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Abstract

Multiple description coding (MDC) is source coding for multiple channels
such that a decoder which receives an arbitrary subset of the channels may pro-
duce a useful reconstruction. Orchard et al. [1] proposed a transform coding
method for MDC of pairs of independent Gaussian random variables. This pa-
per provides a general framework which extends multiple description transform
coding (MDTC) to any number of variables and expands the set of transforms
which are considered. Analysis of the general case is provided, which can be
used to numerically design optimal MDTC systems. The case of two variables
sent over two channels is analytically optimized in the most general setting
where channel failures need not have equal probability or be independent. It
is shown that when channel failures are equally probable and independent, the
transforms used in [1] are in the optimal set, but many other choices are pos-
sible. A cascade structure is presented which facilitates low-complexity design,
coding, and decoding for a system with a large number of variables.

1 Introduction

For decades after the inception of information theory, techniques for source and chan-
nel coding developed separately. This was motivated both by Shannon’s famous
“separation principle” and by the conceptual simplicity of considering only one or the
other. Recently, the limitations of separate source and channel coding has lead many
researchers to the problem of designing joint source-channel (JSC) codes. An exam-
ination of Shannon’s result leads to the primary motivating factor for constructing
joint source-channel codes: The separation theorem is an asymptotic result which re-
quires infinite block lengths (and hence infinite complexity and delay) at both source
coder and channel coder; for a particular finite complexity or delay, one can often
do better with a JSC code. JSC codes have also drawn interest for being robust to
channel variation.

Multiple description transform coding is a technique which can be considered a
JSC code for erasure channels. The basic idea is to introduce correlation between
transmitted coefficients in a known, controlled manner so that erased coefficients can
be statistically estimated from received coefficients. This correlation is used at the



decoder at the coefficient level, as opposed to the bit level, so it is fundamentally
different from schemes that use information about the transmitted data to produce
likelihood information for the channel decoder. The latter is a common element of
JSC coding systems.

Our general model for multiple description coding is as follows: A source sequence
{zx} is input to a coder, which outputs m streams at rates Ry, Ry, ... R,,. These
streams are sent on m separate channels. There are many receivers, and each receives
a subset of the channels and uses a decoding algorithm based on which channels it
receives. Specifically, there are 2™ —1 receivers, one for each distinct subset of streams
except for the empty set, and each experiences some distortion. (This is equivalent to
communicating with a single receiver when each channel may be working or broken,
and the status of the channel is known to the decoder but not to the encoder.)

This is a reasonable model for a lossy packet network.! Each “channel” corre-
sponds to a packet or set of packets. Some packets may be lost, but because of
header information it is known which packets are lost. An appropriate objective is to
minimize a weighted sum of the distortions subject to a constraint on the total rate.

When m = 2, the situation is that studied in information theory as the multiple
description problem [2, 3, 4]. Denote the distortions when both channels are received,
only channel 1 is received, and only channel 2 is received by Dy, D¢, and Dy, respec-
tively. The classical problem is to determine the achievable (R;, Ry, Dy, Dy, Ds)-
tuples. A complete characterization is known only for an i.i.d. Gaussian source and
squared-error distortion [3].

This paper considers the case where {xy} is an i.i.d. sequence of zero-mean jointly
Gaussian vectors with a known correlation matrix R, = E[z;zi].? Distortion is mea-
sured by the mean-squared error (MSE). The technique we develop is based on square,
linear transforms and simple scalar quantization, and the design of the transform is
paramount. Rather dissimilar methods have been developed which use nonsquare
transforms [5]. The problem could also be addressed with an emphasis on quantizer
design [6, 7].

2 Proposed Coding Structure

Since the source is jointly Gaussian, we can assume without loss of generality that
the components are independent. If not, one can use a Karhunen-Loeve transform of
the source at the encoder and the inverse at each decoder. We propose the following
steps for multiple description transform coding (MDTC) of a source vector x:

1. x is quantized with a uniform scalar quantizer with stepsize A: x4, = [z;]a,
where [-]a denotes rounding to the nearest multiple of A.

2. The vector ©, = [z4,, Tgy, .- Zq,|" is transformed with an invertible, discrete

transform 7 : AZ" — AZ", y = T(z,). The design and implementation of T
are described below.

IFor example, the internet, when UDP is used as opposed to TCP.
2The vectors can be obtained by blocking a scalar Gaussian source.



3. The components of y are independently entropy coded.
4. If m < n, the components of y are grouped to be sent over the m channels.

When all the components of y are received, the reconstruction process is to (ex-
actly) invert the transform T to get & = x,. The distortion is precisely the quantiza-
tion error from Step 1. If some components of y are lost, they are estimated from the
received components using the statistical correlation introduced by the transform T.
The estimate Z is then generated by inverting the transform as before.

Starting with a linear transform 7" with determinant one, the first step in deriving
a discrete version 7T is to factor T into “lifting” steps [8]. This means that T is
factored into a product of upper and lower triangular matrices with unit diagonals
T =TT, -Ty. The discrete version of the transform is then given by

~

T(g) = [T [To- . [Ty ] o] 4 - (1)

The lifting structure ensures that the inverse of T can be implemented by reversing
the calculations in (1):

1) = [T 35 (17

A .

The factorization of 1" is not unique; for example,

e b 1 [ 1 Oo][1 ][ 1 0] 1 =L][1 0][1 Ltk
e Mo [T e Lo ]t 1T o 1 Jleflo 1 |
(2)

Different factorizations yield different discrete transforms, except in the limit as A
approaches zero.

The coding structure proposed here is a generalization of the method proposed
by Orchard, et al. [1]. In [1], only 2 x 2 transforms implemented in two lifting steps
were considered. (By fixing @ = 1 in (2), both factorizations reduce to having two
nonidentity factors.)

[t is very important to note that we first quantize and then use a (discrete) trans-
form. If we were to apply a (continuous) transform first and then quantize, the
use of a nonorthogonal transform would lead to noncubic partition cells, which are
inherently suboptimal among the class of partition cells obtainable with scalar quan-
tization [9]. The present configuration allows one to use discrete transforms derived
from nonorthogonal linear transforms, and thus obtain better performance [1].

3 Analysis of an MDTC System

The analysis and optimizations presented in this paper are based on fine quantization
approximations. Specifically, we make three assumptions which are valid for small
A: First, we assume that the scalar entropy of y = T([z],) is the same as that of
[T'z] 5. Second, we assume that the correlation structure of y is unaffected by the



quantization. Finally, when at least one component of y is lost, we assume that the
distortion is dominated by the effect of the erasure, so quantization can be ignored.

Denote the variances of the components of x by o}, o2, ..., 02 and denote the
correlation matrix of z by R, = diag(c?,03,...,02). Let R, = TR,TT. In the
absence of quantization, R, would be exactly the correlation matrix of y. Under
our fine quantization approximations, we will use R, in the estimation of rates and
distortions.

Estimating the rate is straightforward. Since the quantization is fine, y; is approx-
imately the same as [(T'z)]a, i.e., a uniformly quantized Gaussian random variable.
If we treat 1; as a Gaussian random variable with power azi = (Ry):i quantized with
bin width A, we get for the entropy of the quantized coefficient [10, Ch. 9]

1 1 1 1
H(y;) ~ 5 log 27760;_ —log A = 3 log azi + 3 log2me — log A = 3 log azi + ka,

where ka = (log2me)/2 — log A and all logarithms are base-two. Notice that ka
depends only on A. We thus estimate the total rate as

n 1 n
R=Y"H(y)=nka+ 5 log [ o (3)
=1 =1

The minimum rate occurs when [, o7 =[], 07 and at this rate the components

of y are uncorrelated. Interestingly, 7" = I is not the only transform which achieves
the minimum rate. In fact, an arbitrary split of the total rate among the different
components of y is possible. This is a justification for using a total rate constraint in
our following analyses. However, we will pay particular attention to the case where
the rates sent across each channel are equal.

We now turn to the distortion, and first consider the average distortion due only to
quantization. Since the quantization noise is approximately uniform, this distortion
is A?/12 for each component. Thus the distortion when no components are erased is
given by

nA?

Dy = —
°7 19

(4)

and is independent of T
Now consider the case when ¢ > 0 components are lost. We first must determine
how the reconstruction should proceed. By renumbering the variables if necessary, as-

sume that yy, v, . .., Yn_¢ are received and y,,_¢11, - . ., Y, are lost. Partition y into “re-
ceived” and “not received” portions as ¥y = [y, U]’ Where 9 = [y1, Y2, -+, Yno]”
and Jor = [Yn_t41, - +s YUn-1, Yn]'- The minimum MSE estimate of x given ¢, is

E[z|7,], which has a simple closed form because z is a jointly Gaussian vector. Using
the linearity of the expectation operator gives the following sequence of calculations:

& = Elzlg) = E[T™'Tx|y] = T7'E[Tz|j]

- TE Hyy] y] - Tl[E[zJiwrl ] (5
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If the correlation matrix of y is partitioned in a way compatible with the partition of
y as

BT R,

then it can be shown that ¢,.|g, is Gaussian with mean BTRI_ lgjr and correlation
matrix A 2 Ry — B'R;'B. Thus E[julfi] = B"R, “Ge, and 7 2 fur — Eljuclii] is
Gaussian with zero mean and correlation matrix A. 7 is the error in predicting 7,
from g, and hence is the error caused by the erasure. However, because we have used

a nonorthogonal transform, we must return to the original coordinates using 7! in
order to compute the distortion. Substituting ¢,, + 1 for E[f,,|7,] in (5) gives

;e:T—l{ Y ]:erT_I{O], 50 ||x—§c||2:HT_1{O]
U] n

Ry:TRxTT:[Rl B }

2

TyrT
_ =nU'U
For + n m,

where U is the last ¢ columns of T—!. Finally,

Bllz — 2| =) Y (UTU)iAy. (6)

i=1 j=1

We denote the distortion with ¢ erasures by D,. To determine D, we must now average
(6) over the ( Y ) possible erasures of ¢/ components, weighted by their probabilities

if necessary.
Our final distortion criterion is a weighted sum of the distortions incurred with
different numbers of channels available:

D == En: Ongg.
£=0

For the case where each channel has an outage probability of p and the channel
outages are independent, the weighting a, = (’g )pe(l — p)"* makes D the overall

expected MSE. However, there are certainly other reasonable choices for the weights.
Consider an image coding scenario when an image is split over ten packets. One
might want acceptable image quality as long as eight or more packets are received.
In this case, one should set a3 =ay = --- = a9 = 0.

For a given rate R, our goal is to minimize D. The expressions given in this section
can be used to numerically determine transforms to realize this goal. Analytical
solutions are possible in certain special cases. Some of these are given in the following
section.

4 Sending Two Variables Over Two Channels

General case Let us now apply the analysis of the previous section to find the best
transforms for sending n = 2 variables over m = 2 channels. In the most general
situation, channel outages may have unequal probabilities and may be dependent.
Suppose the probabilities of the combinations of channel states are given by the
following table:



‘ Channel 1

broken working
Channel 2 broken | 1 —pg—p1 —p2 1
working D2 Do
a b . 1 d —b
Let T'= cdl normalized so that detT'=1. Then T = e q and

R,=TR,T" = {

a’o? +b*02  aco? + bdo?
aco? + bdos  *o? + d*o3

By (3), the total rate is given by

R = 2%k + %log(Ry)H(Ry)Qz — Oa + %log(aZUf + o) (o + dod).  (7)
Minimizing (7) over transforms with determinant one gives a minimum possible rate
of R* = 2ka +logoioy. We refer to p = R — R* as the redundancy [1], i.e., the price
we pay in rate in order to potentially reduce the distortion when there are erasures.

In order to evaluate the overall average distortion, we must form a weighted aver-
age of the distortions for each of the four possible channel states. If both channels are
working, the distortion (due to quantization only) is Dy = A?/6. If neither channel is
working, the distortion is Dy = 07 + 05. The remaining cases require the application
of the results of the previous section. We first determine D, ;, the MSE distortion
when y; is received but ys is lost. Substituting in (6),

2
_ —b (Ry)%z /.2 2 U%U%
Dy —\H { u ] J-\<(Ry)22 — (Ry)ll J— (a® +b7) - —

~
(UTU)1,1 A

where we have used det 7" = ad —bc = 1 in the simplification. Similarly, the distortion
when vy, is received but y; is lost is Dy o = (2 + d?)o?03/(c*0f + d*03). The overall
average distortion is

D = po-Do+p1-Dig+ps-Dig+ (1 —pyo—p1—p2)- Do

A2
= | + (1 —po—p1 — p2) (o] + a%)] + D2 [%Dm + D1,2] ,
2
o

where the first bracketed term is independent of 7'. Thus our optimization problem
is to minimize D' for a given redundancy p.

If the source has a circularly symmetric probability density, i.e., o7 = 09, then
D' = (1 + p1/p2)o? independent, of T. Henceforth we assume oy > 0.

After eliminating d through d = (1 + bc)/a, one can show that the optimal trans-
form will satisfy

la] = -2 [\/229 14 /2% — 1 dbe(be 1 1) .

2
2coq
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Furthermore, D' depends only on the product b - ¢, not on the individual values of b

and c. The optimal value of bc is given by
2
(e ()
Do D2

(bc)optima.l — _% + % <]ZZ_; - 1)

It is easy to check that (bc)optimar Tanges from -1 to 0 as p;/p, ranges from 0 to oo.
The limiting behavior can be explained as follows: Suppose p; > p», i.e., channel 1 is
much more reliable than channel 1. Since (bc)optimal approaches 0, ad must approach
1, and hence one optimally sends z; (the larger variance component) over channel 1
(the more reliable channel), and vice-versa. This is the intuitive, layered solution. The
multiple description approach is most useful when the channel failure probabilities are
comparable, but this demonstrates that the multiple description framework subsumes
layered coding.

—-1/2

Equal channel failure probabilities If p; = ps, then (bc)optimal = —1/2, inde-
pendent of p. The optimal set of transforms is described by

a # 0 (but otherwise arbitrary) = —1/2b

b = £(2°F— V2% —1)o1a/09 ccl = 1/2a (8)

and using a transform from this set gives

1 1
Di=—-(Di1+D =02 — o? — o2). 9
1 2( 1,1 1,2) 1 2. 90 (2p_m)( 1 2) ( )

This relationship is plotted in Figure 1(a). Notice that, as expected, D; starts at
a maximum value of (07 + 03)/2 and asymptotically approaches a minimum value
of 02/2. By combining (3), (4), and (9), one can find the relationship between R,
Dgy, and Dy. For various values of R, the trade-off between Dy and D is plotted in
Figure 1(b).

The solution for the optimal set of transforms (8) has an interesting property that
after fixing p, there is an “extra” degree of freedom which does not affect the p vs.
D, performance. This degree of freedom can be used to control the partitioning of
the rate between channels or to give a simplified implementation.

Optimality of Orchard et al. transforms In [1] it is suggested to use transforms

1 b
of the form [ _1/(2) 1/2
transforms in fact lie in the optimal set of transforms. The “extra” degree of freedom
has been used by fixing a = 1, which yields a transform which can be factored into

two lifting steps; in the general case three lifting steps are needed.

]. As a result of our analysis we conclude that these

Optimal transforms that give balanced rates The transforms of [1] do not give
channels with equal rate (or, equivalently, power). In practice, this can be remedied
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Figure 1: Optimal R-Dy-D; trade-offs for oy =1, 09 = 0.5: (a) Relationship between
redundancy p and Dy; (b) Relationship between Dy and D; for various rates.

through time-multiplexing. An alternative is to use the “extra” degree of freedom to
make R; = R,. Doing this is equivalent to requiring |a| = |c| and |b| = |d|, and yields

a:i\/ b b:ii:i\/01(29—\/22p—1)‘
201( 2a

20 — /2% — 1)’ 207

In the next section, when we apply a two-by-two correlating transform, we will assume
a balanced-rate transform. Specifically, we will use 7, £ [ a 1/(2a) } .
—a 1/(2a)
Geometric interpretation The transmitted representation of x is given by y; =
(x, 1) and yo = (z, ©2), where ¢ = [a, b]T and ¢y = [c, d]T. In order to gain
some insight into the vectors ¢; and @- that result in an optimal transform, let us
neglect the rate and distortion that are achieved, and simply consider the transforms
described by ad = 1/2 and bc = —1/2. We can show that ¢; and ¢y form the
same (absolute) angles with the positive z-axis (see Figure 2(a)). For convenience,
suppose ¢ > 0 and b < 0. Then ¢,d > 0. Let #; and #, be the angles by which
1 and ¢, are below and above the positive xj-axis, respectively. Then tan#, =
—b/a = d/c = tanfy. If we assume o; > 09, then the maximum angle (for p = 0)
is arctan(o;/o9) and the minimum angle (for p — o0) is zero. This has the nice
interpretation of emphasizing x; over xo—because it has higher variance—as the
coding rate is increased (see Figure 2(b)).

5 Three or More Variables

Three variables over three channels Applying the results of Section 3 to the
design of 3 x 3 transforms is considerably more complicated than what has been
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Figure 2: Geometric interpretations. (a) When o; > o9, the optimality condition
(ad = 1/2, bc = —1/2) is equivalent to 6 = 0y < Oy = arctan(oy/oz). (b) If
in addition to the optimality condition we require the output streams to have equal
rate, the analysis vectors are symmetrically situated to capture the dimension with
greatest variation. At p = 0, 01 = 0y = Onax; as p — 00, 1 and @y close on the
T1-axis.

presented thus far. Even in the case of equal channel failures, a closed form solution
will be much more complicated that (8). When oy > 0y > 03 and erasure probabilities
are equal and small, a set of transforms which gives near optimal performance is
described by

[ V3014 09 T
a — _
op) 6\/30%@2
02
2a _
6\/30’%@2
\/?_)Ula B 09
| o2 6\/30%@2 ]

A derivation of this set must be omitted for lack of space.

Four and more variables For sending any even number of variables over two
channels, Orchard et al. [1] have suggested the following: form pairs of variables,
add correlation within each pair, and send one variable from each pair across each
channel. A necessary condition for optimality is that all the pairs are operating at the
same distortion-redundancy slope. If T, is used to transform variables with variances
o? and o3 and T} is used to transform variables with variances o3 and oZ, then the

equal-slope condition implies that we should have

B

. (16080t — 03) + \/2(16a80] — 05)% + 64adosof o302(02 — 03)
= e , Where v = —5— -
32at0; oioi(0? — 02)
Finding the optimal transform under this pairing constraint still requires finding the
optimal pairing.

Cascade Structures In order to extend these schemes to an arbitrary number of
channels while maintaining reasonable ease of design, we propose the cascade use of
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Figure 3: Cascade structure allows efficient MDTC of large vectors.

pairing transforms as shown in Figure 3. The cascade structure simplifies the encod-
ing, decoding (both with and without erasures), and design when compared to using
a general n x n transform. Empirical evidence suggests that for n = m = 4 and
considering up to one component erasure, there is no performance penalty in restrict-
ing consideration to cascade structures. This phenomenon is under investigation. As
expected, there is great improvement over simple pairing of coefficients; pairing can
not be expected to be near optimal for m larger than two.
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