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Abstract. We describe multiple description transform coding (MDTC),
a joint source-channel coding method for robust data communication.
MDTC achieves robustness and graceful degradation in the presence

of erasures by representing a source using several descriptions. Then,

if one of the descriptions is lost, we can reconstruct from those re-
ceived. After the theoretical foundation is laid out, applications to
robust audio and image transmission are presented.

1 Introduction

In recent years the following problem has received considerable attention:
Suppose we are transmitting data over network links of different capacities.
Such networks are called heterogeneous networks. A typical scenario might
involve a high-capacity network link switching over to a wireless link where
packets have to be dropped to accommodate the lower capacity of the latter
link. Packets could also be lost in the network due to transmission errors or
congestion. If packet retransmission is not an option (for example, due to real-
time constraints), one has to devise a way of getting meaningful information
to the recipient despite the loss.

This problem finds its natural solution in the so-called multiple-description
framework. The idea is to send multiple descriptions of a single source to the
receiver. Each of the descriptions can be lost with a certain probability. If all
the descriptions are received, we want a high-fidelity estimate of the original
data. If only some of the descriptions are received, we want to be able to re-
construct the transmitted data as well as possible. These requirements imply
that each of the descriptions should individually be good and thus close to
the original data. If this is true, however, the descriptions are very similar
so receiving more descriptions will add little extra information. For the de-
scriptions to be collectively good and not add much to the data rate, they
must be relatively independent, but such descriptions cannot be individually
good. These conflicting requirements will lead to the trade-offs typical in the
design of joint source-channel coding systems.

The original multiple description problem with two descriptions and three
receivers was posed by Gersho, Witsenhausen, Wolf, Wyner, Ziv and Ozarow



at the 1979 IEEE Information Theory Workshop. It can be formulated as the
search for achievable quintuples (Ry, Ra, Do, D1, D3) where Ry, Dy, i = 1,2
are the rates and distortions for the ith channel, respectively, and Dy is
the distortion when both descriptions are received. Interestingly, to this day,
the problem has been solved only for the memoryless Gaussian source with
squared error distortion (Ozarow [1]). El Gamal and Cover [2] construct an
achievable rate region for a memoryless source. To show how difficult the
problem is, consider, for example, the special case of an 1.i.d. binary source
with Ry = Ry = 1/2, Do = 0 and Dy = Dy = D. How small can D be?
A naive approach of sending alternate source symbols over the two channels
results in D = 0.25; evaluating the distortion-rate function at rate 1/2 implies
that D > 0.11. In between these extremes lies the minimum D. In 1980, Wolf,
Wyner and Ziv [3] showed that D > 1/6 ~ 0.16 [3], and the following year
Witsenhausen and Wyner [4] improved the lower bound to D > 1/5 = 0.2.
In 1982, El Gamal and Cover [2] gave the upper bound D < (v2 —1)/2 ~
0.207. Finally, in 1983, Berger and Zhang [5] closed the gap and showed that
D=(2-1))2.

Vaishampayan [6] has worked extensively on designing multiple descrip-
tion scalar quantizers as well as on applying the multiple description frame-
work to speech, image and video coding.

We consider multiple description joint source/channel transform coding
for erasure channels. This is motivated by the fact that the limitations of
separate source and channel coding (spurred by Shannon’s famous “sepa-
ration principle”) have lead many researchers to the problem of designing
joint source-channel (JSC) codes. An examination of Shannon’s result leads
to the primary motivating factor for constructing joint source-channel codes:
The separation theorem is an asymptotic result which requires infinite block
lengths (and hence infinite complexity and delay) at both source coder and
channel coder; for a particular finite complexity or delay, one can often do
better with a JSC code. JSC codes have also drawn interest for being robust
to channel variation.

We propose two methods: In the first, a block of n independent, zero-
mean Gaussian variables with different variances are transformed to a block
of n transform coefficients in order to create a known statistical correlation
between transform coefficients. The transform coefficients from one block are
distributed to different packets so in the case of a packet loss, the lost coeffi-
cients can be estimated from the received coefficients. The redundancy comes
from the relative inefficiency of scalar entropy coding on correlated variables.
This method is a generalization of the technique proposed in [7, 8] for two
channels. The second method uses a deterministic redundancy between de-
scriptions, introduced by representing the source data via a frame. That is,
we use a frame expansion from C™ to C™ (m > n) as a computationally
simple approach to generalized MD coding [9].



2 Multiple Descriptions Using Statistical Redundancy

In this first method (see [10, 11]), a block of & independent, zero-mean vari-
ables with different variances are transformed to a block of &k transform coef-
ficients in order to create a known statistical correlation between transform
coefficients. The coding of a source vector & proceeds as follows:

1. z is quantized with a uniform scalar quantizer with step size A: z,, =
[2:]a, where [-]a denotes rounding to the nearest multiple of A.

2. The vector x4 = [rqy, %49, ... qu]T is transformed with an invert-
ible, discrete transform 7' : AZF — AZF y = T(xq). The design and
implementation of 7' are described below.

3. The components of y are independently entropy coded.

4. If n < k, the components of y are grouped to be sent over the n channels.

The discrete transform 7' is related to a continuous transform 7’ through
“lifting.” Starting with a linear transform 7" with determinant one, the first
step in deriving a discrete version T is to factor T into a product of upper and
lower triangular matrices with unit diagonals T' = 7175 - - - T;;,. The discrete
version of the transform is then given by

T(xy) = [T [To. . [Tnwglal 4] 4 (1)

The lifting structure ensures that the inverse of T can be implemented by
reversing the calculations in (1):

) = [Tt (1 L)L
When all the components of y are received, the reconstruction process is to
(exactly) invert the transform T to get 2 = x,. The distortion is precisely
the quantization error from Step 1. If some components of y are lost, they
are estimated from the received components using the statistical correlation
introduced by the transform 7". The estimate # is then generated by inverting
T. The reader is referred to [10, 11] for the algebraic details.

The optimal design of the transform T for Gaussian sources, where arbi-
trary (unequal, dependent) packet loss probabilities are allowed, is discussed
in [10, 11]. Here we consider the simpler case where packet losses are i.i.d.
and the transform is implemented as parallel and/or cascade combinations of
2-by-2 transforms. It is shown in [10, 11] that for coding a two-tuple source
over two channels, where each is equally like to fail, it is sufficient to consider

n 2 [es] )

We use this as a building block to form larger transforms as in the cascade
structures [11]. The cascade structure simplifies the encoding, decoding, and

transforms of the form



design when compared to using a general k x k transform. Empirical evidence
suggests that for £ = 4 and considering up to one component erasure, there
is no performance penalty in restricting consideration to cascade structures.

3 Multiple Descriptions Using Frames

Robustness to lost packets comes from redundancy in the source representa-
tion. In the previous technique, the redundancy is statistical: the distribution
of one part of the representation is reduced in variance by conditioning on an-
other part. The second method that we consider (see [9]) uses a deterministic
redundancy between descriptions.

Consider a discrete block code which represents k input symbols through
a set of n output symbols such that any k of the n can be used to recover the
original k. (For concreteness, this may be a systematic (n, k) Reed-Solomon
code over GF(2™) with n = 2™ — 1 [12].) If the k input symbols are quan-
tized transform coefficients, this may be a good way to communicate a k-
dimensional source over an erasure channel that erases symbols with prob-
ability less than (n — k)/n. A problem with this approach is that except in
the case that exactly k of n transmitted symbols are received, the channel
has not been used efficiently. When more than & symbols are received, those
in excess of k provide no information about the source vector; and when less
than k& symbols are received, it i1s computationally difficult to use more than
just the systematic part of the code.

An alternative to (discrete) block coding was proposed in [9]. A linear
transform from R* to R”, followed by scalar quantization, is used to generate
n descriptions of a k-dimensional source. These n descriptions are such that
a good reconstruction can be computed from any %k descriptions, but also
descriptions beyond the kth are useful and reconstructions from less than &
descriptions are easy to compute.

Assume that we have a tight frame ® = {¢,,, }7_, C R* with |J¢on|| = 1
for all m and that y = Fa, where F' 1s the frame operator associated with
@ (see [13] and references therein for details on frames). This vector passes
through the scalar quantizer @Q: § = Q(y). The entropy-coded components of
y can each be considered a description of x.

For simplicity, let us assume that @ 1s a uniform quantizer with step size A
and that n < 2k. If m > k of the components of y are known to the decoder,
then x can be specified to within a cell with diameter approximately equal
to A and thus is well approximated. Since the constraints on z provided by
each description are independent, on average, the diameter is a nonincreasing
function of m.

When m < k components of § are received, R¥ can be partitioned into
an m-dimensional subspace and a (k — m)-dimensional orthogonal subspace
such that the component of z in the first subspace is well specified. With a
mild zero-mean condition on the component in the latter space, a reasonable



estimate of x is easily computed. For any m, estimating « can be posed as a
simple least-squares problem.’

Let us analyze the distortion when e of the descriptions are erased. Let
denote the index set of the erasures, that is, suppose {{z, o) }mer are erased.
If & = &\ {om tmer is a frame, the minimum MSE estimate Z is obtained
with the dual frame of @'; otherwise,  can only be estimated to within a
subspace and distributional knowledge is needed to get a good estimate.? We
model the quantizer as an additive white noise source,® so n = § — Fz has
independent components and is independent of  with E|n,,|? = 2.

When there are no erasures, the error between the reconstructed sig-
nal & and source z is due only to the quantization noise. The MSE in
this case is MSEq = k?¢?/n [13]. Now suppose (renumbering, if necessary)
E ={1,2,...,¢e} and let F, denote the frame operator associated with @’.
The MSE can then be written as

n

MSE, = ¢* Z ||(F:Fe)_130m||2

m=e+1

e ke
= 1—5+§ZBUCU MSE;,

i,j=1

where B(¢) and C'(®) depend on the inner products between erased vectors. A
simple special case is when the erased components are pairwise orthogonal.
In this case, (3) reduces to MSE, = (1 4+ ¢/(n — k))MSEq.

The coding method proposed here could be viewed as a signal-domain
alternative to a (discrete) rate-(k/n) block channel code. Though discussion
here was limited to the general framework and the distortion with different
numbers of erasures, preliminary calculations and simulations indicate po-
tential for the proposed method. Compared to the use of a discrete channel
code, the proposed method seems to give better performance at high rates
and to be less sensitive to knowledge of the erasure probability. Minimum
norm reconstructions can be computed in polynomial time for any e.

4 Applications

In this section, we give examples of the MDTC applied to robust audio as
well as robust image transmission systems. They are meant to illustrate the
potential of the proposed method; for more details, the reader is referred to

[15, 16].

! For m > k, a better estimate can be found by exploiting the boundedness of the
quantization error [13, 14].

? Extensions to where @’ is not a frame are suggested by [10].

® Better reconstructions are possible when the boundedness of the quantization
error is exploited [13, 14].



4.1 Multiple Description Source-Channel Coding of Audio

Audio compression uses a digital representation of audio signals to provide
maximum signal quality with a given number of bits, delay and cost. Human
perception plays a key role in compression of audio material. As a result,
recent audio standards work has concentrated on a class of audio coders
known as perceptual coders. Rather than trying to understand the source, they
model the listener and attempt to remove irrelevant information contained
in the input signal.

We apply the MDTC to a state-of-the-art audio coder developed at Bell
Labs, the Perceptual Audio Coder (PAC) [17]. Instead of developing a new
audio coder from scratch, we implement this new technique in a well-known
and fully operational audio coder.

PAC Coder Like most perceptual coders, the PAC combines both source
coding techniques to remove signal redundancy and perceptual coding tech-
niques to remove signal irrelevancy. The PAC divides the input signal into
1024-sample-blocks of data — frames — that will be used throughout the en-
coding process. It consists of five basic parts: The analysis filter bank converts
the time-domain data to frequency domain. The perceptual model computes
the frequency-domain threshold of masking both from the time-domain signal
and from the output of the analysis filter bank. Depending on the transform
that was used previously, each 1024-block is split into a predefined number of
groups of bands — gain factor bands. Within each factor band, a perceptual
threshold value 1s computed. In the quantization process, within each factor
band the quantization step sizes are adjusted according to the computed per-
ceptual threshold values in order to meet the noise level requirements. Once
a quantized representation that fits with the constraint on the coded signal
bit rate has been obtained, noiseless coding such as Huffman coding is used
to provide an efficient representation of the quantized coefficients. The frame
formatter forms the bit stream, adding to the coded quantized coefficients the
side information needed at the decoder to reconstruct the 1024-sample-block.
This block 1s defined as the frame.

At the decoder, all the blocks are inverted and an error mitigation block
is added between the inverse quantization and the synthesis filter bank. In
this block, lost frames are interpolated based on the previous and following
frames.

MD PAC Coder The only difference when compared to the PAC coder is
the addition of the MDTC block together with the off-line design.

An MD transform block is inserted between the quantizer and the noise-
less coder. Within each 1024-sample-block or eight 128-sample-blocks con-
tained in the 1024-sample-unit-block, MDTC is applied to the quantized co-
efficients (integers) coming out of the quantizer. The transform is applied to



pairs of quantized coefficients and produces pairs of MD-domain quantized
coefficients, using the off-line designed side information. Within each pair,
MD-domain quantized coefficients are then assigned to Channel 1 (quan-
tized coefficient with higher variance) or Channel 2 (quantized coefficient
with smaller variance)*. Side information contains both the way quantized
coefficients have to be paired and the parameter of the transform for each
pair. Then, the MD-domain quantized coefficients are passed to the noiseless
coder.

We insert the inverse MDTC block between the noiseless decoder and the
inverse quantizer. Within each 1024-sample-block or eight 128-sample-blocks
contained in the 1024-sample-unit, the inverse MDTC function is applied to
the MD-domain quantized coefficients (integers) coming out of the noiseless
decoder. Then, if both channels are received, we invert the MD transform
exactly, recovering perfectly the quantized coefficients. If only one of the
channels is lost, we estimate its lost coefficients from their counterparts in
the other channel, and invert the MDTC. If both channels are lost, we use
the built-in loss mitigation feature of the PAC.

As in the encoder, side information provides the way quantized coefficients
have to be paired, the parameter a of the inverse transform for each pair,
and the variances to be used in the estimation of lost MD-domain quantized
coefficients. Once the MDTC has been inverted according to one of these four
strategies, the output quantized coefficients are simply passed to the inverse
quantizer.

Since we have blocks of 1024 coefficients and we want to group them into
two channels, we need to design the pairing. As described in [11], when there
are 2N variables and two channels, the optimal pairing consists of pairing
the variable with the highest variance with the one with the lowest variance,
the second highest variance variable with the second lowest variance one, etc.

Therefore, we first tried pairing in the optimal fashion, that is, across all
bands. According to this scheme, we can have either 1024 or 128 variables
that we have to pair, leading to either 512 or 64 pairs. Of course, since factor
bands may have different quantization steps, this approach implies a rescaling
of the domain spanned by the variables prior to the application of MDTC,
by multiplying variables by their respective quantization steps.

As will be explained later, the optimal pairing across all bands did not
work well. Thus we now take the factor bands into account, and pair variables
belonging to the same factor band.

The next step was to design the correlating transform T, defined by (2).
For each pair we obtain the transform parameter a and find both the optimal

* If the source is Gaussian, uncorrelated, zero mean and if the quantizer preserves
the zero mean, then the outputs of the MDTC block should have the same vari-
ance. The reason why this is not the case here is that either the quantizer does not
preserve the zero mean or that the source is sufficiently far away from Gaussian.
We leave this investigation for future work.



redundancy allocation between pairs and the optimal a for a given set of
variances and their pairing. After the application of MDTC, we pass the
two channels (the MD-domain quantized coefficients) from the 1024 or 128-
sample-block to the noiseless coder of the PAC. We do not entropy code each
set separately. We do this for convenience and do not optimize the codebooks
for our MD-domain quantized coefficients. Since we lose by doing it, we feel
that the comparison between the SD PAC and MD PAC is fair. It is part of
future work for us to actually separate the channels and optimize codebooks.
From one set of variables, the MDTC scheme produces two distinct channels
that have to be sent separately through a network. Since these two channels
have to be sent separately, side information of the original frame has to be
doubled and sent with each channel.

Experimental Results Here we discuss the experiments we did to compare
the MD PAC to the original single description version — SD PAC. Since we
were interested in Internet audio applications, we selected a bit rate of 20
kbps. Our experiments with the MD PAC were all done with a small amount
of redundancy, p = 0.1 bits per variable.

EXP 1: The first experiment is to compare SD PAC and MD PAC at the
same bit rate when no frames are lost. Since we are introducing redundancy,
the MD version should sound slightly worse.

EXP 2: Then, still without losing anything, we increase the bit rate in
the MD PAC until we reach the same quality as in SD PAC. Here we can see
the price we pay in bits for robustness; these bits are wasted when no data
1s lost.

EXP 3: Finally, we compare the MD PAC and SD PAC at various loss
rates. The SD PAC uses frame interpolation to recover from lost frames. If
frame information from only one channel is lost, the MD PAC uses statistical
redundancy. If frame information from both channels is lost, that is, we lost
the whole frame, then we use the SD PAC error recovery scheme.

In what follows, P; is the loss rate of Channel 7, ¢ = 1,2. We also define
the overall loss rate as Py,y = (P1 + P2)/2. For example, if P, = 20%, then
20% of half-frames corresponding to Channel 1 are lost.

Pawring Across All Bands When we performed Experiment 1, we were quite
disappointed. The quality degradation in the MD PAC was extreme. Here is
an explanation why:

After applying MDTC to the quantized coefficients, the MD-domain out-
puts were simply passed to the original PAC noiseless coder. Since the corre-
lating transforms have been designed to produce two equal-rate outputs, we
are introducing nonzero values at the positions where the noiseless coder is
expecting zeros. Thus, modifying the input to the noiseless coder in such a
way led to ineffective coding, resulting in quality degradation. A solution to
this problem would be to design and optimize new entropy coders to be used
for the MD-domain quantized coefficients. We leave this for future work.



Pairing Within Factor Bands We now restrict ourselves to pairing vari-
ables belonging to the same factor band. Throughout the rest of the pa-
per, we will be pointing the reader to the results of our experiments. The
audio files are provided in three formats (aiff, wave and nezt) and can
be accessed on the Web at: http://cm.bell-labs.com/who/jelena/ under
Interests/MD/AudioDemo/DemoList.html.

We performed EXP 1 at 20 kbps. The quality degradation due to the
redundancy was very low, though noticeable for expert listeners (listen to
Files 1 and 2 under “No losses”).

In EXP 2, the difference was hardly noticeable (listen to Files 1 and 3
under “No losses”). The price we pay is an extra 2 kbps for the MD PAC.

EXP 3 was performed at various loss rates. We started with P = 100%
and P = 0% , and then P; = 0% and P> = 100%. A very annoying high-
frequency artifact appeared in the decoded files. The higher the loss rates, the
more present this artifact was. It turns out that the high-frequency artifact
came from overvaluation of variables within a particular factor band, the one
where the variances drop to very low levels (the limit of the spectrum that
will be coded at a given bit rate). This overvaluation seems to stem from the
huge difference of variances of the variables within this factor band, leading
to a very small transform parameter a.

To improve the estimation within this factor band, we first set the vari-
ables belonging to this factor band to zero. The artifact disappeared. How-
ever, since the resulting decoded files lost their highest frequencies, they
sounded quite unnatural (listen to File 3 under “Loss rate = 50%”).

Note that above, we simulated only the extreme case when one entire
channel is lost. We now discuss the results when losses are spread over both
channels. The SD PAC error recovery scheme is particularly effective below
Piot = 10%. However, for higher loss rates, the interpolation process becomes
less and less sufficient, and gaps appear in the music (listen to File 4 under
“Total loss rate = 50%”).

On the other hand, the MD PAC estimation process seems to have a better
behaviour at high loss rates, typically over 80% of one of the channels (listen
to Files 1, 2, 3 and 4 under “Total loss rate = 50%”). Even if the estimation
tends to be noisy as we have seen previously, the result is satisfactory. How-
ever, for loss rates around 50%, the noisy effects are annoying. This might be
due to the fact that we are jumping from the spectrum of a perfectly received
frame to one estimated in the case of a loss. Furthermore, it seems that the
estimated spectrum is not only noisy but also biased from the original one.
Moreover, audio is inherently nonstationary, and we are using only one set
of estimated variances for an entire audio file. This leads to the differences
between original and estimated spectra. As future work, we will implement
an adaptive scheme where the variances are estimated on shorter pieces of
music. At low loss rates; the behaviour of the MD PAC coder is effective,
since the previously described effect is hardly present (listen to Files 1,2 and



3 under “Total loss rate = 5%”). At the loss rate of (P1, P2) = (20%, 20%),
which means that the percentage of loss of both half-frames is P15 = 4%, the
quality is satisfactory, even though we are mixing spectra from three sources:
received, estimated and interpolated (listen to Files 1,2 and 3 under “To-
tal loss rate = 20%”). However, at the loss rate of (P, Ps) = (40%, 40%),
Py = 16%, the decoded file is loaded with annoying artifacts coming from
this mix as well as clipping due to the high Pi5.

4.2 MDTC of Images

MDTC of Images Using Statistical Redundancy To demonstrate the
efficacy of the correlating transform method for image coding, we consider
the case of coding for four channels. This method is designed to operate
on source vectors with uncorrelated components. We (approximately) obtain
such a condition by forming vectors from DCT coefficients separated both
in frequency and in space. A straightforward application proceeds in the
following steps:

1. An 8-by-8 block DCT of the image is computed.

2. The DCT coefficients are uniformly quantized.

3. Vectors of length 4 are formed from DCT coefficients separated in fre-
quency and space. The spatial separation is maximized, that is, for 512 x
512 images, the samples that are grouped together are spaced by 256
pixels horizontally and/or vertically.

4. Correlating transforms are applied to each 4-tuple.

5. Entropy coding akin to that of JPEG is applied.

The system design i1s completed by determining which frequencies are to
be grouped together and designing a transform for each group. This can be
done based on training data. Even with, say, a Gaussian model for the source
data, the transform parameters must be numerically optimized.’

We have simulated an abstraction of this system. If we were to use pre-
cisely the strategy outlined above, the importance of the DC coefficient would
dictate allocating most of the redundancy to the group containing the DC
coefficient. Thus for simplicity we assume that the quantized DC coefficient is
communicated reliably through some other means. We separate the remain-
ing coefficients into those that are placed in groups of four and those that are
sent by one of the four channels only. The optimal allocation of redundancy
between groups 1s difficult, so we allocate approximately the same redun-
dancy to each group. For comparison we consider a baseline system that also
communicates the DC coefficient reliably. The AC coefficients for each block
are sent over one of the four channels. The rate 1s estimated by sample scalar
entropies.

® In the case of pairing transforms as in [8], the optimal pairing and allocation of
redundancy between the pairs can be found analytically [11].



Simulation results for the standard 512 x 512 ‘Lena’ image are given in
Fig. 1. As desired, the MD system gives a higher quality image when one of
four packets 1s lost at the expense of worse rate-distortion performance when
there are no packet losses.

Fig. 1. Results for correlating transform method at 1 bpp. Top row: no packet
losses; bottom row: one packet lost. Left column: baseline system; right col-
umn: MD system.

The results presented here are only preliminary because we have applied
the techniques of [10] without much regard for the the structure and prop-
erties of images. The transform design is based on high-rate entropy esti-
mates for uniformly quantized Gaussian random variables. Effects of coarse
quantization, dead zone, divergence from Gaussianity, run length coding, and
Huffman coding are neglected. Incorporating these will require a refinement
of the theory and/or an expansive numerical optimization. Aside from trans-
form optimization, this coder could be improved by using a perceptually
tuned quantization matrix as suggested by the JPEG standard. Here we
have used a constant quantization matrix for simplicity. With this type of
tuning 1t should be possible to design a system which, say, performs precisely
as well as the system in [7] when two or four of four packets arrive, but which
performs better when one or three packets arrive.

A full image communication system requires packetization. We have not
explicitly considered this, so we do not produce four streams with precisely



the same number of bits. The expected number of bits for each stream is
equal because of the form of (2). In contrast, with the transforms used in
[8] one must multiplex the streams to produce packets of approximately the
same size.

MDTC of Images Using Frames As an example, we consider a frame
alternative to a (10, 8) block code. For the 10 x 8 frame operator F' we use
a matrix corresponding to a length-10 real Discrete Fourier Transform of a
length-8 sequence [13]. This can be constructed as F' = [F(1) F(?)] where

1 1)(2j — 1
Fi(jl): §cos%éj) and
1 o 1)(2) — 1
Fi(?):§sin%gj), 1<i<10,1<j<4.

In order to profit from psychovisual tuning, we apply this technique to DCT
coefficients and use quantization step sizes as in a typical JPEG coder. The
coding proceeds as follows:

1. An 8-by-8 block DCT of the image is computed.
2. Vectors of length 8 are formed from DCT coefficients of like frequency,
separated in space.
. Each length 8 vector is expanded by left-multiplication with F'.
4. Each length 10 vector is uniformly quantized with a step size depending
on the frequency.

o

The baseline system against which we compare uses the same quantiza-
tion step sizes, but quantizes the DCT coefficients directly and then applies a
systematic (10, 8) block code which can correct any two erasures. We assume
that if there are more than two erasures, only the systematic part of the re-
ceived data is used. (Maximum likelihood decoding would perform somewhat
better, but is complex. In practice, one often discards the entire codeword if
there are too many erasures.)

We have simulated the two systems with quantization step sizes conform-
ing to a quality setting of 75 in the Independent JPEG Group’s software.
For the ‘Lena’ image, this corresponds to a rate of about 0.98 bpp plus 25%
channel coding. In order to avoid issues related to the propagation of errors in
variable length codes, we consider an abstraction in which sets of coefficients
are lost. The alternative would require explicitly forming ten entropy coded
packets. The reconstruction for the frame method follows a least-squares
strategy. For the baseline system, when eight or more of the ten descriptions
arrive, the block code insures that the image 1s received at full fidelity. The
effect of having less than eight packets received is simulated using the follow-
ing combinatorial result: With e > n — k erasures distributed uniformly in a
systematic (n, k) code, the probability that m data symbols are erased is

(Z)_1<T]:l) (?—_7]:1) for e — (n — k) < m < min(e, k).



Fig. 2. Results for frame method at 1 bpp. Left column: baseline system;
right column: MD system. From top to bottom, number of packets received

188, 7,6, and 5.

Results are shown in Fig. 2 for five through eight received packets. As ex-
pected, the frame system has better performance when less than eight pack-
ets are received. The performance of the MD system degrades gracefully as
the number of lost packets increases.
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