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Abstract
Generalized multiple description coding (GMDC) is

source coding for multiple channels such that a decoder
which receives an arbitrary subset of the channels may pro-
duce a useful reconstruction. This paper reports on ap-
plications of two recently proposed methods for GMDC to
image coding. The first produces statistically correlated
streams such that lost streams can be estimated from the re-
ceived data. The second uses quantized frame expansions
and hence is conceptually similar to block channel coding,
except it is done prior to quantization.

1 Introduction
Recently the problem of transmitting data over heteroge-

neous networks has received considerable attention. A typ-
ical scenario might require data to move from a fiber link to
a wireless link, which necessitates dropping packets to ac-
commodate the lower capacity of the latter. If the network
is able to provide preferential treatment to some packets,
then the use of a multiresolution or layered source coding
system is the obvious solution. But what if the network will
not look inside packets and discriminate? Then packets will
be dropped at random, and it is not clear how the source (or
source-channel) coding should be designed. If packet re-
transmission is not an option (e.g., due to a delay constraint
or lack of a feedback channel), one has to devise a way of
getting meaningful information to the recipient despite the
loss. The situation is similar if packets are lost due to trans-
mission errors or congestion.

This problem is a generalization of the “multiple de-
scription” (MD) problem. In the MD problem, a source is
described by two descriptions at rates R� and R�. These
two descriptions individually lead to reconstructions with
distortions D� and D�, respectively; and the two descrip-
tions together yield a reconstruction with distortion D�.
The original problem was to characterize the achievable
quintuples �R�� R�� D�� D�� D��. The first design algo-
rithm for practical MD coding was given by Vaishampayan
[1]. Vaishampayan’s approach was based on scalar quan-
tization with the MD property. Though MD scalar quan-
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tizers can be used in conjunction with transforms [2], the
first successful attempts to use transforms to obtain the MD
propertywere reported in [3, 4]. For backgroundon the MD
problem, see [1] and the references therein.

The aforementioned techniques are specific to the two-
channel MD problem where all, half, or none of the bits
make it to the decoder. When applied to packet commu-
nication with more than two packets, they fail to take full
advantage of the “finer granularity.” This provided motiva-
tion for the techniques for GMDC presented in [5, 6].

Our specific interest in this work is the communication
of still images. The most common way to communicate
an image over the internet is to use a progressive encoding
system and to transmit the coded image as a sequence of
packets over a TCP connection. When there are no packet
losses, the receiver can reconstruct the image as the packets
arrive; but when there is a packet loss, there is a large period
of latency while the transmitter determines that the packet
must be retransmitted and then retransmits the packet. The
latency is due to the fact that the application at the receiv-
ing end uses the packets only after they have been put in
the proper sequence. Changing to UDP does not solve the
problem: because of the progressive nature of the encod-
ing, the packets are useful only in the proper sequence. (The
problem is more acute if there are stringent delay require-
ments, e.g., for fast browsing or for streaming video. In
this case retransmission is not just undesirable but impossi-
ble.) To combat this latency problem, it is desirable to have
a communication system that is robust to arbitrarily placed
packet erasures and that can reconstruct an image progres-
sively from packets received in any order.

We approach the problem through the generalized mul-
tiple description framework. This paper reports prelimi-
nary image communication experiments using the methods
of [5, 6]. The following two sections describe each tech-
nique and give simulation results.

2 Square Correlating Transforms
In this first method (see [5]), a block of n independent,

zero-mean variables with different variances are trans-
formed to a block of n transform coefficients in order to
create a known statistical correlation between transform co-
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efficients. The transform coefficients from one block are
distributed to different packets so in the case of a packet
loss, the lost coefficients can be estimated from the received
coefficients. The redundancy comes from the relative in-
efficiency of scalar entropy coding on correlated variables.
This method is a generalization of the technique proposed
in [3, 4] for two channels.

The coding of a source vector x proceeds as follows:

1. x is quantized with a uniform scalar quantizer with
step size �: xqi � �xi��, where � � �� denotes round-
ing to the nearest multiple of �.

2. The vector xq � �xq�� xq�� � � � xqn�
T is transformed

with an invertible, discrete transform �T � �Zn �
�Zn, y � �T �xq�.

3. The components of y are independently entropy
coded.

The discrete transform �T is related to a continuous trans-
form T through “lifting.” Starting with a linear transform
T with determinant one, the first step in deriving a discrete
version �T is to factor T into a product of upper and lower
triangular matrices with unit diagonals T � T�T� � � �Tk.
The discrete version of the transform is then given by

�T �xq� �
�
T�

�
T� � � � �Tkxq ��

�
�

�
�
� (1)

The lifting structure ensures that the inverse of �T can be im-
plemented by reversing the calculations in (1):

�T���y� �
h
T��k � � �

�
T���

�
T��� y

�
�

�
�

i
�
�

When all the components of y are received, the recon-
struction process is to (exactly) invert the transform �T to
get �x � xq . The distortion is precisely the quantization er-
ror from Step 1. If some components of y are lost, they are
estimated from the received components using the statisti-
cal correlation introduced by the transform �T . The estimate
�x is then generated by inverting T . The reader is referred to
[5, 7] for the algebraic details.

The optimal design of the transform �T for Gaussian
sources, where arbitrary (unequal, dependent) packet loss
probabilities are allowed, is discussed in [5]. Here we con-
sider the simpler case where packet losses are i.i.d. and the
transform is implemented as parallel and/or cascade com-
binations of 2-by-2 transforms. It is shown in [5] that for
coding a two-tuple source over two channels, where each
is equally like to fail, it is sufficient to consider transforms
of the form

Ta
�
�

�
a ���	a�

�a ���	a�

�
� (2)

We use this as a building block to form larger transforms;
e.g., as shown in Fig. 1. The cascade structure simplifies the

x�

x� y�

y�

x� y�

x� y�

�T� �T�

�T� �T�

Figure 1: Cascade structure allows simple and efficient
GMDC for more than two channels.

encoding, decoding, and design when compared to using a
general n� n transform. Empirical evidence suggests that
for n � 
 and considering up to one component erasure,
there is no performance penalty in restricting consideration
to cascade structures.
2.1 Application to images

To demonstrate the efficacy of the correlating transform
method for image coding, we consider the case of cod-
ing for four channels. This method is designed to operate
on source vectors with uncorrelated components. We (ap-
proximately) obtain such a condition by forming vectors
from DCT coefficients separated both in frequency and in
space. A straightforward application proceeds in the fol-
lowing steps:

1. An 8-by-8 block DCT of the image is computed.

2. The DCT coefficients are uniformly quantized.

3. Vectors of length 4 are formed from DCT coefficients
separated in frequency and space. The spatial separa-
tion is maximized, i.e., for ��	���	 images, the sam-
ples that are grouped together are spaced by 256 pixels
horizontally and/or vertically.

4. Correlating transforms are applied to each 4-tuple.

5. Entropy coding akin to that of JPEG is applied.

The system design is completed by determining which
frequencies are to be grouped together and designing a
transform (an ��� �� ��-tuple for use as in Fig. 1) for each
group. This can be done based on training data. Even with,
say, a Gaussian model for the source data, the transform pa-
rameters must be numerically optimized.1

We have simulated an abstraction of this system. If we
were to use precisely the strategy outlined above, the impor-
tance of the DC coefficient would dictate allocating most of
the redundancy to the group containing the DC coefficient.

1In the case of pairing transforms as in [4], the optimal pairing and al-
location of redundancy between the pairs can be found analytically [7].
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Figure 2: Rate-distortion results for the correlating trans-
form method. Top (solid) and bottom (dashed) curves are
for when all and three-fourthsof the transmitted data arrives
at the decoder, respectively.

Thus for simplicity we assume that the quantized DC coeffi-
cient is communicated reliably through some other means.
We separate the remaining coefficients into those that are
placed in groups of four and those that are sent by one of
the four channels only. The optimal allocation of redun-
dancy between groups is difficult, so we allocate approxi-
mately the same redundancy to each group. For comparison
we consider a baseline system that also communicates the
DC coefficient reliably. The AC coefficients for each block
are sent over one of the four channels. The rate is estimated
by sample scalar entropies.

Simulation results for the standard ��	���	 ‘Lena’ im-
age are given in Fig. 2. The curve type indicates whether
all (solid) or three-fourths (dashed) of the transmitted data
arrives at the decoder. The marker type differentiates the
MD and baseline systems. For the MD systems, the ob-
jective redundancy in bits per pixel (� from [4, 5]) is also
given. As desired, the MD system gives a higher quality
image when one of four packets is lost at the expense of
worse rate-distortion performance when there are no packet
losses. Size �	���	� sections of sample images are given
in Fig. 3.

2.2 Comments
The results presented here are only preliminary because

we have applied the techniques of [5] without much regard
for the the structure and properties of images. The trans-
form design is based on high-rate entropy estimates for uni-
formly quantized Gaussian random variables. Effects of
coarse quantization, dead zone, divergence from Gaussian-
ity, run length coding, and Huffman coding are neglected.
Incorporating these will require a refinement of the theory

Figure 3: Results for correlating transform method at 1 bpp.
Top row: no packet losses; bottom row: one packet lost.
Left column: baseline system; right column: MD system.

and/or an expansive numerical optimization. Aside from
transform optimization, this coder could be improved by
using a perceptually tuned quantization matrix as suggested
by the JPEG standard. Here we have used a constant quan-
tization matrix for simplicity. With this type of tuning it
should be possible to design a system which, say, performs
precisely as well as the system in [3] when two or four of
four packets arrive, but which performs better when one or
three packets arrive.

A full image communication system would probably
require packetization. We have not explicitly considered
this, so we do not produce four streams with precisely the
same number of bits. The expected number of bits for each
stream is equal because of the form of (2). In contrast, with
the transforms used in [4] one must multiplex the streams
to produce packets of approximately the same size.

3 Overcomplete Frame Expansions
Robustness to lost packets comes from redundancy in

the source representation. In the previous technique, the re-
dundancy is statistical: the distribution of one part of the
representation is reduced in variance by conditioning on an-
other part. The second method that we consider (see [6])
uses a deterministic redundancy between descriptions.

Consider a discrete block code which represents k input
symbols through a set of n output symbols such that any k
of the n can be used to recover the original k. (For con-
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creteness, this may be a systematic �n� k� Reed-Solomon
code over GF �	m� with n � 	m � � [8].) If the k input
symbols are quantized transform coefficients, this may be
a good way to communicate a k-dimensional source over
an erasure channel that erases symbols with probability less
than �n � k��n. A problem with this approach is that ex-
cept in the case that exactly k of n transmitted symbols are
received, the channel has not been used efficiently. When
more than k symbols are received, those in excess of k pro-
vide no information about the source vector; and when less
than k symbols are received, it is computationally difficult
to use more than just the systematic part of the code.

An alternative to (discrete) block coding was proposed
in [6]. A linear transform from R

k to Rn , followed by
scalar quantization, is used to generate n descriptions of a
k-dimensional source. These n descriptions are such that a
good reconstruction can be computed from any k descrip-
tions, but also descriptions beyond the kth are useful and re-
constructions from less than k descriptions are easy to com-
pute.

Assume that we have a tight frame
 � f�mg
n
k�� � R

k

with k�mk � � for all m and that y � Fx, where F is
the frame operator associated with
 (see [9] and references
therein for details on frames). This vector passes through
the scalar quantizerQ: �y � Q�y�. The entropy-codedcom-
ponents of �y can each be considered a description of x.

For simplicity, let us assume that Q is a uniform quan-
tizer with step size � and that n � 	k. If m � k of the
components of �y are known to the decoder, then x can be
specified to within a cell with diameter approximately equal
to � and thus is well approximated. Since the constraints
on x provided by each description are independent, on av-
erage, the diameter is a nonincreasing function of m.

When m � k components of �y are received, Rk can be
partioned into an m-dimensional subspace and a �k �m�-
dimensional orthogonal subspace such that the component
of x in the first subspace is well specified. With a mild
zero-mean condition on the component in the latter space,
a reasonable estimate of x is easily computed. For any m,
estimating x can be posed as a simple least-squares prob-
lem.2 An outline for an analysis using an additive white
noise model for the quantization error is given in [6].
3.1 Application to images

As an example, we consider a frame alternative to a
���� �� block code. For the ���� frame operatorF we use
a matrix corresponding to a length-10 real Discrete Fourier
Transform of a length-8 sequence [9]. This can be con-
structed as F � �F ��� F ����, where

F
���
ij �

�

	
cos

	�i� ���	j � ��

��
and

2For m � k, a better estimate can be found by exploiting the bound-
edness of the quantization error [9].

F
���
ij �

�

	
sin

	�i� ���	j � ��

��
� � � i � ��� � � j � 
�

In order to profit from psychovisual tuning, we apply this
technique to DCT coefficients and use quantization step
sizes as in a typical JPEG coder. The coding proceeds as
follows:

1. An 8-by-8 block DCT of the image is computed.

2. Vectors of length 8 are formed from DCT coefficients
of like frequency, separated in space.

3. Each length 8 vector is expanded by left-
multiplication with F .

4. Each length 10 vector is uniformly quantized with a
step size depending on the frequency.

The baseline system against which we compare uses the
same quantization step sizes, but quantizes the DCT coef-
ficients directly and then applies a systematic ���� �� block
code which can correct any two erasures. We assume that if
there are more than two erasures, only the systematic part of
the received data is used. (Maximum likelihood decoding
would perform somewhat better, but is complex. In prac-
tice, one often discards the entire codeword if there are too
many erasures.)

We have simulated the two systems with quantization
step sizes conforming to a quality setting of 75 in the In-
dependent JPEG Group’s software.3 For the ‘Lena’ image,
this corresponds to a rate of about 0.98 bpp plus 25% chan-
nel coding. In order to avoid issues related to the propaga-
tion of errors in variable length codes, we consider an ab-
straction in which sets of coefficients are lost. The alter-
native would require explicitly forming ten entropy coded
packets. The reconstruction for the frame method follows a
least-squares strategy. For the baseline system, when eight
or more of the ten descriptions arrive, the block code insures
that the image is received at full fidelity. The effect of hav-
ing less than eight packets received is simulated using the
following combinatorial result: With e 
 n � k erasures
distributed uniformly in a systematic �n� k� code, the prob-
ability that m data symbols are erased is

�
n

e

����
k

m

��
n� k

e�m

�
for e��n�k� � m � min�e� k��

Numerical results are shown in Fig. 4 for one through ten
received packets. As expected, the frame system has better
performance when less than eight packets are received. It is
disappointing to see that the frame system did not have bet-
ter performance when all ten packets are received, as was
expected. Sample images are given in Fig. 5. (From the

3Version 6b of cjpeg. The current version is available at
ftp://ftp.uu.net/graphics/jpeg/.
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Figure 4: Numerical results for the overcomplete frame
method at about 1 bpp. The mean performance is shown
for each numberof packets received along with the standard
deviation.

��	� ��	 images, �
� �
 pixel detail images are shown.)
Numerically and visually it is apparent that the performance
of the MD system degrades gracefully as the number of lost
packets increases.
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