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ABSTRACT
We study representations of piecewise-smooth signals on
graphs. We first define classes for smooth, piecewise-constant,
and piecewise-smooth graph signals, followed by a series of
multiresolution local sets to analyze those signals by imple-
menting a multiresolution analysis on graphs. Based on these
local sets, we propose local-set-based piecewise-constant and
piecewise-smooth dictionaries as graph signal representations
that, in spirit, resemble the classical Haar wavelet basis and
are naturally localized in both graph vertex and graph Fourier
domains. Moreover, they promote sparsity when representing
piecewise-smooth graph signals. In the experiments, we show
that local-set-based dictionaries outperform graph Fourier do-
main based representations when approximating both simu-
lated and real-world graph signals.

Index Terms— Piecewise smooth graph signal, sparse
representations, local sets

1. INTRODUCTION
Signal representation is one of the most fundamental tasks in
our discipline; it is related to approximation, compression, de-
noising, inpainting, detection, and localization [1]. Represen-
tations are particularly crucial for signals with complex, irreg-
ular underlying structure that are being generated at an un-
precedented rate from various sources, including social, bio-
logical, and physical infrastructure [2], among others; we call
such signals graph signals. While prior work on graph signal
representations focused mainly on smooth graph signals [3],
such as bandlimited [4, 5], approximately bandlimited [6], and
signals with small variation [7], it did not address graph signal
localization. As localization properties of graph signals are of
interest in a number of applications (e.g. in community detec-
tion, the community labels are piecewise-constant on a social
network), representations that consider both smoothness and
localization are of interest.

We thus study piecewise-smooth graph signals and con-
sider both smoothness and localization properties. We first
define classes for smooth, piecewise-constant, and piecewise-
smooth graph signals, followed by a series of multiresolution
local sets to analyze those signals by implementing a mul-
tiresolution analysis on graphs. Based on these local sets,
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we propose local-set-based piecewise-constant and piecewise-
smooth dictionaries as graph signal representations that, in
spirit, resemble the classical Haar wavelet basis and are nat-
urally localized in both graph vertex and graph Fourier do-
mains. Moreover, they promote sparsity when representing
piecewise-smooth graph signals. The main advantages of the
proposed local-set-based dictionaries are that they are sim-
ple, general, easy to visualize, and effective. In the experi-
ments, we show that local-set-based dictionaries outperform
windowed graph Fourier when approximating both simulated
and real-world graph signals.

2. GRAPH SIGNAL MODELS
Let G = (V, E) be a graph, where V is the set of nodes and
E is the set of edges that represent the underlying relations
between pairs of nodes. Let A ∈ RN×N be the adjacency
matrix, with Aj,k the edge weight. Let D be the degree ma-
trix, with (D)i,i =

∑
j Ai,j , L = D−A the graph Laplacian

matrix, and let P = D−1 A be the transition matrix. We call
x =

[
x0, x1, . . . , xN−1

]T ∈ RN a graph signal, with xi the
signal coefficient at the ith node.

Smooth Graph Signals. We start with three smoothness
criteria for graph signals; while they have been implicitly men-
tioned previously, none has been rigorously defined.

Definition 1. A graph signal x is pairwise Lipschitz smooth
with parameter L when it satisfies

|xi − xj | ≤ L d(vi, vj), for all i, j = 0, 1, . . . , N − 1,

with d(vi, vj) the distance between the ith and the jth nodes.

We can choose the geodesic distance, the diffusion distance [8],
or some other distance metric for d(·, ·). Similarly to the tradi-
tional Lipschitz criterion [9], the pairwise Lipschitz smooth-
ness criterion emphasizes pairwise smoothness, which zooms
onto the difference between each pair of adjacent nodes.

Definition 2. A graph signal x is total Lipschitz smooth with
parameter L when it satisfies∑

(i,j)∈E

Ai,j(xi − xj)2 ≤ L.

The total Lipschitz smoothness criterion generalizes the pair-
wise Lipschitz smoothness criterion while still emphasizing
pairwise smoothness, but in a less restricted manner; it is also
known as the Laplacian smoothness criterion [10].



Definition 3. A graph signal x is neighboring smooth with
parameter L when it satisfies

∑
i

xi − 1∑
j:(i,j)∈E Ai,j

∑
j:(i,j)∈E

Ai,j xj

2

≤ L.

The neighboring smoothness criterion emphasizes neighbor-
ing smoothness, which compares each node to the average of
its immediate neighbors.

The three criteria quantify smoothness in different ways:
the pairwise and the total Lipschitz ones focus on the varia-
tion of two signal coefficients connected by an edge with the
pairwise Lipschitz one more restricted, while the neighboring
smoothness criterion focuses on comparing a node to the aver-
age of its neighbors. Following the three criteria quantifying
smoothness, we now construct three signal classes satisfying
each of the three criteria. We first construct polynomial graph
signals to satisfy the Lipschitz smoothness criterion.

Definition 4. A graph signal x is polynomial with degree K
when

x = DK a =
[
1 D(1) D(2) . . . D(K)

]
a ∈ RN ,

where a ∈ RKN+1 and DK is a polynomial dictionary with
D

(k)
i,j = dk(vi, vj). Denote this class by PL(K).

Fig. 1: Different origins lead to different coordinate systems;
white, blue, and green denote the origin, nodes with geodesic
distance 1 from the origin, and nodes with geodesic distance 2
from the origin, respectively.

In classical signal processing, polynomial time signals can be
expressed as xn =

∑K
k=0 akn

k, n = 0, . . . , N − 1; we can
rewrite this as in the above definition as x = DK a, with
(DK)n,k = nk. The columns of DK are denoted as D(k),
k = 0, . . . ,K, and called atoms; the elements of each atom
D(k) are nk. Since polynomial time signals are shift-invariant,
we can set any time point as the origin; such signals are thus
characterized by K + 1 degrees of freedom ak, k = 0, . . . ,K.
This is not true for graph signals, however; they are not shift-
invariant and any node can serve as the origin (see Figure 1).
In the above definition, D(k) are now matrices with the number
of atoms equal to the number of nodesN (with each atom cor-
responding to the node serving as the origin). The dictionary
DK thus contains KN + 1 atoms. We can show that signals
in PL(1) are pairwise Lipschitz smooth.

We now construct bandlimited signals to satisfy the total
Lipschitz and neighboring smoothness criteria.
Definition 5. A graph signal x is bandlimited with respect to
a graph Fourier basis V with bandwidth K when

x = V(K) a,

where a ∈ RK and V(K) is a submatrix containing the first K
columns of V. Denote this class by BLV(K) [6].

When V is the eigenvector matrix of the graph Lapla-
cian matrix, we denote it as VL and can show that signals in
BLVL

(K) are total Lipschitz smooth; when V is the eigen-
vector matrix of the transition matrix, we denote it as VP and
can show that signals in BLVP

(K) are neighboring smooth
(we omit details due to limited space). Of these three classes,
PL(K) is novel; BLV(K) has been introduced in [6].

Piecewise-constant Graph Signals. Piecewise-constant
graph signals have been used in many applications related to
graphs without having been explicitly defined; for example,
in community detection, community labels form a piecewise-
constant graph signal for a social network; in semi-supervised
learning, classification labels form a piecewise-constant graph
signal for a graph constructed from the dataset. While smooth
graph signals emphasize slow transitions, piecewise-constant
graph signals emphasize fast transitions (corresponding to
boundaries) and localization (corresponding to signals being
constant in a local neighborhood).

We construct piecewise-constant graph signals by using lo-
cal sets, which have been used previously in graph cuts and
graph signal reconstruction [11, 12].

Definition 6. Let {Sc}Cc=1 be the partition of the node set V .
We call {Sc}Cc=1 local sets when they satisfy that the subgraph
corresponding to each local set is connected, that is, whenGSc

is connected for all c.

Definition 7. A graph signal x is piecewise-constant with C
pieces when

x =

C∑
c=1

ac1Sc
,

where {Sc}Cc=1 forms a series of local sets and (1S)i = 1,
when vi ∈ S; 0, otherwise. Denote this class by PC(C).

Let ∆ be the graph difference operator (the oriented inci-
dence matrix of G), whose rows correspond to edges [13, 14].
For example, if ei is a directed edge that connects the jth node
to the kth node (j < k), the elements of the ith row of ∆ are
∆i,` = −1 when ` = j; ∆i,` = 1 when ` = k; and ∆i,` = 0,
otherwise. ∆x then measures the difference between each pair
of adjacent signal coefficients. When the value of the graph
signal on each local set is different, ‖∆x‖0 counts the total
number of edges connecting nodes between local sets.

Piecewise-smooth Graph Signals. To be able to deal
with as wide a class of real-world graphs signals as possible,
we combine smooth and piecewise-constant graph signals into
piecewise-smooth graph signals.

Definition 8. A graph signal x is piecewise-polynomial with
C pieces and degree K when

x =

C∑
c=1

x(c)1Sc
,

where x(c) is a kth order polynomial signal on the subgraph
GSc

with x(c)i = ac +
∑

j∈Sc

∑K
k=1 ak,j,cd

k(vi, vj). Denote
this class by PPL(C,K).



PPL(1,K) is the polynomial class with degree K, PL(K)
from Definition 4, and PPL(C, 0) is the piecewise-constant
class with C pieces, PC(C) from Definition 7. The degrees
of freedom for a local set Sc at the polynomial degree k is the
number of origins, that is,

∥∥[ak,1,c ak,2,c . . . ak,|Sc|,c
]∥∥

0
.

Definition 9. A graph signal x is piecewise-bandlimited with
C pieces and bandwidth K when

x =

C∑
c=1

x(c)1Sc
,

where x(c) is a bandlimited signal on the subgraph GSc with
x
(c)
i =

∑K
k=0 ak,c V

(c)
i,k , and V(c) is a graph Fourier basis of

GSc
. Denote this class by PBL(C,K).

We use zero padding to ensure V(c) ∈ RN×N for all GSc
,

where N is the number of nodes of G. Still, V(c) can be the
eigenvector matrix of either the graph Laplacian matrix or the
transition matrix.

3. MULTIRESOLUTION REPRESENTATIONS
We now discuss representations for piecewise-smooth graph
signals based on multiresolution local sets.

Multiresolution Local Sets. Our aim is to construct a
series of local sets in a multiresolution fashion. We ini-
tialize S0,1 = V to correspond to the 0th level subspace
V0, that is, V0 = {c01S0,1 , c0 ∈ R}. We then partition
S0,1 into two disjoint local sets S1,1 and S1,2, correspond-
ing to the first level subspace V1, where V1 = {c11S1,1

+
c21S1,2

, c1, c2 ∈ R}. We then recursively partition each larger
local set into two smaller local sets. For the ith level subspace,
we have Vi =

∑2i

j=1 cj1Si,j
and then, we partition Si,j into

Si+1,2j−1, Si+1,2j for all j = 1, 2, . . . , 2i. We call Si,j the
parent set of Si+1,2j−1, Si+1,2j and Si+1,2j−1, Si+1,2j are the
children sets of Si,j . When |Si,j | ≤ 1, Si+1,2j−1 = Si,j and
Si+1,2j = ∅. At the finest resolution, each local set corre-
sponds to an individual node or an empty set. In other words,
we build a binary decomposition tree that partitions a graph
structure into multiple local sets. The ith level of the decom-
position tree corresponds to the ith level subspace. The depth
of the decomposition T depends on how local sets are parti-
tioned; T ranges from N to dlogNe, where N corresponds to
partitioning one node at a time and dlogNe corresponds to an
even partition at each level. We show an example in Figure 2.

This graph partitioning is the key step in constructing the
local sets. The proposed construction does not restrict us to
any particular graph partitioning algorithm; depending on the
application, the partitioning step can be implemented by many
existing graph partition algorithms, the only requirement is to
satisfy Definition 6. Some candidate algorithms are the graph
cuts [11] and the balance cut in the spanning tree [15].

The proposed construction of local sets mimics the clas-
sical multiresolution analysis to some extent. The initial sub-
space V0 is at the coarsest resolution. Through partitioning,
local sets zoom into increasingly finer resolutions in the graph
vertex domain. The subspace VT at the finest resolution zooms

Fig. 2: Local set decomposition tree. In each partition, we
decompose a node set into two disjoint connected sets.

into each individual node and covers the entire RN . Classical
scale invariance requires that when f(t) ∈ V0, then f(2mt) ∈
Vm, which is ill-posed in the graph domain because graphs are
finite and discrete; the classical translation invariance requires
that when f(t) ∈ V0, then f(t − n) ∈ V0, which is again
ill-posed, this time because graphs are irregular. The essence
of scaling and translation invariance, however, is to use the
same function and its scales and translates to span different
subspaces, which is what the proposed construction promotes.

Dictionary Construction. We collect local sets by level
in ascending order in a dictionary, with atoms corresponding
to each local set, that is, DLSPC = {1Si,j}

i=T,j=2i

i=0,j=1 . We call it
the local-set-based piecewise-constant dictionary. After re-
moving empty sets, the dictionary has 2N − 1 atoms, that
is, DLSPC ∈ RN×(2N−1); each atom is a piecewise-constant
graph signal with various sizes and localizing various parts of
a graph. While for an arbitrary piecewise-constant signal we
do not know the support of its underlying pieces, DLSPC still
provides sparse representations.
Theorem 1. For all x ∈ RN , we have ‖a∗‖0 ≤ 1+2T ‖∆x‖0,
where T is the maximum level of the decomposition and

a∗ = arg min
a
‖a‖0 , subject to : x = DLSPC a.

When x is piecewise-constant, ‖∆x‖0 is small; thus,
DLSPC is particularly good for representing piecewise-constant
graph signals. The graph partitioning influences the quality of
representation; the even partition of each local set optimizes
the worst case scenario. For piecewise-constant graph signals,
the sizes of the local sets matter, not the shape.

To represent piecewise-smooth graph signals, we use
multiple atoms for each local set. We take the piecewise-
polynomial signals as an example. For each local set,

DSi,j
=
[
1 D

(1)
Si,j

D
(2)
Si,j

. . . D
(K)
Si,j

]
,

where (D
(k)
Si,j

)m,n = dk(vm, vn), when vm, vn ∈ Si,j ; and

0, otherwise. The number of atoms in D
(k)
Si,j

is 1 + K|Si,j |.
We collect the sub-dictionaries for all the multiresolution local
sets to form the local-set-based piecewise-smooth dictionary,
that is, DLSPS = {DSi,j}

i=T,j=2i

i=0,j=1 . The number of atoms
in DLSPS is O(KNT ), where K is the maximum degree of
polynomial, N is the size of the graph and T is the maximum



level of the decomposition. When we use even partitioning,
the total number of atoms is O(KN logN).

Similarly, to model piecewise-bandlimited signals, we re-
place DSi,j

by the graph Fourier basis of each subgraph GSi,j
.

The total number of atoms of the corresponding DLSPS is then
O(NT ). For piecewise-smooth signals, we cannot use the
sparse coding to do exact approximation. To minimize the
approximation error, both the sizes and the shapes of the local
sets matter for piecewise-smooth graph signals.
Theorem 2. For all x ∈ PBL(C,K), we have ‖a∗‖0 ≤
1 + 2KT ‖∆xPC‖0, where T is the maximum level of the de-
composition, xPC is a piecewise-constant signal that has the
same local sets with x and

a∗ = arg min
a
‖a‖0 , subject to ‖x−DLSPS a‖22 ≤ ε ‖x‖

2
2 ,

where ε is a constant determined by graph partitioning.

Relation to Prior Work. Graph signal representation
has been considered previously in, for example, multiscale
wavelets on trees, which provide a hierarchy tree representa-
tion for a dataset [16]. It proposes a wavelet-like orthonormal
basis, focuses on high-dimensional data and constructs a de-
composition tree bottom up; in our work, we focus on graphs
and construct a decomposition tree top down, which is useful
for capturing clusters; spanning tree wavelet basis proposes a
localized basis on a spanning tree, which uses a special graph
partitioning algorithm [15]. Some other representations have
been proposed without demonstrating their advantages in rep-
resenting any specific class of graph signals [17, 18, 19, 20];
in our work, we target piecewise-smooth signals.

4. APPLICATIONS
Good representations for piecewise-smooth graph signals are
potentially useful in many applications, such as visualization,
denoising, active sampling [21, 5] and semi-supervised learn-
ing [22]. Here we consider approximation, whose goal is to
use a few expansion coefficients to approximate a graph sig-
nal. We compare the windowed graph Fourier transform [20]
with the local-set-based dictionaries. We use the balance cut
of the spanning tree to obtain the local sets [15]. To do ap-
proximation, we solve the following sparse coding problem
by using orthogonal matching pursuit [23],

x′ = arg min
a
‖x−Da‖22 , subject to ‖a‖0 ≤ s, (1)

where D is a dictionary and a is a sparse code.
Experiments. We test the representations on two datasets,

the Minnesota road graph [24] and the U.S city graph [7].
The Minnesota road graph is a standard dataset including
2642 nodes and 3304 undirected edges [24]. We simulate 100
piecewise-constant graph signals as follows: we randomly
choose three nodes as cluster centers and assign all other nodes
to their nearest cluster centers based on the geodesic distance.
We assign a random integer to each cluster. We further ob-
tain 100 piecewise-polynomial graph signals by element-wise
multiplying a polynomial function, −d2(v0, v) + 12d(v0, v),

where v0 is a reference node that assigns randomly. As an
example, see Figure 3(a). The U.S weather station graph is
a network representation of 150 weather stations across the
U.S. We assign an edge when two weather stations are within
500 miles. The graph includes 150 nodes and 1033 undi-
rected, unweighted edges. Each weather station has 365 days
of recordings (one recording per day), for a total of 365 graph
signals. As an example, see Figure 3(b).
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(a) Minnesota. (b) U.S weather station.

Fig. 3: Graph signal.
The approximation error is measured by the normalized

mean square error, Normalized MSE = ‖x′ − x‖22 / ‖x‖
2
2,

where x′ is the approximation signal and x is the original
signal. Figure 4 shows the averaged approximation errors.
LSPC denotes a local-set-based piecewise-constant dictio-
nary and LSPS denotes a local-set-based piecewise-smooth
dictionary. For the windowed graph Fourier transform, we
use 15 filters; for LSPS, three piecewise-smooth models pro-
vide tight performances. Here we show the results of the
piecewise-polynomial smooth model with degree K = 2.
We see that the local-set-based dictionaries perform better
than the windowed graph Fourier transform. The local-set-
based piecewise-smooth dictionary is slightly better than the
local-set-based piecewise-constant dictionary. Even though
the windowed graph Fourier transform provides highly redun-
dant representations and is useful for visualization, it does not
well approximate complex graph signals.
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(a) Minnesota. (b) U.S weather station.

Fig. 4: Approximation error. Approximation ratio is the per-
centage of used coefficients ( s in (1)).

5. CONCLUSIONS
We proposed representations to analyze piecewise-smooth
graph signals by defining classes and using multiresolution
local sets as a tool to analyze such graph signals. We then
proposed local-set based dictionaries as graph signal repre-
sentations. In the experiments, we showed that local-set-based
dictionaries outperform graph Fourier domain based repre-
sentations when approximating both simulated and real-world
graph signals.
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