at nanometer resolution, providing unprecedented in-
sight into biological processes. Each SRLM image is recon-
structed from a time series of images of randomly activated
fluorophores that are localized at nanometer resolution and
represented by clusters of particles of varying spatial densi-
ties. SRLM images differ significantly from conventional flu-
orescence microscopy images because of fundamental differ-
ences in image formation. Currently, however, few quantita-
tive image analysis techniques exist or have been developed
or optimized specifically for SRLM images, which signifi-
cantly limit accurate and reliable image analysis. This is espe-
cially the case for image segmentation, an essential operation
for image analysis and understanding. In this study, we pro-
posed a simple SRLM image segmentation technique based
on estimating and smoothing spatial densities of fluorophores
using an adaptive anisotropic kernel. Experimental results
show that the proposed method provides robust and accurate
segmentation of SRLM images and significantly outperforms
conventional segmentation approaches such as active contour
methods in segmentation accuracy.

Index Terms— Super-resolution microscopy, STORM,
fluorescence imaging, image segmentation, spatial density es-
timation

1. INTRODUCTION

Super-resolution microscopy techniques, which overcome
the resolution limit of convention optical microscope by im-
proving the resolution to ∼20 nm, are revolutionizing biolog-
ical research with the ability to resolve biological structures
at nanometer resolution. Super-resolution localization mi-
croscopy (SRLM) such as stochastic optical reconstruction
microscopy (STORM) [1] and photo-activated localization
microscopy (PALM) [2] achieve nanometer resolution by
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Fig. 1. Comparisons between conventional fluorescence mi-
croscopy and STORM images of microtubules and mitochondria.
(A, C) Widefield and STORM images of microtubules, respectively;
(B, D) widefield and STORM images of mitochondria, respectively.
Scale bars, 500 nm.

randomly activating separate fluorophores and computation-
ally resolving their locations at nanometer resolution. The
localized fluorophores from different raw image frames are
combined into the final reconstructed image. While super-
resolution techniques provide powerful tools for studying
cellular processes at nanometer resolution, current analyses
of SRLM imaging remain largely qualitative. SRLM images
contain clusters of particles that reflect locations of individual
activated fluorophores of varying spatial densities. Com-
putational image analysis techniques that are developed or
optimized specifically for the unique properties of SRLM
images remain lacking.

Image segmentation is often the first step in quantitative
image analysis. Although super-resolution images provide
significantly improved spatial resolution in visualizing cellu-
lar structures (Fig. 1), this improvement in SRLM image anal-
ysis can only be achieved using reliable and accurate image
segmentation tools.

In conventional epifluorescence or confocal microscopy
images, objects can generally be characterized as continuous
regions of fluorescence signals. In contrast, objects in SRLM
images appear as clusters of estimated fluorophore locations



with different spatial densities. To visualize detected fluo-
rophores, common approaches are to render each particle as a
normalized Gaussian kernel with the size proportional to the
localization precision or to render a spatial histogram with a
pre-specified bin size [3]. Direct segmentation of such images
is problematic. As shown for example in Fig. 1, SRLM im-
ages appear punctate and the edges of image objects are often
poorly defined due to random activation of fluorophores. Es-
sentially, the randomly activated fluorophores provide a sam-
pling of the underlying true spatial density distribution of all
fluorophores.

Another commonly encountered issue in SRLM images is
sparsely distributed artifacts (particles) appearing in the back-
ground regions, which may result from diffused fluorophores;
these isolated features need to be properly addressed in image
processing to avoid false segmentation. In general, reliable
and accurate segmentation of SRLM images must take into
account the unique properties of such images. An intuitive
strategy is to estimate the underlying spatial density accord-
ing to the sampled spatial distribution of the particles and then
determine the criterion for segmenting the density image.

In this paper, we present a spatially adaptive density esti-
mation based method for smoothing and segmenting super-
resolution localization microscopy images. We propose to
estimate local particle density using anisotropic kernels that
adapt to local particle distributions. This kernel based method
provides a way to connect separated particles in an object re-
gion as well as to interpolate object boundary without being
misled by the random fluctuations of activated boundary flu-
orophores. Experimental results confirm the robustness and
accuracy of the proposed method.

2. DENSITY ESTIMATION BASED SRLM IMAGE
SEGMENTATION

Problem formulation To take into account the unique
modality of SRLM images, we formulate the image segmen-
tation problem as identifying different density regions from
the spatial distribution of the particles. We propose a two-step
process for SRLM image segmentation: 1) spatial density
distribution estimation and 2) image segmentation based on
thresholding that estimated density distribution. Inspired by
previous work on density estimation [4], we start with a com-
monly adopted kernel density estimator, then follow by the
proposed adaptive anisotropic kernel density estimator.

Density estimation with isotropic kernel Perhaps the most
commonly used density estimator is the kernel density estima-
tor. The idea is to estimate a continuous distribution from a
finite set of points by placing a kernel centered at each of the
points and taking the sum of all kernels. Kernel density esti-
mation has been used previously in applications such as ge-
ographical information systems [5] and human motion track-
ing [6]

Specifically, suppose that we have a list of n points
x1, x2, . . . , xn, sampled from some unknown density map
f of a spatial area (in our application, the image). A classic
2D spatial kernel density estimator at location x is

f̂(x) =
1

n

n∑
i=1

Ki(x, xi), (1)

whereKi is a symmetric isotropic kernel function. We choose
the Gaussian kernel, which is defined as

Ki(x, x
′) =

1

2πh2
exp

(
−||x− x

′||2

2h2

)
,

where h is a global spherical bandwidth, which can be esti-
mated from the data by minimizing the L2 risk function using
cross-validation [4]. However, in SRLM images, h directly
controls the resolution of the estimated density image as it
represents the radius of the point-spread function of the den-
sity image. If the h is too small, the density estimator loses its
power to connect the particles; if h is too large, the resolution
degrades. Because the typical range of resolution for SRLM
is 20 ∼ 100 nm [7], we choose h to be in the range of 10 ∼
50 nm, i.e. half the resolution.

Density estimation with adaptive anisotropic kernel The
main limitation of the isotropic kernel appears when it is
placed at a location where the support of the underlying true
density is close to one dimensional (for example, on the
boundary). Isotropic kernel cannot properly represents the
heterogeneity of the spatial density; it, instead, spreads its
density mass equally along all spatial directions, thus, giving
too much emphasis to background regions and too little along
the boundary direction. This motivates us to use adaptive,
anisotropic kernels for density estimation.

The adaptive anisotropic kernel density estimation as-
sociates with each point an anisotropic kernel. This kernel
adapts to the local structure of the data points by estimating
locally its scale, shape, and orientation. Again, the density
function as in (1) at the location x is a sum of kernels centered
at the surrounding points xi where now each kernelKi(x, xi)
is the locally adaptive anisotropic Gaussian kernel

Ki(x, xi) =
1

2π|Σi|
exp

(
−1

2
(x− xi)>Σ−1i (x− xi)

)
,

where Σi is a positive definite covariance matrix that defines
its configuration (scale, shape, and orientation).

To place the anisotropic kernel according to the spatial
distribution of local data points, for the kernel located at the
point xi, we select its k-nearest neighbors x1, x2, . . . , xk, to
estimate the covariance matrix

Σi =
1

k

k∑
j=1

(xj − xi)(xj − xi)>.
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Fig. 2. Isotropic vs adaptive anisotropic kernels. Selected isotropic
kernels (A) and adaptive anisotropic kernels (B) overlapped on the
data points sampled from a curvilinear and a big blob structures.
Estimated density images using isotropic kernels (C) and adaptive
anisotropic kernels (D).

Here k must be at least d + 1 to get the support of Σi, where
d = 2 is the spatial dimension. The size of the anisotropic ker-
nel is controlled by the distance between xk and xi. Choos-
ing a larger k helps to better estimate the distribution of local
points; we must guard against too large a k, however, to pre-
vent the resolution degradation. In this paper, we let k vary
between 10 to 30.

Fig. 2 demonstrates the qualitative differences between
the density estimations using isotropic kernel and adaptive
anisotropic kernel. Estimating from the points sampled from
two structures, the isotropic kernel yields a fair density esti-
mation for both structures but generally spreads out the re-
gions, making the region much bigger than the distribution of
the points. In contrast, the adaptive anisotropic kernel follows
the local distribution of the points and yields a density estima-
tion with more precise boundaries compared to the one from
the isotropic kernel.

Density threshold determination The estimated spatial
density distribution provides a way of smoothing the SRLM
images. This makes it possible to segment images by sim-
ple thresholding. We now need to determine a criterion to
segment the regions with different density statistics. Here
we assume two types of signals: signals of the actual fluo-
rophores and background signals. We empirically model the
density distribution of the foreground regions obtained by
finding the non-zero density bins from the spatial histogram.
The thresholding can then be set by finding the pth percentile
of the densities. We found p to lie in the range of 1 to 15.

3. EXPERIMENTS AND RESULTS

We performed experiments on both simulated and real SRLM
images of mitochondria and microtubules. The segmenta-
tion performance of the Chan-Vese active contour (AC) [8],
the isotopic kernel density estimation based segmentation
(IKDES), and the proposed adaptive anisotropic kernel den-
sity estimation based segmentation (AKDES) algorithms are
compared qualitatively and quantitatively with the ground
truth provided from simulated data.

Simulated data We simulated the fluorophore detections
that are generated by SRLM imaging from given ground-
truth. Two types of synthetic sample structures, microtubules
and mitochondria, were produced to simulate common bio-
logical structures. Assuming a uniform fluorophore density
in the object regions, we generated the detections of the ac-
tivated fluorophores randomly with two different labeling
densities of 1,000 and 2,000 detections in an image region
of 2560×2560 nm, and added random artifacts in the back-
ground area with four different signal to artifact ratios of 5,
10, 20, and 40 dB.

Fig. 3 shows a qualitative comparison of the three seg-
mentation algorithms. As previously noted, AC algorithm
performs poorly on SRLM images. It is sensitive to local
missing particle regions inside the object owing to the random
fluctuations of the activated fluorophores in SRLM images.
On the other hand, the IKDES method connects the region
better but still suffers from over-segmentation and the false
segmentation of the background artifacts. In contrast, the pro-
posed AKDES method outperforms the other two methods in
more precisely following the local boundary direction and be-
ing robust to fluctuations resulted from the random distribu-
tion of activated fluorophores, and thus provides more accu-
rate segmentation in both sample structures. We have also
tested graph-cut based segmentation methods [9] and found
the performance to be inferior to the proposed method (data
not shown).

For quantitative comparison, we use the following seg-
mentation evaluation metrics: area similarity (AS) [10],
which measures the goodness of segmentation compared to
the ground truth, precision (P), which measures the ratio be-
tween the number of correctly segmented objects to the total
number of segmented objects, and recall (R), which measures
the ratio between the number of correctly segmented objects
to the number of objects in the ground truth. Quantitative
comparison is summarized in Table 1. All measures have
been averaged over all objects and all images. From the re-
sults, both AC and IKDES methods perform poorly because
of over-segmentation and false segmentation. In contrast, our
proposed method outperforms the other two by a large margin
(10-fold improvement). The area similarly results also show
that the proposed method can correctly identify objects in
both sample structures.
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Groundtruth Simulated Image IKDES AKDESAC

Fig. 3. Comparison of different image segmentation approaches on simulated images. The segmentation results are shown in random colors
and overlapped on top of the simulated images. Scale bars, 500 nm.

MitochondriaMicrotubules

IK
D
E
S

A
K
D
E
S

A
C

A

B

Fig. 4. Real SRLM image segmentation results. (A) Comparison of
different image segmentation approaches. (B) Comparison of seg-
mentation contours in regions corresponding to the boxed regions
in A, where green, blue, and red contours refer to AC, IKDES, and
AKDES results. Scale bars, 500 nm.

Microtubules Mitochondria
AC IKDES AKDES AC IKDES AKDES

AS 0.64 0.75 0.79 0.90 0.88 0.90
P 0.01 0.02 0.37 0.31 0.44 0.96
R 1.00 1.00 1.00 1.00 1.00 1.00

Table 1. Quantitative comparison of segmentation results of
simulated data.

SRLM data We further tested and compared these segmen-
tation algorithms on real SRLM images of fluorescently la-
beled microtubules and mitochondria in fixed BS-C-1 cells
imaged using a Nikon N-STORM system. Fig. 4 shows seg-
mentation results in a region of ∼4,000×4,000 nm. The AC
method again only captures fragmented clusters of particles
while the IKDES method suffers from over-segmentation and
false segmentation of the background artifacts (see Fig. 4B).
In contrast, our proposed method captures better the bound-
ary of the objects and is more robust to the artifacts except for
a few big clusters of particles in the background.

4. CONCLUSIONS

We presented a simple density estimation based approach
for segmentation of super-resolution localization microscopy
images. The proposed method uses an adaptive anisotropic
kernel to estimate the underlying fluorophore density dis-
tribution, which can adjust the smoothing kernel according
to the local spatial distribution. An empirically determined
threshold is then used to segment the estimated density image.
Experimental results show that, compared to active contour
method that is sensitive to the random boundary fluctuations
and isotropic kernel based method that suffers from over-
segmentation, the proposed method provides more reliable
and accurate segmentation.
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