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ABSTRACT

This paper presents the author’s personal path through the sig-
nal representations of the past three decades, from the early
days and excitement that surrounded the advent of wavelets
and associated multiresolution representations, to the present
day foray into graph signal processing and data mining. It is
a tribute to Dr. John Cozzens of the NSF and his vision and
support for the development of the field.

Index Terms— Signal representations, multiresolution,
graph signal processing

1. PATH THROUGH SIGNAL REPRESENTATIONS

Signal representations are at the heart of signal processing.
They offer a key to understanding signals and their properties,
ways to model them, look at them in different domain, pro-
cess them and mine them. A priori knowledge or application-
domain insight offer further opportunities to help design blocks
that build signal representations.

This paper presents an entirely personal path through sig-
nal representations over the last three decades describing why
and how of each with no attempt at completeness. It is meant
to illustrate choices the author made and personal thoughts
about the field.

The author’s entry into the field coincided with the enor-
mous excitement that the advent of wavelets generated [1, 2].
The idea of contrasting the global behavior description by the
Fourier techniques to the localization trade off wavelets of-
fered generated a whole slew of new ideas and gave us, in
signal processing, a new way to think about signal represen-
tations. The notions of redundancy, localization, adapting to
the signal at hand, and processing hierarchy, among others, all
came into play. In the work on local bases, multiple descrip-
tions, and frames, the above concepts played a role of design
constraints in building signal representations with structure.

In another paper in this session [3], Rebecca Willett talks
about a new class of signal representations that facilitate novel
inference methods. These include compressed sensing and
sparse coding among others and draw upon signal processing,
machine learning and statistics to allow for more flexible and
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adapted representations of complex data. This is exactly what
drew us to into our latest foray into signal representations —
graph signal processing [4, 5], as a means of representing data
with complex structure.

In breaking with tradition, the author would like to ac-
knowledge Dr. Cozzens here as the bulk of the work was sup-
ported through his dedication and vision at NSF in one form
or another. Rare is the one who dares to aim higher with-
out looking for low-hanging fruit; John has been the one who
was willing to promote a community of ideas and encourage
research in this more theoretical area. While not always mo-
tivated by applications, signal representations described here
and in [3], are at the heart of a number of today’s practical
systems, from compression standards to biomedical imaging
algorithms. The author’s thanks go to John for the support of
the group’s research as well as pedagogical efforts [6, 7, 8].

That work started in the late 80s with work on wavelets
and multiresolution representations. Thinking about concepts
of redundancy, localization, hierarchy of representation build-
ing blocks, among others, lead the author to expand into work
on multiple descriptions, local bases, and frames. In the early
2000s, the author moved to Carnegie Mellon University and
embarked on a decade of work on biomedical image repre-
sentation and mining; one of the keystones of that work was
a new multiresolution supervised classification framework,
which employed both bases and frames. That framework was
refined through a number of different applications on a num-
ber of different imaging modalities, from fluorescent micro-
scopy to digital histopathology. In a conversation with civil
engineering colleagues, a project was born to use the same
framework for monitoring structural health of bridges by col-
lecting vibration data from passing vehicles and classifying
information about the bridge health. To solve the issue of not
enough labeled data as labeling bridges as healthy or not is an
expensive process requiring either human visual inspection or
sensor installation, the author’s group used semi-supervised
learning framework and graphs [9] and was lead to the nascent
topic of graph signal processing. The current focus of the
group is on sampling, recovery, localization and representa-
tions of graph signals with applications to urban data mining;
thus the title of the paper.



2. WAVELETS AND MULTIRESOLUTION
REPRESENTATIONS

The author’s path through signal representations started with
her PhD work [10]. This was the time when the initial pa-
pers by Mallat [1] and Daubechies [11] came out and gen-
erated excitement due to their link to filter banks and sub-
band coding systems. The idea that what was then known as
octave-band filter banks when iterated to infinity would lead
to continuous-time wavelet bases was illuminating. Similarly
to the spectral understanding of the Fourier representations
for different signal domains — functions or sequences, in-
finitely supported or finitely supported with circular exten-
sion (periodic), we started understanding various flavors of
wavelet representations — functions or sequences, infinitely
or finitely supported.

Initially nonredundant (bases), these ideas extended to re-
dundant ones (frames). The notion of localization also played
a role; while localized Fourier representations such as the
short-time Fourier transform were known, they suffered from
fixed time/frequency localization at all frequencies. Wavelet
representations were offering a trade-off of fine time localiza-
tion at high frequencies and global view at low frequencies.
The next generalization was to allow for signal-adapted mul-
tiresolution representations — wavelet packets [12].

This more general class of multiresolution representations,
wavelet packets, spurred work on arbitrary tilings of the time-
frequency plane (leading to signal-adapted representations)
and local orthogonal bases due to their use in audio and image
coding. These are intimately related since local orthogonal
bases can be used to efficiently construct flexible bases with
arbitrary tilings of the time-frequency plane.

The author’s work in that period followed a few threads:
(1) Understanding how to build multidimensional nonsepara-
ble wavelet bases and associated filter banks [13, 14] due to
great interest in image and video processing, HDTV repre-
sentation and coding and others [14, 15]. (2) The second was
motivated by the goal of analyzing the signal into unequal
subbands (such as in acoustics); in that case, rational sam-
pling factors have to be allowed in a filter bank [16]. (3) This
thread related local orthogonal bases and their use in image
coding [17, 18] as well as construction of arbitrary tilings of
the time-frequency plane [19, 20].

3. MULTIPLE DESCRIPTION TRANSFORMS

This work was motivated by the fact that a large fraction of
the information that flows across networks is useful even in
a degraded condition; examples include speech, audio, still
images and video. When this information is subject to packet
losses or retransmission is impossible due to real-time con-
straints, superior performance with respect to total transmit-
ted rate, distortion, and delay may sometimes be achieved by
adding redundancy to the bit stream rather than repeating lost

packets.
In multiple description coding [21, 22], the data is bro-

ken into several streams with some redundancy among the
streams. When all the streams are received, one can guaran-
tee low distortion at the expense of having a slightly higher
bit rate than a system designed purely for compression. On
the other hand, when only some of the streams are received,
the quality of the reconstruction degrades gracefully, which
is very unlikely to happen with a system designed purely for
compression. This illustrates the concepts of redundancy and
no hierarchy imposed on the different building blocks (un-
like, for example, in the case of wavelets where the building
blocks capturing global behavior of the signal are of higher
importance).

The author’s work on this topic followed a few threads:
(1) Generalized multiple description coding with correlated
transforms [23] provided a general framework for multiple
description transform coding. (2) Quantized frame expan-
sions with erasures provided redundancy in multiple descrip-
tion coding through redundant representations (frames) [24].
(3) Multiple description lattice vector quantization adds an-
other technique for multiple description transform coding [25,
26]. (4) Multiple descriptions for audio and image coding [27,
28].

4. FRAMES

Frames are redundant representations that have become pop-
ular over the recent years. It is the idea of removing doubt
translated from our daily lives into signal representations. Given
a signal, we represent it in another system, typically a ba-
sis, where its characteristics are more readily apparent in the
transform coefficients (for example, wavelet-based compres-
sion). However, these representations are typically nonredun-
dant, and thus corruption or loss of transform coefficients can
be fatal. In comes redundancy; we build a safety net into our
representation so that we can avoid those fatal disasters. The
redundant counterpart of a basis is called a frame.

It is generally acknowledged that frames were born in
1952 in the paper by Duffin and Schaeffer [29]. Despite being
over half a century old, frames gained popularity only in the
last two decades, due mostly to the work of the three wavelet
pioneers — Daubechies, Grossman and Meyer [30]. Frame-
like ideas, that is, building redundancy into a signal expan-
sion, can be seen in pyramid coding, quantization, denois-
ing, robust transmission, CDMA systems, multiantenna code
design, segmentation, classification, prediction of epileptic
seizures, restoration and enhancement, motion estimation, sig-
nal reconstruction, coding theory, operator theory and quan-
tum theory and computing, among others.

While frames are often associated with wavelet frames, it
is important to remember that frames are more general than
that. Wavelet frames possess structure; frames are redundant
representations that only need to represent signals in a given



space with a certain amount of redundancy.
The author’s work on this topic followed a few threads:

(1) Finite-dimensional frame families [31, 32, 33] and (2)
frames for applications such as robust transmission, wireless
biometrics and biomaging [34, 35, 36].

5. GRAPH SIGNAL PROCESSING

As mentioned before, the author’s encounter with graph sig-
nal processing occurred because of the need for semi-super-
vised multiresolution classification applied to bridge health
monitoring; the original supervised multiresolution classifi-
cation framework was developed in the context of biomed-
ical imaging. Among semi-supervised approaches, graph-
based ones are often used, because they are able to represent
a given dataset with complex graph structure and allow un-
labeled signals to provide distribution information. We pro-
posed an adaptive graph filter for semi-supervised classifica-
tion that allows for classifying unlabeled as well as unseen
signals and for correcting mislabeled signals. This adaptive
graph filter extends the applications of the then emerging area
of discrete signal processing on graphs to classification.

Signal processing on graphs is a theoretical framework
inspired by algebraic signal processing that generalizes clas-
sical discrete signal processing from regular domains, such as
lines and rectangular lattices, to arbitrary, irregular domains
commonly represented by graphs [37, 5, 4]. This topic has
garnered a fair amount of enthusiasm [38, 39, 40]; numerous
special sessions at conferences and even specialized work-
shop such as the one at University of Pennsylvania in May
of 2016.

Recent additions to the toolbox, including some by the
author, consist of sampling of graph signals [41, 42, 43], re-
covery of graph signals [44, 9, 45], representations for graph
signals [41, 46, 47], uncertainty principles on graphs [48, 49],
graph-based transforms [50, 51, 52] and community detection
and clustering on graphs [53, 40, 54], among others.

6. REPRODUCIBLE RESEARCH

Finally, in parallel to the work described above, an important
initiative, supported by NSF, evolved in the signal processing
community to ensure that our research is reproducible. Start-
ing with an early paper by Barni and Perez-Gonzales [55], a
topic was introduced that was percolating in other areas [56,
57]. Predecessor ideas seem to originate with Knuth [58];
Claerbout was one of the pioneers of the reproducible re-
search movement [58], many others followed [59, 60, 61] in-
cluding the author [62, 63].

Reproducible research refers to the idea that in computa-
tional sciences, the ultimate product is not a published paper
but rather the entire environment used to produce the results
in the paper (data, software, etc.). While it might sound nat-
ural and obvious, only in the last decade has the idea gained

prominence, culminating in the statements on encouraging re-
producible research now included in the information for au-
thors in SPS publications.

7. CONCLUSIONS

Dr. John Cozzens has been key in supporting the work on
signal representations for the last three decades. This paper is
meant as a personal account and a grateful acknowledgment
by the author of the impact he has made on the signal process-
ing community.
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[10] J. Kovačević, Filter Banks and Wavelets: Extensions
and Applications, Ph.D. thesis, Columbia University,
1991.

[11] I. Daubechies, “Orthonormal bases of compactly sup-
ported wavelets,” Commun. Pure Appl. Math., vol. 41,
pp. 909–996, Nov. 1988.



[12] R. R. Coifman, Y. Meyer, S. Quake, and M. V. Wick-
erhauser, “Signal processing and compression with
wavelet packets,” Tech. Rep., Yale University, 1991.
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[31] J. Kovačević and A. Chebira, “An introduction to
frames,” Found. Trends Signal Process., vol. 2, no. 1,
pp. 1–94, 2008.

[32] J. Kovačević and A. Chebira, “Life beyond bases: The
advent of frames (Part I),” IEEE Signal Process. Mag.,
vol. 24, no. 4, pp. 86–104, July 2007.
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[62] J. Kovačević, “How to encourage and publish repro-
ducible research,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., Honolulu, HI, Apr. 2007,
vol. IV, pp. 1273–1276.
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