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Abstract—Signal recovery from noisy measurements is an

important task that arises in many areas of signal processing.

In this paper, we consider this problem for signals represented

with graphs using a recently developed framework of discrete

signal processing on graphs. We formulate graph signal denoising

as an optimization problem and derive an exact closed-form

solution expressed by an inverse graph filter, as well as an

approximate iterative solution expressed by a standard graph

filter. We evaluate the obtained algorithms by applying them

to measurement denoising for temperature sensors and opinion

combination for multiple experts.

I. INTRODUCTION

Signals collected in physical, engineering, social and other
domains are often characterized by nonlinear, complex struc-
ture that is captured by graphs and networks [1], [2]. They
require novel representation and analysis techniques. Recently,
a new framework of discrete signal processing on graphs was
proposed for analyzing signals represented with graphs [3],
[4]. This is a theoretical framework that generalizes fun-
damental concepts of the classical signal processing from
regular domains, such as lines and rectangular lattices, to
general graphs. Signal processing on graphs has found multiple
applications, including approximation [5], sampling [6], [7],
classification [8], [9], inpainting [10] and clustering [11] of
signals on graphs.

In this paper, we consider a problem of signal denoising,
that is, recovery of a true signal from a noisy measurement.
There is extensive literature on this topic, focusing mostly on
signals with regular structures, such as time series and digital
images. Existing denoising techniques are often based on
signal smoothing via lowpass filtering [12], [13], regularization
by total variation [14], [15] and multiresolution analysis [16]–
[18].

This work generalizes the problem of signal denoising from
signals with regular structure to those with complex, irregular
structure that is commonly represented by graphs. We propose
a novel approach to signal denoising on graphs based on
the total variation regularization; we derive an exact closed-
form solution and an approximate iterative solution based,
respectively, on an inverse and a standard graph filters. To
evaluate the derived algorithms, we apply them to denoising
of measurements from temperature sensors and to combining
opinions from multiple experts.

II. DISCRETE SIGNAL PROCESSING ON GRAPHS

Here, we briefly review relevant concepts of the discrete
signal processing on graphs (DSPG); a thorough introduction
can be found in [3], [4].

Graph signals. DSPG represent the structure of a signal
with a graph G = (V,A), where V = {v

n

}N�1
n=0 is the set of

vertices and A 2 CN⇥N is a graph shift, or called weighted
adjacency matrix, representing connections between vertices.
Note that The nth signal coefficient corresponds to node v

n

,
and the weight A

n,m

of an edge from the mth to the nth node
characterizes the relation, such as similarity or dependency,
between the corresponding signal values. Here a graph shift
can be either symmetric or asymmetric to represent arbitrary
relational dependencies. Using the representation graph G,
a graph signal is defined as a map that assigns a signal
coefficient x

n

2 C to the graph node v
n

. Graph signals can
be written as a vector

x =

⇥
x0 x1 . . . x

N�1

⇤
T 2 CN , (1)

where the nth vector element x
n

is indexed by the node v
n

.
Graph filters. A graph filter is a system that takes a graph

signal as an input and produces another graph signal as an
output. The most elementary nontrivial graph filter, graph
shift, replaces the signal value at a node with a weighted
linear combination of values at its neighbors. This operation
is written as

y = Ax .

Every linear, shift-invariant graph filter is a polynomial in the
graph shift [3]

h(A) =

L�1X

`=0

h
`

A

`

= h0 I+h1 A+ . . .+ h
L�1 A

L�1, (2)

and its output is given by the matrix-vector product

y = h(A)x .

Graph Fourier transform. Assume that the spectral de-
composition, or eigendecomposition of the graph shift matrix
A is

A = V⇤V

�1, (3)



where ⇤ = diag(�0, . . . ,�N�1) is the diagonal matrix of
N distinct eigenvalues and V is the matrix of correspond-
ing eigenvectors.1 The eigenvalues of A represent the graph
frequencies and the eigenvectors form a basis of spectral
components. The graph Fourier transform corresponds to the
expansion of a graph signal (1) into the basis of spectral
components and can be written as

b
x =

⇥
bx0 bx1 . . . bx

N�1

⇤
T

= Fx, (4)

where F = V

�1 is the graph Fourier matrix. Respectively, the
inverse graph Fourier transform reconstructs the signal from
its frequency representation as

x = F

�1 b
x. (5)

Graph total variation. “Smoothness” of a graph signal,
that is, how much the signal varies with respect to the un-
derlying graph, can be quantified by the graph total variation
function [4],

TVA(x) =

����

����x� 1

|�
max

(A)| Ax

����

����
1

, (6)

where �
max

(A) denotes the eigenvalue of A with the
largest magnitude. For simplicity of discussion, we assume
�
max

(A) = 1, which can always be achieved by normalizing
A. A related measure of a graph signal’s smoothness is the
quadratic form of total variation,

S2(x) =
1

2

||x�Ax||22 . (7)

For both (6) and (7), the smaller the value of the function,
the “smoother” the graph signal x. From now on, we use the
quadratic form of total variation to measure the smoothness
of graph signals for the computational simplicity.

III. GRAPH SIGNAL DENOISING VIA REGULARIZATION

In this section, we formulate an optimization problem for
graph signal denoising and derive its exact and approximate
solutions.

Consider a noisy graph signal measurement

t = x+w,

where x is the true signal and w is noise. The goal of
graph signal denoising is to recover x from t by removing
the noise w. We assume that the true signal x is “smooth”
with respect to the underlying graph and the noise w is
randomly distributed. In this case, inspired by the classical
signal processing, where time series and digital images are
denoised via regularization [14], [15], we formulate graph
signal denoising as the optimization problem

e
x = argmin

1

2

||x�t||22+↵ S2(x). (8)

1The assumptions on the existence of the eigendecomposition and unique-
ness of eigenvalues are made solely for the simplicity of discussion in this
paper. In general, DSPG applies to arbitrary graph, including those with non-
diagonalizable adjacency matrices and with repeating eigenvalues [3].

Here, the first term keeps the denoised signal similar to the
measurement and the second term enforces the “smoothness”
of the solution using the quadratic form (7). The tuning
parameter ↵ controls the trade-off between two terms of the
objective function

The objective function in (8) is a linear combination of two
quadratic functions of x. Its derivative is

@

@ x

✓
1

2

||x�t||22+↵ S2(x)

◆

=

1

2

@

@ x

((x�t)

⇤
(x�t) + ↵x

⇤
(I�A)

⇤
(I�A)x)

= (x�t) + ↵(I�A)

⇤
(I�A)x, (9)

where ⇤ denotes the Hermitian transpose. Setting the right-
hand side of (9) to zero, we obtain the solution to the
optimization problem (8)

e
x = (I+↵(I�A)

⇤
(I�A))

�1
t. (10)

The advantage of the solution (10) is that it is exact and in a
closed form. However, the inversion of an N⇥N matrix in (10)
requires O(N3

) arithmetic operations, and for large values of
N this operation is prohibitively expensive and numerically
unstable. Furthermore, in many real-world applications the
graph shift matrix A is sparse and has only a few nonzero
entries, its inverse, as well as the inverse matrix in (10),
are dense matrices that require O(N2

) arithmetic operations,
again an expensive operation for large values of N . To avoid
these issues, in the following section we derive an alternative
solution that implements or approximates (10) with a graph
filter (2).

IV. GRAPH FILTER SOLUTION

To avoid the inversion and achieve a faster implementation,
instead of using conjugate gradient descent algorithm or other
iterative methods [19] to perform matrix inversion in (10), we
propose to find a graph filter h(A) that solves (8) as

e
x = h(A)t. (11)

This solution avoids expensive matrix inversion and multi-
plication with a dense matrix, and instead performs iterative
multiplications with the matrix A, which in many practical
cases is highly sparse. In general, if A is K-sparse, that is, on
average every row of A contains only K nonzero elements, the
solution (11) requires only O(LKN) arithmetic operations,
where L is the number of filter taps in (2).

Comparing (11) with (10), we conclude that the graph filter
must satisfy h(A) = (I+↵(I�A)

⇤
(I�A))

�1. The following
results establish when this equality holds.

Lemma 1 If the eigendecomposition of A is as in (3) and if
matrix V

�1
A

⇤
V is diagonal, then A

⇤ is a graph filter, that
is, there exists a polynomial (2) that satisfies

h(A) = A

⇤ . (12)



Proof: Assume that V�1
A

⇤
V = diag(d0, . . . , dN�1) =

D is a diagonal matrix. Then, (12) can be written as

D = V

�1 h(A)V

= V

�1 h(V⇤V

�1
)V

= h(⇤)

= diag (h(�0), . . . , h(�N�1)) .

Hence, the graph filter must satisfy the system of equations
h(�

n

) = d
n

for 0  n < N .
This system always has a solution if L = N , that is, if the

graph filter (2) is a polynomial of degree N . Thus, if V�1
A

⇤
V

is a diagonal matrix, then A

⇤ can be implemented by a graph
filter of degree N .

The following theorem shows that if A

⇤ is a graph filter,
the inverse matrix in (10) is also a graph filter.

Theorem 1 Assume that A⇤ is a graph filter, we then have

(I+↵(I�A)

⇤
(I�A))

�1
= g(A), (13)

where the graph filter g(A) satisfies, for 0  n < N ,

g(�
n

) = 1/((1 + ↵� ↵h0)� ↵�
n

(14)

+↵

N�1X

k=2

(h
k�1 � h

k

)�k

n

+ ↵h
N�1�

N

n

).

Proof: From Lemma 1,

(I�A)

⇤
(I�A) = I�A�A

⇤
+A

⇤
A

= I�A�h(A) + h(A)A

= V

⇥
I�⇤�h(⇤) + h(⇤)⇤

⇤
V

�1,

from which

(I+↵(I�A)

⇤
(I�A))

�1

= V

⇥
I+↵(I�⇤�h(⇤) + h(⇤)⇤)

⇤�1
V

�1

= V g(⇤)V�1

= g(A),

where polynomial g(A) satisfies

g(�
n

) =

1

1 + ↵(1� �
n

� h(�
n

) + h(�
n

)�
n

)

= 1/((1 + ↵� ↵h0)� ↵�
n

+↵

N�1X

k=2

(g
k�1 � g

k

)�k

n

+ ↵h
N�1�

N

n

).

Corollary 1 If the graph shift is Hermitian, the graph filter
g(A) in (13) satisfies

g(�
n

) =

1

1 + ↵(1� �
n

)

2
. (15)

Proof: If A is Hermitian, it satisfies A = A

⇤, which
simplifies (12) to h(A) = A. Hence, h0 = 1 and h

`

= 0 for
` � 1, and (14) becomes (15).

Approximate solution. The result of Theorem 1 holds, and
hence, an exact graph filter solution (11) to the denoising
problem (8) exists, only if Lemma 1 holds. In other cases, we
can find an approximate solution for (12) as h(A) = V

b
DV

�1,
where bD is a solution to the optimization problem

b
D = argminD2D ||VDV

�1 �A

⇤||2
F

(16)

over the set D of all diagonal matrices. Here, ||·||
F

denotes
the Frobenius norm.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the presented solutions by
applying them to denoising of sensor measurements and
combining of experts’ opinions. Since a graph shift can be
either symmetric or asymmetric, in both experiments, we build
a directed graph, which cannot be handled by graph-Laplacian
based methods [20].

A. Sensor measurement denoising
Setup. We consider a dataset of daily temperature mea-

surements collected by 150 weather stations across the United
States [3]. Measurements from all stations on a single day
represent a graph signal (1) of length N = 150. The dataset
contains one full year of measurements, that is, 365 graph
signals. The measured temperatures are in the range from �50

to 120 degree Fahrenheit.
The graph representing this dataset is obtained from the

geodesic distances between stations. We use an 8-nearest
neighbor graph with nodes representing stations. Each node
is connected to eight of its geographically closest neighbors.
The corresponding edge weights are A

n,m

= P

n,m

/
P

n

P

n,m

,
where

P

n,m

= exp

 
� d

n,mP
n,m

d
n,m

/N2

!
, 0  n,m < N,

and where d
n,m

is the geodesic distance between the nth and
the mth weather stations.

Experiments. We simulate noisy measurements by adding
random noise to the original data. The noise is generated
using four different distributions: a Gaussian distribution with
zero mean and standard deviations 5 and 10, denoted, respec-
tively, as N (0, 52) and N (0, 102), and a uniform distribution
over intervals [�5, 5] and [�10, 10], denoted, respectively, as
U([�5, 5]) and U([�10, 10]).

Given the graph shift and the noisy graph signals, we
apply the exact graph total variation regularization (GTVR)
solution (10) and the graph filter (GF) solution (11). In the
latter case, the conditions of Lemma 1 are not satisfied; hence,
we use the approximate solution obtained from (16). Note that,
if Lemma 1 held, the results of GTV and GF approaches would
have been exactly the same.

Results. For each of 365 graph signals, we calculate the
root mean square error (RMSE) between the ground truth
(the noiseless signal) and the denoised signal obtained using
GTVR and GF approaches. Table I shows the average RMSE
over all 365 graph signals. for the four considered noise



Noise Method Tuning parameter ↵
0 10�2 10�1 1 10 100

N (0, 52) GTVR 4.98 4.93 4.52 3.35 4.66 6.78
GF 4.98 4.93 4.52 3.35 4.73 7.23

N (0, 102) GTVR 9.96 9.85 9.01 5.67 5.07 6.91
GF 9.96 9.85 9.02 5.68 5.13 7.34

U([�5, 5]) GTVR 2.89 2.86 2.64 2.57 4.56 6.76
GF 2.89 2.86 2.64 2.57 4.64 7.21

U([�10, 10]) GTVR 5.78 5.72 5.24 3.70 4.71 6.80
GF 5.78 5.72 5.24 3.70 4.78 7.25

TABLE I: Average RMSE of denoised temperature measure-
ments over the period of one year.

distributions and different values of the trade-off parameter
↵ in (8). As the results demonstrate, both the exact and
approximate solutions to graph signal denoising perform well,
leading to average errors as small as 2.57 degrees Fahrenheit.
Furthermore, although GF is an approximation of the exact
solution GTVR, it produces very similar denoising errors,
which highlights its practical usefulness in data denoising.

B. Combining multiple opinions

In many real-world classification problems, the way to
obtain the ground truth is through experts’ opinions, but it
is sometimes hard to have access to it. For instance, when
a dataset is too large, obtaining experts’ opinion is too ex-
pensive, or experts’ opinions differ from each other, which
happens, for example, in biomedical image classification [21].
In this case, a popular solution is to use multiple users, experts,
or classifiers to label dataset elements and then combine their
opinions into the final estimate of the ground truth [22]. As
we demonstrate here, opinion combining can be formulated
and solved as graph signal denoising problem.

Setup. We consider the task of recognizing hand-written
digits. In particular, we study two binary classification prob-
lems: distinguishing between images of digits 1 and 8, and
between images of digits 4 and 9. The former is a less difficult
task, since digits 1 and 8 look significantly different, and
the latter is a more difficult task, since digits 4 and 9 have
similar shapes. We randomly pick 500 images of each digit
from the MNIST dataset [23]. For each classification problem,
the corresponding N = 1000 images are represented by a 8-
nearest neighbor graph, where each node represents an image
and is connected to eight most similar images, where similarity
is measured by the `2 norm of difference between two images.
Note that the digits in the MNIST dataset are aligned well and
we do not consider the translation problem. Corresponding
edge weights are defined as A

n,m

= P

n,m

/
P

n

P

n,m

, where

P

n,m

= exp

 
�||s

n

� s

m

||2P
n,m

||s
n

� s

m

||2/N2

!
, 0  n,m < N,

where s

n

is the vectorized representation of the nth image.
Experiments. For each binary classification problem, we

simulate K = 100 experts that label all N images. Each expert
labels one image of a digit as +1 and the other as �1 on
to produce a vector t

k

2 {+1,�1}N . Note that each expert

makes mistakes when labeling digits. We think of t

k

as a
graph signal with noise that represents the kth expert’s errors.

Since some images are harder to classify than others (for
instance, some people write 4 and 9 almost identically, while
others write these digits differently), we split the dataset of N
images into “easy” and “hard” images and assume that there
is a 90% chance that an expert classifies an “easy” image
correctly and only a 30% chance that an expert classifies
a “hard” image correctly. We consider four cases of “easy”
images making up 55%, 65%, 75%, and 85% of the entire
dataset.

A baseline solution is to average (AVG) all experts opinions
into vector tavg = (

P
k

t

k

)/K and then use the signs
sign(tavg) vector as the labels to images. We compare the
baseline solution with the GTVR solution (10), where we
first denoise every signal t

k

and then compute the average
of denoised signals etavg = (

P
k

e
t

k

)/K and use sign(

e
tavg)

as labels to images. For the trade-off parameter ↵ in (8), we
consider values ↵ 2 {1, 10, 100}.

Results. Figure 1 shows the classification accuracy of
our approach and the baseline averaging approach. Viewing
experts’s opinions as noisy graph signals and denoising them
before averaging significantly improves the classification accu-
racy by up to 40% accuracy. Although distinguishing between
digits 4 and 9 is more difficult that between digits 1 and
8, we still achieve accuracy above 90% in almost all cases.
Also, observe that the trade-off parameter ↵ has a significant
influence on the classification accuracy.
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(a) Digits 1 and 8.
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(b) Digits 4 and 9.

Fig. 1: Classification accuracy of handwritten digits by
combining multiple experts’ opinions.

VI. CONCLUSIONS

We presented a new algorithm for denoising of signals
residing on arbitrary graphs. We approached this task through
the regularization of the graph total variation of noisy signals
and formulated the corresponding optimization problem. We
derived an exact, closed-form solution expressed with an
inverse graph filter and an iterative solution expressed with
a standard graph filter. We also identified conditions when
the graph filter solution is exact or approximate. To evaluate
the proposed approach, we applied it to denoising of sensor
measurements and to classification via combination of experts’
opinions and showed that our approach performs well in these
applications.



ACKNOWLEDGEMENTS

The authors gratefully acknowledge support from the NSF
through awards 1130616 and 1017278, as well as CMU
Carnegie Institute of Technology Infrastructure Award.

REFERENCES

[1] M. Jackson, Social and Economic Networks. Princeton University Press,
2008.

[2] M. Newman, Networks: An Introduction. Oxford University Press,
2010.

[3] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on
graphs,” IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1644–1656,
2013.

[4] ——, “Discrete signal processing on graphs: Frequency analysis,” IEEE
Trans. Signal Process., vol. 62, pp. 3042 – 3054, 2014.

[5] D. Thanou, D. I. Shuman, and P. Frossard, “Parametric dictionary learn-
ing for graph signals,” in Proc. IEEE Glob. Conf. Signal Information
Process., Austin, TX, Dec. 2013, pp. 487–490.

[6] S. K. Narang, A. Gadde, and A. Ortega, “Signal processing techniques
for interpolation in graph structured data,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., 2013, pp. 5445–5449.

[7] P. Liu, X. Wang, and Y. Gu, “Coarsening graph signal with spectral
invariance,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
2014, pp. 1075–1079.

[8] S. Chen, F. Cerda, P. Rizzo, J. Bielak, J. H. Garrett, and J. Kovačević,
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