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ABSTRACT

In this work, we present a new algorithm and benchmark dataset for
stain separation in histology images. Histology is a critical and ubig-
uitous task in medical practice and research, serving as a gold stan-
dard of diagnosis for many diseases. Automating routine histology
analysis tasks could reduce health care costs and improve diagnostic
accuracy. One challenge in automation is that histology slides vary
in their stain intensity and color; we therefore seek a digital method
to normalize the appearance of histology images. As histology slides
often have multiple stains on them that must be normalized indepen-
dently, stain separation must occur before normalization. We pro-
pose a new digital stain separation method for the universally-used
hematoxylin and eosin stain; this method improves on the state-of-
the-art by adjusting the contrast of its eosin-only estimate and includ-
ing a notion of stain interaction. To validate this method, we have
collected a new benchmark dataset via chemical destaining contain-
ing ground truth images for stain separation, which we release pub-
licly. Our experiments show that our method achieves more accurate
stain separation than two comparison methods and that this improve-
ment in separation accuracy leads to improved normalization.

Index Terms— histology, unmixing, stain separation

1. INTRODUCTION

Histology, the study of the microscopic structure of tissues, is a crit-
ical tool in medical research and serves as the gold standard for the
diagnosis of many diseases. Histological stains are used to highlight
the detail in tissues and cells. In the case of the inexpensive and com-
mon hematoxylin and eosin (H&E) stain, hematoxylin stains cell nu-
clei blue and eosin stains other structures pink or red.

Current research (see [1] for a review) aims to automate some
aspects of histology analysis, but variations in stain color and inten-
sity between slides complicate this problem. These variations may
arise from differences in staining protocol, differences between stain
brands, or the shelf life of stains. Thus, automated histology image
analysis would benefit from accurate stain normalization techniques.
Because normalization is difficult as images contain different stains,
stain separation is an important first step in stain normalization. To
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address this need, this work presents a new algorithm and benchmark
dataset for digital stain separation.

2. PREVIOUS WORK

There exist a variety of approaches to digital stain separation for his-
tology images in the literature. Some of these methods are unsuitable
for our purposes because they place special restrictions on the imag-
ing setup used. For example, [2] requires knowledge of the stain
colors used and is therefore only useful when such calibration data
is present. The method in [3] uses non-negative matrix factorization
(NMF) and does not require calibration data, but relies on collect-
ing hyperspectral images using expensive and non-standard imaging
equipment.

Some authors have addressed the separation of stains in RGB
images of H&E-stained slides without calibration, as is our focus
here. For example results from these methods as well as our pro-
posed method, see Figure 1. In [4], stain separation is based on the
idea that the contrast in the red channel comes from hematoxylin.
Therefore, the method finds the E-only image by adding an inverted
and scaled version of the image’s red channel to its red, green, and
blue channels, searching for the scaling in each channel that reduces
its variance the most. The result is an image with constant red chan-
nel and low variance in the green and blue channels. These changes
make the image mostly red and lacking in nuclei, so this is the E-only
estimate. The H-only estimate is found by subtracting the E-only es-
timate from the input and re-white balancing. Throughout the paper,
we will refer to this method as the color inversion method.

We, instead, build on the work in [5]; it is explained in detail in
Section 4.1. The idea is that the color of each pixel in the H&E image
is a positive linear combination of the two unknown stain vectors.
This means that all the pixels of the image lie inside a wedge with
its apex at the color white and its edges determined by the color of
hematoxylin and eosin; for this reason we call this approach wedge
finding. Wedge finding is a special case of NMF, but rather than
rely on generic algorithms, the authors propose a geometric solution
which they show to be more efficient than the NMF technique in [3].

3. BENCHMARK DATASET

A key obstacle in advancing the state of the art in digital stain sepa-
ration is the lack of a publicly available benchmark dataset. In [4], a
benchmark is created via a process of staining and destaining a sin-
gle slide; but it is only used for qualitative evaluation of the result
and is not, to our knowledge, available online.



Fig. 1. Example stain separation showing (a) an input image of an H&E-stained slide, (b) the ground truth stain separation, and the digital
stain separation results from (c) color inversion [4], (d) wedge-finding [5], and (e) our proposed method. The left half of each image shows

the H-only estimate and the right half shows the E-only estimate.

Following a procedure similar to that of [4], we have created our
own stain separation benchmark using chemical destaining accord-
ing to standard histological practice [6]. Our goal was to generate
images of the same slide under three staining conditions: H-only,
E-only, and H&E. Thus, the H-only and E-only images can serve as
the ground truth for separation of the H&E image.

Our procedure was as follows. (1) Image an unstained slide.
(2) Apply eosin stain and image. (3) Destain the slide totally and im-
age. (4) Apply hematoxylin stain and image. (5) Apply eosin stain
and image. At each imaging step, we photographed the slide at the
same three locations, giving us three images of the same slide under
blank, E-only, destained, H-only, and H&E conditions (We did not
capture more images because they are essentially redundant as we
don’t expect the stain to vary spatially on the slide). We show exam-
ples of the H-only, E-only, and H&E slides in Figure 1. Although we
do not show them for space, the blank and destained images serve
as controls. Since both show no staining, we can be certain that the
destaining process was successful. We provide all of these images in
the reproducible research compendium to this paper [7].

4. METHODS

In this section, we review the details of the wedge-finding method
of [5], describe our proposed method, which extends it, and explain
how we turn a stain separation technique into a stain normalization
technique.

4.1. Wedge Finding [5]

Let fue be an M x N RGB image of an H&E-stained slide with
the value [1,1,1]7 corresponding to white and [0, 0, 0] to black.
Making the assumption that the stains follow the Beer-Lambert law,
we can write the absorbance of the H&E image at each pixel x as a
weighted sum of the unknown absorbances of the hematoxylin and
eosin stains,

i (1) = —log(fue(z)) = puan(x) + ppap(z), (1)
where ¢n and g are unit-length 3 x 1 vectors giving the color of
hematoxylin and eosin and au(z) and ag(z) are positive scalars for
all z. We refer to fi%:° as the optical density (OD) space version of
fuE, because high values correspond to high density of stain on the
slide (dark colors).

Stacking all of the pixels of £ together into a matrix, we can
rewrite (1) as
M = Ou ams
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Performing stain separation on f§” then amounts to a NMF
problem where the goal is to find ®ur and ane. To do this, we use
singular value decomposition (SVD) to project the OD space image
onto a plane,
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To move from the arbitrary orthogonal basis ® to an estimate of the
H&E basis ®ye, we assume that some pixels exist that are stained
with hematoxylin only and that some pixels exist that are stained
with eosin only; therefore all the pixels should exist inside a wedge,
the extreme members of which correspond to pure hematoxylin and
pure eosin. The extreme pixels are those that form the maximum and
minimum angle with the ¢ axis, and ¢y and g are their projections
back into OD space,

A
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To complete the stain separation, we find weights, agg =
[aE &E]T = (@HE)&} 5P, and project the input H&E image
separately onto the hematoxylin and eosin vectors, so f,.? D = pudn
and on D — ¢pag. Finally we convert back from OD space to RGB
space, and reshape the results into the single-stain images fH and fE

In practice, we replace the minimum and maximum with the ath
and (100—«)th percentile, which provides robustness against outlier
pixels (e.g. dirt on the slide). We also exclude nearly-white pixels
from these calculations because they become unstable when ag or a1
is small. Finally, we may need to swap the identities of ¢y and g if
we find them to be the wrong colors, since the method is agnostic to
the fact that the hematoxylin stain should be blue and the eosin stain
pink.

4.2. Proposed Method

Our proposed method uses two observations from our benchmark
dataset to build on the wedge-finding method presented above. First,
real E-only images exhibit lower contrast when compared to digitally
separated E-only images using the wedge-finding method (compare
the right half of Figure 1b and Figure 1d to see this). Second, the
optical density of some regions of the H&E image is significantly
higher than the sum of the optical densities of the corresponding H-
only and E-only image. This points to an interaction between the
stains beyond summing in the OD space. Our proposed method is
motivated by these observations.



Contrast of Eosin. Our first improvement to the wedge-finding
method is to reduce the contrast of the E-only image. To better quan-
tify the observation that real E-only images have low contrast, we
examined the order statistics of the norms of the pixel values of our
ground truth single-stain images in OD space. We found that the
order statistics change smoothly and that for each pair of H- and
E-only images, the order statistics of the two single-stain images
were similar except for a multiplicative constant, ||fS” (z;)|| =~
C|I£EP (9:)|], where z; denotes the pixel location of the ith smallest
element in ' and y; denotes the pixel location of the th small-
est element in f§P. Performing the same investigation on H- and
E-only images created digitally using the wedge-finding method, we
noted significant deviation from the smooth behavior for the E-only
estimate.

Therefore, starting with amg found via the wedge-finding
method, we estimate C' as the median of ag(z;)/au(y:). To correct
the contrast of the E-only image, we let g (z;) = (1 — v)ae(z:) +
~vCau(y;:), where +y controls the degree of smoothing: when v = 0,
the contrast reduction has no effect; when v = 1, the eosin coeffi-
cients are shifted so their order statistics are exactly the same as the
hematoxylin coefficients times a constant. We can then compute a
new stain separation

20D _ s ax 20D _ ;0D _ ;0D
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Stain Interaction. The method described in the previous sec-
tion results in improved estimates of the E-only image and, when
7 is low, it also improves the H-only estimate by adding some pink
which is indeed present in the ground truth (Figure 1b). When ~
is high, the H-only estimate begins to suffer because it contains too
much pink; the previous model in (1) does not account for this. Ac-
cording to (1), whenever the E-only estimate improves, the H-only
estimate should too, because they exactly sum to the H&E image.
We therefore extend that model by adding an interaction term,

& (x) = pnan(z) + ppag(z) + I(z).

In general, I(z) could have a complicated dependence on ag (),
ag(z), and the underlying tissue, making it hard to calculate di-
rectly. Instead, we assume that interaction occurs only in those
places where the contrast of the eosin coefficients is adjusted. We
let some fraction A of the change in eosin be due to that interaction
and the rest be due to pinkness within the H-only image, giving our
final stain separation expression,

fEF = gear, W7 =0-NUE - )
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When X is high, most of the adjustment in the E-only image is as-
sumed to be due to the interaction term, so ff? D is unaffected; when
A is low, the eosin adjustment is assumed to be due to pinkness in

the H-only image, so fI.?D changes a lot.

4.3. Stain Normalization

We use the same normalization scheme for each method, which is
similar to the approach taken in [5]. Given two H&E images, our
goal is to normalize the input image to look like the target image.
To do this, we stain separate both input and target images and rep-
resent each (OD space) pixel in the single-stain estimates as a scalar
weight times a unit-length stain vector. For the color inversion tech-
nique [4], we find the the stain vectors and weights via 1D SVD
on the single-stain images. For the wedge-finding method [5], the
stain vectors are ¢y and ¢g and the weights are ay and ag. For

Table 1. Results of the stain separation comparison reported as SNR
[dB] for hematoxylin and eosin, with the best result for each image
and stain in bold.

Method
Color inversion [4] ~ Wedge finding [5] Proposed
H E H E H E
Image 1  26.13 25.54 26.07 25.34 2731 2642
Image2 23.39 22.89 23.29 21.54 23.56  23.04
Image 3  25.20 26.04 28.48 24.89 29.56 27.32
Mean 2491 24.82 25.95 23.92 26.81 25.59

our method, we also use ngAand e as the stain vectors, but use ag
for the eosin weights and || ;7 (x)|| for the hematoxylin weight at
each pixel x. To adjust for variations in stain intensity, we indepen-
dently scale the input eosin and hematoxylin weights so that their
95th percentile values match the 95th percentile values of the cor-
responding weights from the target image. To adjust for variations
in stain color, we replace the input stain vectors with those of the
target. We complete the normalization process by recombining the
single-stain images of the input.

5. EXPERIMENTS AND RESULTS

We validate our method with three experiments: (1) We compare
our stain separation method to the color inversion [4] and wedge
finding [5] methods quantitatively, using our the newly-created
benchmark dataset (described in Section 3). (2) We again use the
benchmark dataset to explore the effects of our method’s three
parameters. (3) We compare the performance of the same three
methods on a stain normalization task. We now describe these
experiments and their results in detail.

5.1. Stain Separation Comparison

For each of the three methods, we performed a stain separation on
each of the three images H&E images in our dataset. We set pa-
rameters at typical values: for the wedge finding, o = 0.5; for our
method, « = 0.5,y = .75, A = 0.5. We explore parameter se-
lection in depth in the next section; here our goal was to compare
the methods with default parameters, since in the real use case for
stain separation no ground truth exists with which to tune parame-
ters. To quantitatively evaluate the results, we use affine registration
to align each ground truth H- or E-only image with the correspond-
ing H&E image. Then, for each digital separation result, we blur the
ground truth image and the result with a Gaussian (¢ = 15px) and
calculate the signal to noise ratio (SNR); this blurring is intended
to reduce the effect of small misalignments between the two images
being compared, it does not affect the trend in the results.

Figure 1 shows the qualitative results on a single image and Ta-
ble 1 shows the results in terms of SNR. Both our method and the
color inversion method result in low contrast for the E-only estimate;
but our method additionally captures some of the pink tone in the H-
only estimate, especially in the bone tissue (long regions in the center
of the image). Quantitatively, our proposed method outperforms the
others for each image and stain.

5.2. Parameter Analysis

In order for our method to be really useful, its strong performance
must hold over a wide range of parameters. To explore whether this



is true, we performed a parameter analysis over the wedge percentile
«, the eosin contrast reduction -, and the interaction amount A for
the first image in our dataset (first row of Table 1).

We began by investigating « and ~y with A set to 0 (Figure 2a).
Focusing on the v = 0 case (solid lines), we see that o does not
affect performance much unless it is too small; a setting of 0.5 or
slightly less is optimal for this image, but larger values also work.
This is intuitive because setting « to be very small would allow out-
liers to greatly affect the estimation of the hematoxylin and eosin
vectors. Increasing v (from solid to dashed to dotted lines) always
improves the estimate for the E-only image, but at the cost of the
H-only estimate for high values. Intuitively, the H-only image gets
too red when ~y is high. The mean SNR shows that v = 1 (dotted
line) is still a good choice for all values of a.

Mean SNR |dB] SNR change for H |dB]
1
28
26 0
24
—1 -
0 0.5 1
a A

(@ (b)

Fig. 2. Results of parameter experiments. In (a), the effects of wedge
percentile « and eosin contrast reduction v (solid, dashed, dotted
lines corresponding to v = 0, 0.5, 1) on stain separation accuracy.
When v = 0, our method reduces to wedge finding [5]; increasing ~y
improves the mean SNR. In (b), the effects of interaction amount \
for wedge percentile o = 0.3 and eosin contrast reduction vy = 1. A
wide range of \ values all improve the SNR of the H-only estimate.

Next, we explore how increasing the interaction amount \ can
improve the estimate of the H-only image. Starting at the point that
gives highest mean SNR (o = 0.3, v = 1) in the previous experi-
ment, we vary A (Figure 2b). For any A between 0 and 0.8, the SNR
of the H-only estimate improves, with a maximum improvement of
47dB at A = 0.4. Taken together, these parameter studies show that
the proposed method is robust with respect to parameter choices.

5.3. Stain Normalization Comparison

We now compare the performance of the stain separation methods
on a normalization task. For each method, we used the process de-
scribed in Section 4.3 to normalize an input image (Figure 1a) to
a target image (Figure 3a). Qualitatively, the normalization results
(Figure 3) are similar among the wedge-finding, color inversion, and
our proposed method.

Quantifying the results of this experiment is difficult because
simply subtracting the normalized and target images yields no use-
ful information, since the images are of different tissue areas. We
therefore seek an image similarity metric that compares the colors
occurring in each image without accounting for their location or fre-
quency. To accomplish this, we generate a signature (along the lines
of [8]) for the normalized and target image by clustering their pixels
using k-means in the Lab color space, which we selected for its per-
ceptual uniformity. We then calculate an optimal linear assignment

Fig. 3. Results of the stain normalization experiment, showing (a)
the target and (b) the results using color inversion [4], (c) wedge-
finding [5], and (d) our proposed method. The results are similar
across methods; the main difference is the depth of color in the bone
tissue (long purple structure in (b)-(d)).

(with the MATLAB code [9]) between the sets of cluster centers. We
use the total cost of the optimal assignment as our measure of dis-
tance. Using ten cluster centers, we find the total costs of assignment
to be 122.4, 96.3, and 51.1 for color inversion, wedge-finding, and
our method, respectively. Although this experiment is small and the
proper distance metric is an open question, these results at least sug-
gest that our method’s improved stain separation performance trans-
lates into more accurate stain normalization as well.

6. CONCLUSIONS AND FUTURE WORK

We have presented a new algorithm and benchmark dataset for digi-
tal H&E stain separation. The benchmark provides a way to quanti-
tatively evaluate digital stain separations via images of chemically
destained slides. We showed that our algorithm outperforms the
currently-available methods on all test images and is robust to pa-
rameter selection. We also showed that this improved separation
leads to improved stain normalization.

In our future work, we will explore more principled priors on
the E-only contrast, perhaps by finding a parametric description of
the order statistics. We would also like to continue to improve the
forward model. One approach would be to explore more complex
lighting models including reflection in addition to absorbance; an-
other would be to study the interaction term more closely. All of
this work would benefit from from chemical experiments including
a wider variety of stain brands, staining procedures, lighting condi-
tions, and tissues. As we collect this data, we will continue to make
it publicly available.
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