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ABSTRACT

We propose a sampling theory for finite-dimensional vectors
with a generalized bandwidth restriction, which follows the
same paradigm of the classical sampling theory. We use this
general result to derive a sampling theorem for bandlimited
graph signals in the framework of discrete signal processing on
graphs. By imposing a specific structure on the graph, graph
signals reduce to finite discrete-time or discrete-space signals,
effectively ensuring that the proposed sampling theory works
for such signals. The proposed sampling theory is applicable
to both directed and undirected graphs, the assumption of per-
fect recovery is easy both to check and to satisfy, and, under
that assumption, perfect recovery is guaranteed without any
probability constraints or any approximation.

Index Terms— Sampling theory, discrete signal process-
ing on graphs

1. INTRODUCTION

The theory of time signal processing is the foundation of
our discipline [1]. It consists of four closely related variants
depending on the nature of time domain: infinite and finite
discrete-time signals (sequences indexed by integers) and in-
finite and finite continuous-time signals (functions of a real
variable). Each case has its own notion of filtering, spectrum,
and Fourier transform. The connection between the discrete
and continuous domains is through sampling, which produces
a sequence from a function, and interpolation, which produces
a function from a sequence. The ability to sample a function,
manipulate the resulting sequence with a discrete-time system,
and then interpolate to produce a function is the foundation of
digital signal processing. Conversely, the ability to interpo-
late a sequence to create a function, manipulate the resulting
function with a continuous-time system, and then sample to
produce a sequence is the foundation of digital communica-
tions. As the bridge connecting sequences and functions, the
classical sampling theory shows that a bandlimited function
can be perfectly recovered from its sampled sequence if the
sampling rate is high enough [2].
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More generally, we can treat any decrease in dimension via
a linear operator as sampling, and, conversely, any increase in
dimension via a linear operator as interpolation [1]; formulat-
ing a sampling theory in this context means moving between
the higher- and lower-dimensional spaces while ensuring per-
fect recovery. In this paper, we first consider the sampling and
interpolation of finite-dimensional vectors. Following Chap-
ter 5 from [1] and the same paradigm as the classical sam-
pling theory, we consider sampling and interpolation of finite-
dimesnional vectors, and propose a sampling theory for ban-
dlimited finite-dimensional vectors. We next apply this result
to discrete signal processing on graphs.

Discrete signal processing on graphs is a theoretical frame-
work that generalizes classical discrete signal processing from
regular domains, such as lines and rectangular lattices, to irreg-
ular structures that are commonly described by graphs [3, 4];
it provides the standard signal processing concepts to graphs,
including graph signal, graph filtering, and graph Fourier
transform domain. When finite-dimensional vectors represent
graph signals, we can use the proposed sampling theory to
perfectly recover those graph signals that are bandlimited, that
is, they have limited support in the graph Fourier transform
domain. By imposing a specific structure on the graph, graph
signals reduce to finite discrete-time or discrete-space signals,
effectively ensuring that the proposed sampling theory works
for such signals.

Previous work on sampling for graph signals applies to
undirected graphs only [5, 6, 7]. The main contributions of
this paper are thus: (1) we formulate a sampling theory for
bandlimited finite-dimensional vectors that follows the same
paradigm of the classical sampling theory; (2) the proposed
sampling theory is applicable to signals supported on either
directed or undirected graphs; (3) the assumption in the pro-
posed sampling theory is easy to check and easy to satisfy;
(4) perfect recovery is guaranteed without any probability con-
straints or any approximation as in compressed sensing [8].

2. DISCRETE SIGNAL PROCESSING ON GRAPHS

In this section, we briefly review relevant concepts of discrete
signal processing on graphs; a thorough introduction can be
found in [3, 4]. It is a theoretical framework that general-
izes classical discrete signal processing from regular domains,



such as lines and rectangular lattices, to irregular structures
that are commonly described by graphs. Among its appli-
cations are signal compression, prediction and classification,
semi-supervised learning and data recovery [9, 10, 11].

Graph Shift. Discrete signal processing on graphs stud-
ies signals with complex, irregular structure represented by
a graph G = (V,A), where V = {v0, . . . , vN−1} is the set
of nodes and A ∈ CN×N is a graph shift (weighted adja-
cency matrix). It represents the connections of the graph G,
which can be either directed or undirected (note that the stan-
dard graph Laplacian matrix can only represent undirected
graphs [5, 12, 6, 7]). The nth signal coefficient corresponds to
node vn, and the edge weight An,m between nodes vn and vm
is a quantitative expression of the underlying relation between
the nth and the mth signal coefficients, such as a similarity, a
dependency, or a communication pattern.

Graph Signal. Given the graph representation G =
(V,A), a graph signal is defined as the map on the graph
nodes that assigns the signal coefficient xn ∈ C to the node
vn. Once the node order is fixed, the graph signal can be
written as a vector

x =
[
x0, x1, . . . , xN−1

]T ∈ CN . (1)

Graph Fourier Transform. In general, a Fourier trans-
form corresponds to the expansion of a signal using basis func-
tions that are invariant to filtering; this basis is the eigenbasis
of the graph shift A (or, if the complete eigenbasis does not
exist, the Jordan eigenbasis of A).

For simplicity, assume that A has a complete eigenbasis
and the spectral decomposition of A is [1, 13]

A = V Λ V−1, (2)

where the eigenvectors of A form the columns of matrix V,
and Λ ∈ CN×N is the diagonal matrix of corresponding eigen-
values λ0, . . . , λN−1 of A and λ0 > λ1 > · · · > λN−1.
These eigenvalues represent frequencies on the graph, with λ0
the lowest and λN−1 the highest frequency, specified by the
descending order of the eigenvalues.

Definition 1. The graph Fourier transform of x ∈ CN and
the inverse graph Fourier transform are, respectively,

x̂ = V−1 x, x = V x̂. (3)

The vector x̂ in (3) represents the signal’s expansion in the
eigenvector basis and describes the frequency content of the
graph signal x. The inverse graph Fourier transform recon-
structs the graph signal from its frequency content by combin-
ing graph frequency components weighted by the coefficients
of the signal’s graph Fourier transform.

3. SAMPLING THEORY FOR
FINITE-DIMENSIONAL VECTORS

In [1], the authors present sampling and interpolation as a
means of moving between higher/lower-dimensional spaces;

Fig. 1: Sampling followed by interpolation.

they do so for infinite as well as periodic functions, as well
as infinite sequences and finite-dimensional vectors. For this
last class, however, they do not consider a counterpart of the
classical sampling theory; we do this here.

Sampling & Interpolation. Suppose that we want to sam-
ple a finite-dimensional vector x ∈ CN to obtain a shorter
finite-dimensional vector y ∈ CM describing x (M < N );
we then interpolate y to get x′ ∈ CN , which recovers x either
exactly or approximately. The sampling operator Ψ is a linear
mapping from CN to CM and the interpolation operator Φ is
a linear mapping from CM to CN (see Figure 1),

sampling : y = Ψx ∈ CM ,

interpolation : x′ = Φy = ΦΨx ∈ CN .

Perfect recovery happens for all x when ΦΨ is the identity ma-
trix; it is not possible in general because rank(ΦΨ) ≤ M <
N .

Bandlimited Finite-Dimensional Vectors. We consider
bandlimited finite-dimensional vectors here, where perfect re-
covery is possible.

Definition 2. Let F ∈ CN×N be and invertible linear opera-
tor. The F-transform of x ∈ CN and the inverse F-transform
are, respectively,

x̂ = Fx, x = F−1 x̂.

Note that in the definition, we did not specify any structure
on F ; one can treat it as a generalized version of an N -point
discrete Fourier transform.

Definition 3. A finite-dimensional vector x is called ban-
dlimited under the F-transform when there exists K ∈
{0, 1, · · · , N − 1} such that its F-transform x̂ satisfies

x̂i = 0 for all i ≥ K.

The smallest such K is called the bandwidth of x under the
F-transform. A vector that is not bandlimited is called a full-
band vector.

Definition 4. The set of vectors in CN with bandwidth of at
most K under the F-transform is a closed subspace denoted
BLK(F).

The definition describes a bandlimited subspace under the F-
transform. Since we do not specify the structure of F, we can
permute its rows to choose any band. For example, if we spec-
ify F to be the discrete Fourier transform matrix, the bandlim-
ited subspace contains the lowpass finite discrete-time signals.



Sampling Theory. Let x ∈ BLK(F); sample M coeffi-
cients in x to produce xM, whereM denotes the sequence of
measured indices, M ⊂ {0, 1, · · · , N − 1} and |M| = M .
The sampling operator is

Ψi,j =

{
1, j =Mi;
0, otherwise. (4)

We aim to recover x from xM perfectly.

Theorem 1. Let Ψ ∈ CM×N be the sampling operator (4).
The interpolation operator Φ ∈ CN×M that satisfies: (1) Φ
spans the space BLK(F); (2) ΦΨ is a projection operator,
achieves perfect recovery,

x = ΦΨx, for all x ∈ BLK(F).

Because of space constraints, we only outline the proof
(it follows the proof of Theorem 5.2 in [1]). Since ΦΨ is a
projection operator, ΦΨx is an approximation of x in the space
of BLK(F). We achieve perfect recovery when x is in the
space of BLK(F).

Theorem 2. Let F−1(K) be the first K columns of F−1 and let
the sampling operator Ψ satisfy

rank(Ψ F−1(K)) = K. (5)

The interpolation operator Φ = F−1(K) U, with U Ψ F−1(K) aK×
K identity matrix, achieves perfect recovery,

x = ΦΨx, for all x ∈ BLK(F).

Proof. We only need to show that Φ satisfies the two proper-
ties from Theorem 1.

Since rank(Ψ F−1(K)) = K and rank(U Ψ F−1(K)) = K, the
rank of U is K, that is U spans CK . We then have that the
interpolation operator Φ = F−1(K) U spans BLK(F), satisfying
the first property.

To prove that P = ΦΨ is a projection operator, we must
prove it is idempotent,

P2 = ΦΨΦΨ = F−1(K) U Ψ F−1(K) U Ψ
(a)
= F−1(K) U Ψ = P,

where (a) follows from (5), satisfying the second property.

From Theorem 2, we see that an arbitrary sampling oper-
ator may not leads to perfect recovery even for bandlimited
vectors. The sampling operator should select at least one set
of K linearly-independent rows in F−1(K). To find linearly-
independent rows in a matrix, fast algorithms exist, such as
QR decomposition; see [14, 1].

The sample size M should be no smaller than the band-
width K. When they are equal, M = K, because of (5), U is
the inverse of Ψ F−1(K); when M > K, U is a pseudo-inverse
of Ψ F−1(K).

In some cases, the length of a vector is much larger than
its bandwidth, N � K; the vector is then K-sparse under F-
transform. If rank(F−1(K)) = K, Theorem 2 shows that the vec-
tor can be recovered using only K measurements by choosing
the proper sampling operator.

4. SAMPLING THEORY FOR GRAPH SIGNALS

In Section 3, we showed a general sampling theory for finite-
dimensional vectors and that perfect recovery is possible
for finite-dimensional vectors bandlimited under some F-
transform. In this section, we specify finite-dimensional vec-
tors to be graph signals, the F-transform to be the graph
Fourier transform, and propose a sampling theory for ban-
dlimited graph signals.

We thus aim to sample a graph signal x to obtain a mea-
sured part xM; after that, we interpolate xM to recover x. We
choose the sampling operator be Ψ as in (4); then

sampling : xM = Ψx ∈ CM ,

interpolation : x = ΦxM = ΦΨx ∈ CN ;

see Figure 2. From Section 3, we know that the perfect re-
covery is not possible in general; we thus focus on bandlim-
ited graph signals. The following two definitions are graph
counterparts of Definitions 3 and 4 for finite-dimensional vec-
tors. Because we have access to a graph shift, graph Fourier
transform is naturally given, which implies that the notion of
bandlimitedness is an intuitive one (with respect to the graph
Fourier transform as opposed to a general F-transform).

Definition 5. A graph signal is called bandlimited when there
existsK ∈ {0, 1, · · · , N−1} such that its graph Fourier trans-
form x̂ satisfies

x̂i = 0 for all i ≥ K.

The smallest such K is called the bandwidth of x. A graph
signal that is not bandlimited is called a full-band graph signal.

Definition 6. The set of graph signals in CN with bandwidth
of at most K is a closed subspace denoted BLK(V−1), with
V−1 as in (2).

We apply now Theorem 2 to obtain the following result.

Theorem 3. Let V(K) be the first K columns of V and let the
sampling operator Ψ satisfy

rank(Ψ V(K)) = K.

The interpolation operator Φ = V(K) U, with U Ψ V(K) aK×
K identity matrix, achieves perfect recovery,

x = ΦΨx, for any x ∈ BLK(V−1).

To prove the theorem, simply substitute the graph Fourier
transform for the F-transform in Theorem 2.

Since V is invertible, the column vectors in V are linearly
independent and rank(V(K)) = K always holds. In other
words, at least one set ofK linearly-independent rows in V(K)

always exists. Since the graph shift A is given, one can find
such set without any graph signals. Once such set is ready,
Theorem 3 guarantees perfect recovery of bandlimited graph



Fig. 2: Sampling followed by interpolation. The arrows indicate different edge weights for two nodes.

signals without any probability constraints or any approxima-
tion as in compressed sensing [8].

If we have multiple choices of K linearly-independent
rows, which one is best? When M = K, U is a basis that
spans CK ; we thus check the condition for the Riesz basis. For
each feasible Ψ, we compute the inverse of Ψ V(K) to obtain
U; the best choice comes from the tightest stability constants
of U [1]. When M > K, U is a frame that spans CK ; we
thus check the condition for the frame. For each feasible Ψ,
we compute the pseudo-inverse of Ψ V(K) to obtain U; the
best choice comes from the tightest frame bounds of U [1].
The reason is that we want U to span the space well, thus, the
recovery is more robust and stable.

5. TOY EXAMPLE

We consider a four-node directed graph with graph shift

A =


0 0.5 0.25 0.25
0.667 0 0.333 0
0.333 0 0.333 0.333
0.5 0 0.5 0

 .
The corresponding inverse graph Fourier transform matrix is

V =


0.5 0.1827 0.4523 0.4997
0.5 0.5434 −0.1508 −0.5976
0.5 −0.2717 −0.7538 0.2988
0.5 −0.7730 0.4523 −0.5513

 .
We generate a bandlimited graph signal x ∈ BL2(V−1) as

x =
[
0.5914 0.7717 0.3642 0.1135

]T
.

We can check the first two columns of V to see that all sets
of two rows are independent. According to the sampling the-
orem, we can recover x perfectly by sampling any two of its
coefficients; for example, sample the first two. Then, M =

{1, 2}, xM =
[
0.5914 0.7717

]T
, and the sampling operator

Ψ =

[
1 0 0 0
0 1 0 0

]
.

We recover x by using the following interpolation operator
(see Figure 2)

Φ = V(2)(Ψ V(2))
−1 =


1 0
0 1
2.2601 −1.2601
3.6502 −2.6502

 .
6. SAMPLING THEORY FOR FINITE

DISCRETE-TIME & DISCRETE-SPACE SIGNALS

We now show that by imposing structure on the graph, graph
signals reduce to finite discrete-time or discrete-space signals.

We get finite discrete-time signals by specifying the graph
shift to be the cyclic permutation matrix, whose eigenvectors
then form theN -point discrete Fourier transform matrix [1, 4].
We see that Definitions 5, 6 and Theorem 3 are immediately
applicable to finite discrete-time signals. With this definition
of the discrete Fourier transform matrix, the highest frequency
is in the middle of the spectrum (although this is just a mat-
ter of ordering). From Definitions 3 and 5, we can actually
permute the rows in the discrete Fourier transform matrix to
choose any frequency band.

Similarly, we get discrete-space signals by defining the
graph shift appropriately; the corresponding graph Fourier
transform is exactly the N -point discrete cosine transform.

7. CONCLUSIONS

In this paper, we proposed a sampling theory for bandlimited
finite-dimensional vectors, which follows the same paradigm
of classical sampling theory. We then applied this general re-
sult to discrete signal processing on graphs and showed the
sampling theory for bandlimited graph signals. By imposing
a specific structure on the graph, graph signals reduce to fi-
nite discrete-time or discrete-space signals, effectively ensur-
ing that the proposed sampling theory works for such signals.
The proposed sampling theory is applicable to both directed
and undirected graphs, the assumption of perfect recovery is
easy both to check and to satisfy, and, under that assump-
tion, perfect recovery is guaranteed without any probability
constraints or any approximation.
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[1] M. Vetterli, J. Kovačević, and V. K. Goyal, Foundations
of Signal Processing, Cambridge University Press, 2014,
http://www.fourierandwavelets.org/.

[2] M. Unser, “Sampling – 50 years after Shannon,” Proc.
IEEE, vol. 88, no. 4, pp. 569–587, Apr. 2000.

[3] A. Sandryhaila and J. M. F. Moura, “Discrete signal pro-
cessing on graphs,” IEEE Trans. Signal Process., vol. 61,
no. 7, pp. 1644–1656, 2013.

[4] A. Sandryhaila and J. M. F. Moura, “Discrete signal pro-
cessing on graphs: Frequency analysis,” IEEE Trans.
Signal Process., vol. 62, no. 12, pp. 3042–3054, 2014.

[5] I. Z. Pesenson, “Sampling in paley-wiener spaces on
combinatorial graphs,” Trans. Amer. Math. Soc., vol.
360, no. 10, pp. 5603–5627, 2008.

[6] A. Anis, A. Gadde, and A. Ortega, “Towards a sam-
pling theorem for signals on arbitrary graphs,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process., 2014,
pp. 3864 – 3868.

[7] X. Wang, P. Liu, and Y. Gu, “Local-set-based graph sig-
nal reconstruction,” IEEE Trans. Signal Process., 2014,
Submitted.

[8] E. J. Candès, “Compressive sampling,” in Int. Congr.
Mathematicians, Madrid, Spain, 2006.

[9] S. Chen, F. Cerda, P. Rizzo, J. Bielak, J. H. Garrett, and
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