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ABSTRACT

We use graph signal sampling and recovery techniques to plan
routes for autonomous aerial vehicles. We propose a novel
method that plans an energy-efficient flight trajectory by con-
sidering the influence of wind. We model the weather stations
as nodes on a graph and model wind velocity at each station
as a graph signal. We observe that the wind velocities at two
close stations are similar, that is, the graph signal of wind ve-
locities is smooth. By taking advantages of the smoothness,
we only query a small fraction of it and recover the rest by
using a novel graph signal recovery algorithm, which solves
an optimization problem. To validate the effectiveness of the
proposed method, we first demonstrate the necessity to take
wind into account when planning route for autonomous aerial
vehicles, and then show that the proposed method produces a
reliable and energy-efficient route.

Index Terms— Graph signal processing, sampling and re-
covery, route planning, autonomous vehicle

1. INTRODUCTION

As a generalization of classical discrete signal processing, sig-
nal processing on graphs is an effective tool to analyze arbi-
trary signals residing on irregular, complex structures. The
framework of signal processing on graphs models the under-
lying structures as graphs and the supported signals as graph
signals, and the basic concepts such as filters, convolution, z-
transform, Fourier transform, frequency components are also
generalized to have their corresponding counterparts in this
framework [1, 2].

One of the most fundamental problems in signal process-
ing is sampling and recovery. Some recent works study graph
signal recovery based on either smoothness [3] or a bandlim-
ited assumptions [4, 5]. For example, in [3], the authors for-
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mulate the recovery task as an optimization problem; in [6],
the authors show that perfect recovery is possible for bandlim-
ited graph signals; in [7], the authors relax the constraint of
bandlimited graph signal, propose approximately bandlimited
graph signal, and evaluate the performance of recovery strate-
gies based on random and experimentally designed sampling
on two types of graph. In this paper, we study an application
of sampling and recovery of graph signals.

With the rise of autonomous vehicles, a lot of approaches
have been proposed for the task of route planning. Previ-
ous applications for route planning involve planning optimal
route for electric vehicles with limited battery storage capac-
ity [8], real-time route planning for autonomous aerial vehi-
cles to handle unforeseeable changes of environments [9], and
planning path to avoid obstacles for underwater vehicles [10].
A widely used route planning algorithm is Dijkstra’s algo-
rithm, which uses the distance between each pair of accessible
nodes to plan a shortest path that minimize the travel cost. Di-
jkstra’s algorithm requires the accessibility of data recorded at
all nodes, which makes it vulnerable to the inaccessibility or
loss of data. This is common in many problems when dealing
with data of huge volume and complex structure.

In this paper, we propose a framework to plan energy-
efficient route for autonomous aerial vehicles, such as the
Amazon octocopter drone. As far as we know, this is the first
work to plan routes for aerial vehicles based on the wind in-
formation. Instead of using the data recorded at all positions,
we only query a small fraction of data at certain positions.
The data is then interpolated using graph signal recovery
techniques. In the the proposed framework, we also propose
a series of procedure to compute the energy consumption
between each pair of accessible nodes as the input of Dijk-
stra’s algorithm. We show the necessity of taking wind into
consideration for route planning, validate the framework on
real wind dataset and show that it produces a reliable and
energy-efficient route with high effectiveness.

2. BACKGROUND

In this section we briefly review the basic concept of signal
processing on graphs. For more details, see [2, 1].



Signal processing on graphs studies signals with complex,
irregular structure represented by a graph G = (V,A), where
V = {v0, . . . , vN−1} is the set of nodes and A ∈ RN×N is
a weighted adjacency matrix. It represents the connections of
the graph G. In this paper, we restrict ourselves to undirected
graphs and consequently symmetric graph shifts.

Graph Signal. A graph signal is defined as the map on
the graph nodes that assigns the signal coefficient xn ∈ R to
the node vn. Once the node order is fixed, the graph signal can
be written as a vector

x =
[
x0, x1, . . . , xN−1

]T ∈ RN .

Graph Fourier Transform. In general, a Fourier trans-
form corresponds to the expansion of a signal using basis func-
tions that are invariant to filtering; the basis here is the eigen-
basis of a graph representation matrix B. A graph represen-
tation matrix can be either the weighted adjacency matrix, or
other versions normalized by degrees. Some common normal-
ized versions include D−A, D−

1
2 A D−

1
2 and A D−1, where

D is a degree matrix with Di,i =
∑

j Ai,j . The spectral de-
composition of B is [11]

B = V Λ V−1,

where the eigenvectors of B form the graph Fourier basis V
(the norm of each column is normalized to one), the graph
Fourier transform matrix U = V−1, and Λ ∈ RN×N is the di-
agonal matrix of corresponding eigenvalues λ0, . . . , λN−1 of
B. These eigenvalues represent frequencies on the graph [12].
The graph Fourier transform of x ∈ RN is x̂ = Ux. The in-
verse graph Fourier transform is x = V x̂. The vector x̂
represents the signal’s expansion in the eigenvector basis and
describes the frequency content of the graph signal x. Various
graph representation matrices lead to different graph Fourier
bases, which model different types of graph signals. The
choice depends on specific applications.

3. PROPOSED FRAMEWORK FOR
ENERGY-EFFICIENT ROUTE PLANNING

Previous methods for energy-efficient route planning are vul-
nerable to the inaccessibility or loss of data on which they de-
pendent. To alleviate this, we propose a framework that only
queries a small part of the entire dataset, and recovers the rest
with a novel graph signal recovery algorithm.

3.1. Proposed Framework

We consider a graph representing the network of road. The in-
tersections are represented as nodes on the graph, where edge
exists between adjacent nodes if the corresponding intersec-
tions are connected by a road. We assume there is a wind
monitor station at each intersection that records wind velocity,
since each station measures the local wind velocity, the wind
velocities of all the stations form a graph signal.

Fig. 1: A snapshot of wind velocities at 2642 intersections of
Minnesota road network. The green edges show the outline of
the road network, and the blue arrow denotes the wind velocity
residing on each intersection.

Figure 1 shows a snapshot of wind velocities we used
in experiment. We see that the wind velocities at two close
stations are similar, that is, the graph signal of wind veloci-
ties is smooth. By taking advantages of the smoothness, we
use graph sampling techniques to query wind velocities at a
small fraction of positions, instead of using the wind veloci-
ties recorded at all the positions. The other wind velocities are
then interpolated using graph signal recovery techniques. We
then use the recovered wind velocities to plan a route. Since
we only query the wind velocities from a few positions, our
proposed method is efficient.

The proposed method is shown in Figure 2. In the sam-
pling block, we consider three sampling strategies to query
the wind velocities at certain positions; in the recovery block,
we recover the wind velocities at the rest of the positions by
using the proposed recovery algorithm; and in the wind ve-
locity based route planning block, we perform the Dijkstra’s
algorithm on the recovered wind velocities to plan an energy-
efficient route.

3.2. Signal Sampling and Recovery on Graph

We query the wind velocities from M stations (or intersec-
tions), that is, we sample M coefficients from a graph signal
x ∈ RN to produce a sampled graph signal xM ∈ RM (M <
N ), where M = (M0, · · · ,MM−1) denotes the sequence
of sampled weather stations, and Mi ∈ {0, 1, · · · , N − 1}.
We then recover the wind velocities for the rest stations, that
is, we recover xM to get x′ ∈ RN . The sampling operator
Ψ ∈ RM×N is a linear mapping from RN to RM , defined as

Ψi,j =

{
1, j =Mi;
0, otherwise,



Fig. 2: Diagram for the proposed framework.

and the recovery operator Φ ∈ RN×M is a mapping from RM

to RN . y = Ψx + e ∈ RM are the sampled wind velocities,
where e is noise, and x′ = Φy ∈ RN recovers x either exactly
or approximately.

In this paper, we consider two sampling strategies: ran-
dom sampling means that sample indices are chosen from the
node set independently and randomly; experimentally design
sampling means that sample indices can be chosen before-
hand. For experimentally design sampling, we also consider
two approaches, including a stochastic one and a deterministic
one. The main idea of the design is to take advantages of the
smoothness of a graph signal. When two weather stations are
close to each other, we expect the corresponding wind veloci-
ties to be similar, and hence the graph signal of wind velocities
is smooth. Further, we assume that the smooth graph signals
are bandlimited, that is, we approximate a graph signal by the
first K � N graph Fourier basis vectors [6].

For the stochastic approach, we choose a node according to
some sampling distribution {πi}Ni=1, that is, the ith node has
its own probability πi to be chosen depending on the graph
structure. As suggested by [7], we consider the sampling dis-
tribution be the square root of leverage scores, defined as πi =
‖ui‖2 /

∑N−1
j=0 ‖uj‖2, where ui is the ith column of the first

K rows of graph Fourier transform matrix, U(K). This sam-
pling distribution with a simple recovery technique provides
an unbiased estimator of the first K frequency components of
a graph signal and optimizes the recovery error [7]. We call
this approach experimentally designed sampling based on the
sampling distribution. For the deterministic approach, we con-
sider an optimal sampling operator from sampling theory of
graph signals, which optimizes the minmax recovery error and
is implemented in a greedy manner [6]. We call this approach
experimentally designed sampling based on the optimal sam-
pling operator. The advantages of the sampling distribution
approach are that it is computationally cheap and works for
a larger class of graph signals; the advantages of the optimal
sampling operator approach are that its sample set is designed
only once and it usually has a better empirical performance
especially when the sample size is small.

We then recover the wind velocities at the rest of the posi-

tions by using the least square:

x′ = Φy = V(K) x̂
∗
(K)

= V(K) arg min
x̂(K)∈RK

∥∥D Ψ V(K) x̂(K) −Dy
∥∥2
2

= V(K)(D Ψ V(K))
†Dy, (1)

where D ∈ RM×M is a diagonal weight matrix, V(K) ∈
RN×K denotes the first K columns of V, and x̂(K) is the es-
timated bandlimited signal with bandwidth K. For random
sampling and experimentally designed sampling based on the
sampling distribution, Di,i = 1/

√
|M|πj when Ψi,j = 1; for

experimentally designed sampling based on the optimal sam-
pling operator, Di,i = 1. The weight matrix D is introduced to
compensate for the non uniformity of sampling. When it is an
identity matrix, (1) is exactly the recovery operator proposed
in [6]. Note that (1) assumes that the graph signal is a bandlim-
ited signal and only recovers the low frequency content. This
bandlimited assumption is not completely accurate in general,
however, our goal is to plan a route, instead of exactly recover-
ing the graph signal. In the experiments, we generate accurate
routes based on this bandlimited approximation.

3.3. Wind Velocity based Route Planning

To use the Dijkstra’s algorithm, we propose a series of proce-
dures to compute the energy consumption. First, we assume
that the vehicle only flies along the road between the intersec-
tions. Since a 200ft slab of air, located between 200ft and
400ft from the ground was proposed by Amazon aeronautics
experts to be a high speed transit airspace1, which is beneath
the height of many skyscrapers in urban area, thus, to diminish
the influence of drone to civilian life and to make easy recycle
after accidental falling, the assumption is reasonable.

Based on this assumption, the flying route of the drone is
modeled as a trajectory consisting of different segments that
connect the nodes as it passes by. We further assume the drone
flies along each segment at a constant velocity v0. To main-
tain that velocity, its engine should provide speed less than v0
when it flies following the wind, and greater than v0 to com-
pensate when it has to fly through a head-wind area. Since the
wind differs at each interval, the drone will adjust its speed

1Refer to Amazon’s letter to the U.S. Federal Aviation Administration on
July 9, 2014, via http://z-ecx.images-amazon.com/images/G/
01/rowland/AmazonPetitionforExemption_July92014.pdf

http://z-ecx.images-amazon.com/images/G/01/rowland/AmazonPetitionforExemption_July92014.pdf
http://z-ecx.images-amazon.com/images/G/01/rowland/AmazonPetitionforExemption_July92014.pdf


Fig. 3: Illustration of an interval A,B with wind velocity vA
and vB .

to adapt to the wind. For simplicity, we consider the energy
consumption as the power to provide adaptive speed during
each interval to maintain the constant velocity. As the drone
flies from the departure node to the destination node, for all
pairs of accessible nodes, we compute its energy consumption
at each interval as the input for the Dijkstra’s algorithm.

Consider a scenario where the drone departs from node M
to node N , one possible interval of the trip is the segment be-
tween nodeA andB, as in Figure 3. To satisfy the assumption
that the vehicle flies along the segment at a constant velocity
v0, the resultant velocity that the engine should provide during
interval A,B denoting as vA,B is obtained as following:

vA,B‖ = v0 − (vA‖ + vB‖),

vA,B⊥ = −(vA⊥ + vB⊥),

vA,B =
√
vA,B‖

2 + vA,B⊥
2,

where vA‖ and vA⊥ are the tangential and normal velocity at
node A, vA,B‖ and vA,B⊥ are the tangential and normal com-
ponent of vA,B .

Then the interval energy consumption from node A to B,
denoted as EA,B is obtained as:

EA,B = C
|dA,B |
v0

|vA,B |,

where C is a scalar that parameterizes the energy consump-
tion for the engine to provide an unit amount velocity at that
certain interval. Mathematically, EA,B is determined by the
adaptive speed vA,B during the interval A,B and the flying
time to cover that distance with the constant flying velocity
v0.

Given the energy consumption at each accessible interval,
the energy-efficient route from M to N is obtained as:

{M,L∗, · · · ,K∗, N} = arg min
L,··· ,K

EM,L+· · ·+EK,N . (2)

Equation (2) is solved by the Dijkstra’s algorithm and the over-
all energy consumption for the trajectory is the sum of all the
interval energy consumption obtained from (2).

4. EXPERIMENTS

In this section, we validate the proposed framework on a real
wind velocity dataset.

We collect a dataset recording the wind velocities at 2642
intersections of the Minnesota road. In this paper, we present
the data on January 1st, 20152. Figure 1 shows a snapshot of
the wind distribution on the entire Minnesota road. We model
the Minnesota road network as a graph whose vertices repre-
sent intersections and edges represent the roads [2]. We use
the metric as shown in [1] to assign weight to each edge:

An,m =
e−d

2
nm√∑

k∈Nn
e−d

2
nk

∑
l∈Nm

e−d
2
ml

,

where An,m is the weight for an edge between the nth node
and themth node, dnm is the distance between the nth and the
mth intersection, andNn is the set of neighborhood of the nth
intersection. We report a series of experiments to answer the
following question:
Q1. Necessity: Should we consider wind when planning the

flying route? Here we consider two factors:
a. Various wind velocities;
b. Various flying distances.

Q2. Effectiveness: When wind do influence route planning
of the drone, can we query the wind velocities at a small
fraction of positions and still plan a route that is compa-
rable with the route planned based on full knowledge of
the wind velocities?

4.1. Q1 - Necessity

To elaborate the experiment results, we first show the list of
key notations used in the experiments in Table 1. Note that
the route planned based on the full knowledge of wind data,
denoted as Rtruth, is the optimal route in the spirit of mini-
mizing energy consumption, which is regarded as the ground
truth, and the route planned without wind, denoted as Rdist,
is the baseline during experiments. The constant velocity for
the Amazon octocopter drone is chosen to be 100km/h in the
experiments3.

a. Wind Velocities. To study the influence of different
wind velocities on flying route planning, we define the con-
cept of Percentage of Disagreement to be the percentage of
occurrence where Rdist and Rtruth does not agree among a
certain number of trials. Mathematically, it follows:

Percentage of Disagreement =
#{Rdist 6= Rtruth}

#trials
.

We compare the energy consumption between Rdist and
Rtruth among randomly picked pair of start location and des-
tination with varying wind velocity. For each certain wind

2Data is collected from ”Powered by Forecast”, via http://
forecast.io and is available on http://jelena.ece.cmu.edu/
research/graphs/index.html.

3About 60 knots, a common velocity of an operating drone for com-
mercial purpose, see, for example http://www.theguardian.com/
technology/2015/jul/28/amazon-autonomous-drones-
only-airspace-package-delivery

http://forecast.io
http://forecast.io
http://jelena.ece.cmu.edu/research/graphs/index.html
http://jelena.ece.cmu.edu/research/graphs/index.html
http://www.theguardian.com/technology/2015/jul/28/amazon-autonomous-drones-only-airspace-package-delivery
http://www.theguardian.com/technology/2015/jul/28/amazon-autonomous-drones-only-airspace-package-delivery
http://www.theguardian.com/technology/2015/jul/28/amazon-autonomous-drones-only-airspace-package-delivery


Symbol Description
Ψrnd sample randomly
Ψstoc experimentally design sampling

based on sampling distribution
Ψopt experimentally design sampling

based on optimal sampling operator
Rdist route planned without wind
Rtruth route planned with full knowledge of wind
Rrnd route planned based on Ψrnd

Rstoc route planned based on Ψstoc

Ropt route planned based on Ψopt

Table 1: Key notations used in experiments.
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Fig. 4: Wind influences flying route planning, especially
when wind velocity is high. In (a), Rdist (black dotted line)
compared with Rtruth (blue dotted line).This particular com-
parison is chosen to have more energy consumption with in-
creasing wind velocity, and Rtruth consumes less energy un-
der any wind velocity; in (b) with increasing wind velocity, the
route planned based with and without wind wind will disagree
more.

velocity, the comparison is averaged over 50 chosen pairs.
We also record the Percentage of Disagreement with various
wind velocities.

Figure 4(a) shows the logarithmic energy consumption of
Rdist (black dotted line) andRtruth (blue dotted line) in y axis
versus different wind velocities in x axis. We scale the wind
velocity to fit in the range from light air (close to 5km/h)
to fresh breeze (close to 35km/h) that a flying drone may
encounter. Although the energy consumption for Rdist and
Rtruth are close in Figure 4(a), the energy based on Rtruth

always consumes less. Figure 4(b) shows that when the wind
velocity is above gentle breeze (about 15km/h),Rtruth differs
with Rdist with high probability, which means we should take
wind into account for most wind velocities.

b. Flying Distance. We fix the wind velocity to be mod-
erate breeze (about 25km/h), and vary the average distance
between the start position and the destination from 200km to
600km to study the influence of wind across large area. For
each average distance, we randomly pick several pairs of posi-

Average Distance (km)
200 300 400 500 600

Logarithmic Energy    
Consumption Difference

6.5

7

7.5

8

8.5

Fig. 5: Logarithmic of energy consumption difference be-
tween Rtruth and Rdist versus increasing average distance.
The performance is averaged over 20 trials. Wind influences
flying route planning, especially when flying distance is long.

tions and compute the average difference of energy consump-
tion between Rdist and Rtruth, Figure 5 shows that the loga-
rithmic energy consumption difference increases as the aver-
age distance increases. It means that the longer distance be-
tween two positions, the more significant influence wind will
impose on energy consumption. We should take wind into
consideration for a long distance route. In summary, wind ve-
locity influences the flying route planning, especially when the
wind velocity is fast and the flying distance is long.

4.2. Q2 - Effectiveness

The two scenarios demonstrated in Section 4.1 indicate that it
is necessary to consider wind for drone route planning. Since
the task of the proposed framework is to plan a energy-efficient
route, not to recover the wind velocity with high reliability,
then we only need to query a very small fraction of the entire
wind data such that it is sufficient to generate reliable energy-
efficient route.

Experimental Setup. As shown in Figure 2, we first sam-
ple the wind using the three sampling strategies stated in Sec-
tion 3.2, and then recover the data via solving an optimization
problem in (1). After computing the energy consumption at
each pair of accessible nodes from Ψrnd, Ψstoc and Ψopt, we
use the Dijkstra’s algorithm to plan the corresponding Rrnd,
Rstoc and Ropt.

Results. Prior to the demonstration of planned routes, we
show how the energy consumption of the planned routes for a
certain pair of start position and destination (from St. Vincent
to Owatonna in this case) change versus increasing sample size
in Figure 6. For each sampling strategies, the wind velocity is
recovered only based on the first 20 frequency components,
x̂(20). We observe that with just 20 queries for Ψopt, Ropt

outperforms Rdist in terms of energy consumption and is very
close to Rtruth, and with slightly more queries, about 40 sam-
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Fig. 6: Energy consumption of Rrnd, Rstoc and Ropt ver-
sus increasing sampling size. The performance of Rrnd and
Rstoc is averaged over 100 trials. With only 40 samples Rdist

and Rstoc produce route having less energy consumption then
Rdist, and Ropt performs the best, since it produces the same
route with the ground truth with more than 40 samples.

ples, Rrnd and Rstoc beat Rdist and Ropt performs exactly the
same with Rtruth.

As shown in Figure 6, Rstoc converges to Rtruth faster
than Rdist, we compare the performance of Ψrnd and Ψstoc

in Figure 7. Since the query set for Ψrnd and Ψstoc is non-
deterministic, the performance is evaluated as the frequently
of the algorithm to recover the wind velocity with the energy
of recovery error less than 0.3, which is defined as

Success Rate =
1

M

M∑
i=1

I

(
‖vrecovery − voriginal‖22

‖voriginal‖22
≤ 0.3

)
,

where i denotes the incidence, and M is the total number of
trials. For each sampling size, we perform M trials, and count
the number of trials where the energy of recovery error is less
than 30% of the energy of the original speed.

The success rate is computed based on 1000 trials for Ψrnd

and Ψstoc. We can see that for the Minnesota road graph,
Ψstoc outperforms Ψrnd because its success rate grows with
an increasing sampling size. Ψrnd has the best performance in
terms of deterministic query set and low recovery error.

In Figure 6, we see that with 50 queries, Ψopt produces
the same route with Rtruth, and Ψrnd and Ψstoc has a high
probability to produce a route that is close to Rtruth and con-
sume less energy than Rdist. In Figure 8, we compare the
energy consumption of Rrnd, Rstoc and Ropt with Rdist and
Rtruth. We see that with only 50 samples both of Rrnd and
Rstoc outperformRdist, andRopt gives exactly the same route

sample size
50 100 150 200

SuccessRate
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0.4
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Ψ
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Ψ
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Fig. 7: Performance for the three sampling-recovery strate-
gies. Even though the recovery error for Ψrnd may be beyond
the thresholding level, it has good performance in route plan-
ning, and since Ψstoc samples according to the sampling dis-
tribution, which treat each vertex with different importance,
with increasing sampling size the probability of small recov-
ery error grows. Ψopt is the best among the three sampling
strategies.

with Rtruth.

4.3. Future Work

As illustrated in Figure 5 wind velocity has significant influ-
ence on long distance flying route. In real life, it takes the
drone hours to cover a large area, and it is of highly possibility
that the original planned route may fail to be the most energy-
efficient route due to the change of wind velocity with time.
Besides, in reality, the wind velocity also varies across alti-
tude, in this case the wind velocity can be further molded as
a product graph signal [13]. Consequently, choosing the ap-
propriate vertical route and plan 3D flying trajectory are also
important. It is more practical to consider time evolving wind
velocities.

5. CONCLUSIONS

In this paper we propose a novel method to generate an energy-
efficient flight route. By taking advantages of the smoothness
property of the wind velocities, we only query the wind veloc-
ities from a small number of positions and recover the rest by
using a novel graph signal recovery algorithm, which solves
an optimization problem. In the experiments we show the ne-
cessity to take wind into account when planning flying route
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(a) Random sampling (b) Experimentally designed sampling (c) Experimentally designed sampling
based on sampling distribution based on optimal sampling operator

Fig. 8: Flying route and energy consumption comparison. Rrnd andRstoc perform very well in terms of saving energy consump-
tion, and Ropt is the best. In (a), Rrnd (orange dotted line) compared with Rdist (black dotted line) and Rtruth (blue dotted line).
With only 50 samples, Rrnd covers most part of Rtruth, and it consumes less energy than Rdist; In (b), Rstoc (pink dotted line)
compared with Rdist (black dotted line) and Rtruth (blue dotted line).With only 50 samples, Rstoc covers most part of Rtruth,
and it consumes less energy than Rdist; In (c), Ropt (red dotted line) compared with Rdist (black dotted line) and Rtruth (blue
dotted line). With only 50 samples, Ropt covers Rtruth exactly, and it consumes the same amount as the ground truth.

and the effectiveness of our framework. We found that ap-
proximating the wind velocity as a bandlimited graph signal
is a good assumption, and all three strategies give good per-
formance for generating reliable and energy-efficient route.
Since for the autonomous aerial vehicles, the computational
power and storage space are quite limited, our work shows po-
tential for a wider scope of applications. With the increasing
complexity of data structure and growing volume of data size,
aims such as decreasing computation complexity and expedit-
ing data access are increasingly important. We believe that
signal processing on graphs, efficient data compression and
robust decompression as a result have many promising appli-
cations.
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J. Kovačević, “Signal recovery on graphs: Variation min-
imization,” IEEE Trans. Signal Process., vol. 63, no. 17,
pp. 4609–4624, Sept. 2015.

[4] I. Z. Pesenson, “Sampling in paley-wiener spaces on
combinatorial graphs,” Trans. Amer. Math. Soc., vol.
360, no. 10, pp. 5603–5627, 2008.

[5] X. Wang, P. Liu, and Y. Gu, “Local-set-based graph sig-
nal reconstruction,” IEEE Trans. Signal Process, vol. 63,
no. 9, pp. 2432–2444, 2015.

[6] S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević,
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