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ABSTRACT

We propose an efficient and accurate way of predicting the
connectivity of neural networks in the brain represented by
simulated calcium fluorescence data. Classical methods to
neural network reconstruction compute a connectivity matrix
whose entries are pairwise likelihoods of directed excitatory
connections based on time-series signals of each pair of neu-
rons. Our method uses only a fraction of this computation to
achieve equal or better performance. The proposed method
is based on matrix completion and a local thresholding tech-
nique. By computing a subset of the total entries in the con-
nectivity matrix, we use matrix completion to determine the
rest of the connection likelihoods, and apply a local threshold
to identify which directed connections exist in the underlying
network. We validate the proposed method on a simulated
calcium fluorescence dataset. The proposed method outper-
forms the classical one with 20% of the computation.

Index Terms— connectivity analysis, nerves, machine
learning

1. INTRODUCTION

Discovering the excitatory synaptic connections between in-
dividual neurons gives insight into computation at the lowest
level of brain function. Understanding the topology of the hu-
man brain at the resolution of a single neuron is important for
an understanding of structure and function of the brain [1].

To learn more about the brain, the connectivity of neural
cultures ! is studied. Determining this connectivity by axonal
tracing, which consists of tracing the axon of each neuron to
determine each point of synaptic connection, is challenging
because of the huge number of neurons. For example, the
human neocortex has roughly 20 billion neurons with 7,000
synaptic connections per neuron [2]. To study the human
brain, even in smaller segments, an alternative to the labor
intensive process of axonal tracing is necessary.

A classical approach to predicting the connectivity of neu-
ral networks is to collect and analyze their time-series signals
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Neural cultures are groups of neurons grown in a controlled environment
which form networks that can exhibit spontaneous behavior.

of the electro-chemical activity. Calcium fluorescence imag-
ing provides a means of measuring this activity across large
networks on the order of 1,000 neurons [2]. When the exci-
tatory inputs to a particular neuron exceed a threshold volt-
age, the neuron fires and generates a time-series signal. Be-
cause connected neurons generate correlated time-series sig-
nals, the likelihood of connection between each pair of neu-
rons is studied. Information theoretic metrics are common
ways to measure the connection probabilities. A state-of-
the-art measure for measuring excitatory connectivity in cal-
cium imaging neural network data is generalized transfer en-
tropy [3]. Other standard information theoretic measures such
as information gain can be used to measure the flow of infor-
mation in the neural network. After constructing a connec-
tivity matrix whose entries are the pairwise connection scores
calculated by a given information theoretic measure, the con-
nectivity matrix is trimmed by a global threshold.

A clear problem with this approach is the scale that leads
to impractical computation times. To solve it, we propose a
fast method to predict the connectivity of neural networks.
We add two ingredients to the classical approach: matrix
completion and local thresholding. Instead of calculating
all the entries in the connectivity matrix, we only calculate
a certain percentage using information theoretic measures.
We then use matrix completion techniques to fill the rest of
the connectivity matrix. Moreover, instead of using a global
threshold, we set a local threshold for each neuron. Our ex-
periments show that this simple method provides faster and
better results than those of the classical approaches.

2. BACKGROUND

In this section, we cover the background material for the rest
of the paper, including basics of neural networks and previous
methods to predict the connectivity of neural networks.
Neural networks. A neural network is a physiological
structure in the brain consisting of a group of neurons and
their pairwise attachments. These synapses allow the transfer
of electro-chemical activity from one neuron to the next [4].
The connections in a neural network are causally directed in
the sense that the activity of one neuron will affect the future
activity of another neuron it is connected to. The mapping of
neural circuitry reveals the building blocks of neural compu-



tation, which provides an understanding for how people learn
and reason.

The activity of a neuron is defined by the changes in its
membrane potential. A neuron will fire when the level of ex-
citatory input from its neighbors exceeds a particular thresh-
old voltage. The firing of the neuron results in the propaga-
tion of an action potential down the axon to synapses, where
this signal is passed to other neighboring neurons. The mem-
brane potential of each neuron is measured throughout the
course of some network activity, resulting in time-series sig-
nals for each neuron in the neural network. These time-series
signals are analyzed to reconstruct the neural network’s exci-
tatory connectivity.

Previous methods. A classical framework to predict the
connectivity of neural networks includes two components,
connectivity matrix construction and global thresholding, as
in Figure 1. In the block of connectivity matrix construction,
the scores for the likelihood of each pairwise connection are
calculated and stored in a connectivity matrix. Then, a global
threshold corresponding to the expected number of connec-
tions in the neural network is set to decide whether each
connection exists. In other words, if the pairwise connectivity
score is higher than the global threshold, the corresponding
nodes are connected, and vice versa.
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Fig. 1: Classical framework.

A connectivity matrix is a matrix whose entries are the
pairwise connectivity scores. Consider a dataset that has N
neurons, and form a connectivity matrix X € RN*N whose
entry X; ; = d(s;,s;) denotes the connectivity score from
the ith to the jth neuron, where s; and s; are the time-series
signals corresponding to the ¢th and jth neurons, respectively,
and d is a predefined function to measure the connectivity. For
greater values of X ;, the likelihood of connectivity is higher.

Two approaches that predict excitatory connections well
in the simulated calcium fluorescence data are generalized
transfer entropy and information gain. Each of these mea-
sures calculates scores indicating the likelihood of a directed
excitatory connection between each pair of neurons. Infor-
mation gain calculates the decrease in uncertainty (or the in-
crease in information) of a neuron’s activity given the activ-
ity of another neuron. If the information gain from s; to s;,
denoted IG(s;, s;), is relatively high with respect to other di-
rected connections in a neural network, it is reasonable that
an excitatory connection between the neurons accounts for

the information flow between them.

Transfer entropy [5] measures how useful the causal his-
tory of one time-series signal is in predicting the next state of
another time-series signal. Rather than standard transfer en-
tropy, we use a modified form to improve results on calcium
fluorescence neural network data introduced by [3], called
generalized transfer entropy. The generalized transfer entropy
from s; to s;, denoted GTE(s;, s;), is calculated by ignoring
network samples that occur during periods of high global flu-
orescence activity. Global fluorescence levels above a critical
fluorescence threshold indicate burst phases in the neural cul-
ture’s activity, which are not representative of the underlying
network. For this reason, samples determined to be in these
burst phases are not used in the measure. Also, transfer en-
tropy is generalized to calcium fluorescence neural network
data by including same time-bin interactions. This means that
predictive information about a neuron’s fluorescence activity
level can be gathered from the same network sample. This is
necessary because neurons interact on a 1ms time basis, while
the sampling period of imaging modalities used for calcium
fluorescence imaging is roughly ten times as long. Note that
for the previous two approaches, the fluorescence data is dis-
cretized into bins to calculate the probability distributions.

3. PROPOSED METHOD

The main disadvantage of the previous methods is the com-
putational cost. To solve this, we propose a fast solution by
adding two novel ingredients to the classical framework: ma-
trix completion and local thresholding.

Framework. We propose a framework to predict the
connectivity of neural networks that includes three compo-
nents: connectivity matrix semi-construction, connectivity
matrix completion, and local thresholding, as in Figure 2. For
connectivity matrix semi-construction, we randomly sample
a few indices in the connectivity matrix, and compute the
corresponding connectivity scores by using the methods dis-
cussed in Section 2. For connectivity matrix completion, we
fill in the rest of the connectivity matrix by using the matrix
completion techniques. For local thresholding, we set a local
threshold for each node to decide whether a connection exists.
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Fig. 2: Proposed framework.

Connectivity Matrix Semi-Construction. Similarly to
connectivity matrix construction in the classical framework,
connectivity matrix semi-construction calculates the pairwise
connectivity scores by using one of the information theoretic
approaches. The difference is that connectivity matrix semi-
construction computes only a fraction of the connectivity ma-
trix. We randomly calculate some entries in a connectivity



matrix X, denoted as X rq, by using one of the information
theoretic measures discussed in Section 2.

Connectivity Matrix Completion. Following connectiv-
ity matrix semi-construction, we fill in the rest of the con-
nectivity matrix using matrix completion techniques. We use
the fact that neurons often connect to other neurons in sim-
ilar ways. For example, two different neurons may connect
to the same neuron. This similarity of connectivity causes a
low-rank connectivity matrix. We can then use a low-rank
matrix to approximate the entire connectivity matrix, how-
ever, minimizing the rank with constraints is known as a non-
deterministic polynomial-time hard problem [6]. To solve
this, a convex relaxation is achieved by using the nuclear
norm [6]. The unmeasured part is then estimated as follows:

X = argmzin ||ZM—XM||§+/\”Z||*7 ey

where X is the calculated entries in the connectivity matrix,
7\ 1s the corresponding entries of the connectivity matrix ap-
proximation Z, A is the tuning parameter to control the rank,
and ||-||« denotes the nuclear norm, which is the sum of all
the singular values. Since (1) is a convex optimization prob-
lem, it can be solved efficiently by any convex optimization
solver. Note that solving (1) is much cheaper than calculating
the pairwise connectivity scores by using the information the-
oretic measures. For example, if we calculate only half of the
connectivity matrix, we reduce the computation by half.

Local Thresholding. Rather than directly applying a
global threshold to the completed connectivity matrix X to
determine the underlying connections of the neural network,
we use a local thresholding method that involves normalizing
each row of the connectivity matrix before applying the global
threshold. The use of the local threshold is motivated by the
fact that each row of the connectivity matrix corresponds to a
neuron’s outgoing neighbor connectivity scores.

A neuron in a network reconstructed using global thresh-
olding, may incorrectly have fewer connections than it has
in the ground truth network, because the neuron’s connectiv-
ity scores (the entries in the row corresponding to that neu-
ron) fall below the global threshold. Remember that before
calculating information theoretic measures, the discretization
of the fluorescence data is required. Due to the unfavorable
boundary conditions in the discretization, some neurons can
have smaller connectivity scores than they should have, lead-
ing to fewer connections. Similarly, some neurons can have
larger connectivity scores than they should have, leading to
more connections. In the network, however, neurons often
have a similar number of connecting neurons [3]. It makes
sense to apply a local threshold for each individual neuron.
This is achieved by normalizing each row of the completed
connectivity matrix by the [? norm,

X = [Xliz] .

Zj Xi-,j i,j=0,1,---,N
We found that the /' norm had similar performance to the
12 norm. Once the completed connectivity matrix has been

normalized, a local threshold is selected according to the ex-
pected number of connections in the neural network.

4. EXPERIMENTAL RESULTS

In this section, we validate the proposed framework on a sim-
ulated calcium fluorescence dataset provided by [3]. This
dataset has been the subject of the Kaggle connectomics chal-
lenge in which participants determine the connectivity of a
1,000 neuron network by using simulated calcium fluores-
cence data. Participants are encouraged to outperform the
standard measures in neural network reconstruction such as
generalized transfer entropy and information gain.

Dataset. A simulated dataset is necessary to evaluate re-
construction approaches due to the unavailability of ground
truth of connectivity for physical neural networks on the scale
of 1,000 neurons. The simulated calcium fluorescence dataset
we use to evaluate our reconstruction method is based on
dissociated cortical neural cultures with blocked inhibitory
GABAergic transmission. This means that all neural activ-
ity is based on the excitatory connectivity [3]. A complete
description of how the simulated calcium fluorescence data
was generated can be found in [3].

A variety of 1,000 neuron datasets with varying levels of
clustering and noise are available through the Kaggle connec-
tomics challenge. We compare our results on the four datasets
where clustering and noise level are typical of a 1,000 disso-
ciated cortical neuron culture. We refer to these datasets as
normal-1, normal-2, normal-3, and normal-4. Each dataset is
1 hour of simulated calcium fluorescence data with a 20ms
sampling period. Since each time-series contains 179, 500
samples, joint probability distribution calculation for each
pair of time-series is computationally expensive. This moti-
vates the use of matrix completion to reduce computation.

Experimental Setup. For each 1,000-neuron dataset,
we perform semi-construction at 10%, 20%, 50%, 90%, and
100% of the connectivity matrix entries for both measures,
generalized transfer entropy (GTE) and information gain
(IG). For IG, an impurity measure must be specified to calcu-
late uncertainty in the time-series signals. We choose Shan-
non entropy as a standard measure of uncertainty. For matrix
completion, we choose the tuning parameter A to be 0.001. In
each experiment, we perform matrix semi-construction with
10 different randomly selected sets of indices. We report the
average performance in AUC (area under the ROC curve),
for each experiment. These experiments were run on a laptop
with 2.50GHz Intel Core i5 processor and 8 GB of RAM.

Results. Figures 3 and 4 compare the performance of our
proposed method with GTE and IG respectively at different
levels of semi-construction on each dataset. We measure our
performance in area under the ROC curve (AUC). The blue
(left) and red (right) bars show performance with local thresh-
olding and global thresholding respectively. We see that lo-
cal thresholding increases reconstruction performance in all
cases. Particularly, the performance of the classical approach



Method Classical approach  Percent semi-construction

10% 20% 50% 90%
GTE (hrs) 18.43 187 3.71  9.23 16.60
IG (hrs) 6.56 0.68 1.33 3.30 6.01

Table 1: Computational time of the proposed method com-
pared with the classical approach (100% construction).
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Fig. 3: Performance of the proposed method with GTE with
different amounts of matrix semi-construction on normal-1
through normal-4. The horizontal line corresponds to the per-
formance of the classical approach with GTE.

is improved by local thresholding alone.

Our proposed framework with GTE eclipses the perfor-
mance of the classical approach on all datasets with less than
20% matrix semi-construction. Using our proposed frame-
work with IG, we eclipse the performance of the classical
method on all datasets with less than 50% semi-construction.
Table 1 shows the average computational time of the experi-
ments. Since construction of the full connectivity matrix takes
several hours for both IG and GTE, and matrix completion
takes less than a minute for any level of semi-construction,
there is an almost linear correlation between saved computa-
tional time and the level of matrix completion.

From the results, we see that matrix completion and local
thresholding implemented with IG, was able to achieve better
performance than the classical approach with half of the com-
putation. Our proposed method implemented with a measure
tailored for calcium fluorescence neural network data, GTE,
beat the classical method with only 20% of the computation.

Our proposed framework is useful for extracting a high
quality network representation from large calcium fluores-
cence neural network data. The larger the dataset, the more
appealing it is to use matrix completion to save computational
time, because the required number of sampled entries for ma-
trix completion is O(N'?log V), less than O(N?) [6].

5. CONCLUSIONS

We proposed an efficient algorithm to predict connectivity
in neural networks represented by simulated calcium fluores-
cence data. Instead of computing a full connectivity matrix,

Fig. 4: Performance of the proposed method with IG with
different amounts of matrix semi-construction on normal-1
through normal-4. The horizontal line corresponds to the per-
formance of the classical approach with IG.

the proposed method uses only a fraction of this computa-
tion and achieves better performance. By computing a sub-
set of the total entries in the connectivity matrix, we use ma-
trix completion to determine the rest of the connection likeli-
hoods. A local threshold is applied to identify the existence of
connections. We validate the proposed method on a simulated
calcium fluorescence dataset. The proposed method is better
than the classical method with 50% computational time using
IG and 20% computational time using GTE.
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