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Abstract

Quantized frame expansions are proposed as a method for generalized multiple
description coding� where each quantized coe�cient is a description� Whereas
previous investigations have revealed the robustness of frame expansions to
additive noise and quantization� this represents a new application of frame
expansions� The performance of a system based on quantized frame expansions
is compared to that of a system with a conventional block channel code� The
new system performs well when the number of lost descriptions �erasures on an
erasure channel� is hard to predict�

� Introduction

The problem of transmitting data over heterogenous networks has recently received
considerable attention� A typical scenario might require data to move from a �ber
link to a wireless link� which necessitates dropping packets to accommodate the lower
capacity of the latter� If the network is able to provide preferential treatment to
some packets� then the use of a multiresolution or layered source coding system is the
obvious solution� But what if the network will not look inside packets and discrimi�
nate� Then packets will be dropped at random� and it is not clear how the source �or
source�channel� coding should be designed� If packet retransmission is not an option
�e�g�� due to a delay constraint or lack of a feedback channel�� one has to devise a way
of getting meaningful information to the recipient despite the loss� The situation is
similar if packets are lost due to transmission errors or congestion�

This problem is a generalization of the 	multiple description
 �MD� problem�
In the MD problem� a source is described by two descriptions at rates R� and R��
These two descriptions individually lead to reconstructions with distortions D� and
D�� respectively� the two descriptions together yield a reconstruction with distortion
D�� The original problem� as posed by Gersho� Witsenhausen� Wolf� Wyner� Ziv and
Ozarow in ��� was to characterize the achievable quintuples �R�� R��D��D��D���
The �rst design algorithm for practical MD coding was given by Vaishampayan ��� and



the �rst transform�based approach was devised by Wang� Orchard� and Reibman ����
For more background on MD coding� see ��� �� and the references therein�

Describing a source with M packets 	descriptions
 such that any subset of the
packets yields a useful reconstruction is a generalization of the MD problem� We
propose the use of linear transforms from R

N to RM 	with M � N
 followed by
scalar quantization as a computationally simple approach to generalized MD coding�
Linear transform approaches for M � N are investigated in ��� �� ��

� Problem Statement

Consider communicating a source taking values in RN across an erasure channel�
Denote the channel alphabet by X and suppose jX j � ��N�M�R� whereM is the number
of channel uses per N �tuple andR is the overall rate per component 	including channel
coding
� The objective of this paper is to compare the following two techniques�

� Conventional system� Each component of the source vector is quantized us�
ing an 	N�M
R�bit quantizer� giving N codewords� A linear systematic block
code XN � XM is applied to the quantizer output� and the M resulting code�
words are sent on the channel�

� Quantized frame �QF� system� The source vector is expanded using a
linear transform F � RN � R

M� Each transform coe�cient is quantized using
an 	N�M
R�bit quantizer� TheM resulting codewords are sent on the channel�

Since a linear block code is a linear transform� the di�erence between the systems is
the swapping of transform and quantization operations� The second system uses a
QF expansion� For details on frames and QF expansions� see ��� ���

The conventional system works by producing a linear dependence between the
transmitted symbols� A valid transmitted M �tuple must lie in a speci�ed N �dim�
ensional subspace of XM � When N or more symbols are received� they are consistent
with exactly one valid element of XM � so the information symbols are known� This
works very well when exactly N of the M transmitted codewords are received� How�
ever� when more or less than N codewords are received� there either is no bene�t
from the extra information or it is di�cult to recover partial information about the
source vector�

The QF system has a similar way of adding redundancy� Denote the signal vector
by x� The expanded signal y � Fx has a linear dependence between its components�
Thus� if N or more components of y are known� x can be recovered exactly� However�
the components of y are not directly transmitted� it is the quantization that makes
the two systems di�erent� Quantization makes the components of �y � Q	y
 linearly
independent� so each component of �y�even in excess of N�gives distinct information
on the value of x� It is known that from a source coding point of view� a QF expansion
	with linear reconstruction
 is not competitive with a basis expansion ��� �� ��� Here
the �baseline� �delity is given by a basis expansion� and the noise reduction property
of frames ��� improves the �delity when we are �lucky� to receive more than N
components�



One should not get the impression that the QF system is automatically as good
as the conventional system when N components are received and better when more
than N are received� The comparison is more subtle because all basis expansions are
not equally good� The conventional system can use the best orthogonal basis �the
Karhunen�Lo�eve transform� or at least an orthogonal basis� On the other hand� it is
not possible to make all N �element subsets of the frame associated with F orthogonal�
Quantizing in a nonorthogonal basis is inherently suboptimal ��	�

When less than N components are received� the QF representation fails to localize
x to a 
nite cell� Neglect quantization error for the moment� and assume k � N
components are received� RN can be decomposed into a k�dimensional subspace and
an �N�k��dimensional perpendicular subspace such that the component of x in the k�
dimensional subspace is completely speci
ed and the component in the perpendicular
subspace is unknown� In many applications the source is known to have mean zero�
so the component in the perpendicular subspace can be estimated as zero� Thus
the reconstruction process may follow the same linear algebraic calculations for any
k � N received components without a distinction between systematic and parity
parts of the code�

We examine the QF system in two steps� First� we assume that the quantization
error is additive white noise� independent of the source� and that a linear reconstruc�
tion is used� Then� we consider the communication of a white Gaussian source and 
x
the quantization to be unbounded and uniform� This facilitates a speci
c numerical
comparison between the conventional and QF systems using the earlier analysis�

� E�ect of Erasures

Let �  f�kgMk�� � R
N be a tight frame with k�kk  � for all k� and let F be the

frame operator associated with ��� � being a frame means that there exist A and B�
� � A � B ��� such that

Akxk� �

MX

k��

khx� �kik
� � Bkxk� for all x � RN�

With the normalization and tightness of the frame� A  B  M�N � The frame
operator F is given by a matrix with kth row equal to ��

k� A source vector x � RN

is represented by �y  Q�y�� where y  Fx and Q is a scalar quantizer� Since the
components of �y will be used as �descriptions� in a multiple description system�
we are interested in the distortion incurred in reconstruction from a subset of the
components of �y�

We will model �  �y�y as white noise independent of x with component variances
���� This is a common model� though � is actually completely determined by x when
Q is a deterministic quantizer� If subtractive dithered uniform quantization with step
size � is used� the model is precisely valid with ���  ����� ���	� We will ignore the

�De�nitions of frame terminology are kept to a minimum� the reader is referred to ��� for details�



distribution of the quantization error and use linear reconstruction strategies that
minimize the residual k�y � F �xk��

Each of the M channels of the multiple description system carries one coe�cient
hx� �ki � �k� If there are no erasures� the linear reconstruction that minimizes the

MSE uses the dual frame e� � �N�M�� 	
�� the resulting reconstruction error is given
by

MSE� � E	N��kx� �xk�� �
N

M
���� ��

��� E�ect of Erasures on the Structure of a Frame Suppose now that some
of the descriptions are lost� Let E denote the index set of the erasures� so �yk for k � E
are lost� The number of erasures is denoted e � jEj� The description at the decoder
is an expansion with respect to �� � � n f�kgk�E� If �� is a frame then� under the
assumptions on the quantization noise� the best linear reconstruction uses the frame
dual to �� 	
��

When is �� a frame� The following proposition shows that when one element of
a normalized tight frame is deleted� the remaining set of vectors is a frame� but not
a tight frame��

Proposition � Let � � f�kgMk�� � RN be a tight frame with k�kk �  for all k� For
any i� �� � � n �i is a frame� �� has lower frame bound A� � M�N �  and upper
frame bound B� � M�N �

Proposition  can be extended to more erasures if M�N is large� Speci�cally�
e erasures will leave a frame when M�N � e� This is a far cry from being able to
guarantee thatM�N erasures leaves a basis for RN� Fortunately� there exist families
of frames for which this is true� One such family is the harmonic frames�

Harmonic frames� or Fourier frames� give overcomplete discrete Fourier expan�
sions� A harmonic tight frame is given by

�k	i� �
p
N
W

�k����i���
M � i � �� � � � � � N � � k � �� � � � � �M � � ���

where WM � ej���M is the Mth root of unity� �A real harmonic tight frame could be
de�ned similarly�� The following result guarantees that after erasing up to M � N
elements from a harmonic tight frame� we still have a frame�

Proposition � Let � � f�kgMk�� � C N be a harmonic tight frame� with �k as in ����
Then� any subset of N or more vectors from � forms a frame�

��� E�ect of Erasures on the MSE We now consider the e�ect of erasures on
the MSE� Assume that �� � � n f�kgk�E is a frame� hence� e � M � N � Larger
numbers of erasures are considered in Section �� When �� is not a frame� x can only
be estimated to within a subspace and distributional knowledge is needed to get a
good estimate�

�Proofs of Propositions � and � are omitted due to lack of space�



When any one element of � is erased� the MSE is given by

MSE� �

�
� �

�

M �N

�
N

M
��� �

�
� �

�

M �N

�
MSE�� ���

This result can be obtained by averaging the power of the quantization noise projected
on to RN by the frame dual to ����

Assume now that there are e erasures� Let � be the N � e matrix comprised of
the erased components and let P� � ���� Let

A�e� �

�
Ie �

N

M
P�

�
��

� B�e� � 	A�e� �
N

M
A�e�P�A

�e�� C�e� �

�
M

N
P� � P�P�

�T

�

Then the MSE with e erasures is

MSEe �

�
��

e

M
�

N

M�

eX
i�j��

B
�e�
ij C

�e�
ij

�
MSE�� �
�

A simple special case is when the erased components are pairwise orthogonal� In
this case� P� � Ie and MSEe reduces to

MSEe �

�
� �

e

M �N

�
MSE�� ���

The analysis presented thus far makes no assumptions about the source and
instead makes strong assumptions about the quantization error� In e�ect� it is a
distortiononly analysis� since the source has not entered the picture� there is no
relationship between ��� and the rate� This is remedied in the following section�

� Performance Analysis and Comparisons

Let x be a zeromean� white� Gaussian vector with covariance matrix Rx � ��IN �
This source is convenient for analytical comparisons between the QF system and a
conventional communication system that combines scalar quantization with a block
channel code� Entropycoded uniform quantization �ECUQ� will be used in both
systems� The distortion�rate performance of ECUQ on a Gaussian variable with
variance �� will be denoted D���R�� This function directly gives the performance of
the conventional system when the channel code is successful in eliminating the e�ect
of erasures and is also useful in describing the performance of the QF system�

��� Performance of the Conventional System We �rst analyze the conven
tional system� For coding at a total rate of R bits per component of x �including
channel coding�� NR bits are split among M descriptions� Thus the overall average
distortion per component with e erasures is

�De � D��

�NR
M

�
� for e � �� �� � � � � M �N� ���

�For complete derivations of ���� ���� and ���� see ����



When e � M � N � the channel code cannot correct all of the erased information
symbols� Since the code is systematic� the decoder will have received some number
of information symbols and some number of parity symbols� Assume that the de�
coder discards the parity symbols and estimates the erased information symbols by
their means� Denoting the number of erased information symbols by es� the average
distortion per component for es erased information symbols is then

eDes �
es

N
�� �

N � es

N
D��

�NR
M

�
� for e � M �N � �� � � � � M � �� M� ���

As it is� ��� does not completely describe the average distortion because the relation�
ship between e and es is not speci	ed� In fact� given that there are e total erasures� es
is a random variable� There are

�
M

e

�
ways that e erasures can occur and we assume

these to be equally likely� The probability of k erased information symbols is then

P
�
es � k

��� e� �M �N� � k � min�e�N�
�

�

�
M

e

�
���

N

k

��
M �N

e� k

�
�

Using this gives the average distortion per component as


De �

min�e�N�X
es�e��M�N�

P �es � k j e total erasures� eDes

�

�
M

e

�
�� min�e�N�X

es�e��M�N�

�
N

es

��
M �N

e� es

��
es

N
�� �

N � es

N
D��

�NR
M

��
���

for e �M �N ��� � � � � M � �� M � because the received components of x are subject
to quantization error and the erased components have variance ���

There is no denying that discarding the parity symbols is not the optimal recon�
struction strategy�to minimize MSE or probability of error� However� it comes close
to minimizing the MSE actually minimizing the MSE seems computationally di��
cult� Investigation of a couple of cases provides a credible justi	cation for discarding
the parity information� Consider e � M � N � �� one more erasure than can be
corrected� One extreme case is es � �� where all the parity symbols are erased� In
this case there is no parity information� so estimating the erased information symbol
by its mean is clearly the best that can be done� In the other extreme case� es � e

and all the parity information is received� For convenience� number the erased com�
ponents so that �x�� �x�� � � �� �xe are lost� If a single one of these were known� then the
rest could be determined because the code can correct e � � erasures� So a possible
decoding method is as follows� For each possible value of �x�� determine �x�� �x�� � � ��
�xe� Since the �xi�s are independent� it is easy to compute the probabilities of each of
the ��x�� �x�� � � � � �xe�T vectors� The centroid of the vectors gives the minimum MSE
estimate�

There are two main di�culties with this computation� Firstly� the number of
possibilities to enumerate is exponential in e� �M �N��namely jX je��M�N�� where
X is the alphabet for �x�and may be very large� More importantly� it may simply



not be useful to compute the probability density of the possible vectors� The nature
of the channel code is to make values in each possible ��x�� �x�� � � � � �xe�T vector more
or less uniform� Thus the minimumMSE estimate is often close to simply estimating
each component by its mean�

��� Performance of the QF System When F is the frame operator associated
with a normalized tight frame �� each component of y � Fx is still Gaussian with
mean zero and variance ��� Thus D�� � as de�ned previously� can again be used to
describe the distortion�rate characteristics of the quantized coe	cients �yi
s� These
distortions� however� do not equal the component distortions in the reconstruction of
x because of the use of frames and nonorthogonal bases�

We assume the frame is designed such that all subsets of at least N elements form
a frame� as with harmonic frames �see Proposition �� Then when there are at most
M �N erasures� we can approximate the distortion using ��� Speci�cally� using ��
and noting that D�� connects the coding rate to the quantization noise power ���� we
obtain

�D� �
N

M
D��

�NR

M

�
� ��

which is better than the performance of the conventional system� For e � �� �� � � � �
M �N � there is no simple closed form for the distortion� but it can be written as

�De � ceD��

�NR

M

�
� for e � �� �� � � � � M �N� ���

The constant ce isM�N times the average of the bracketed term of ��� where the av�
erage is taken over all possible positions of e erasures� With a given frame� additional
measurements always reduce the average reconstruction error �that is� more erasures
always increase it� so fceg

M�N
e�� is an increasing sequence�

When there are more than N �M erasures� the decoder has less than a basis
representation of x� The source vector x can be orthogonally decomposed as

x � xS � xS� where xS � S � span�f�kgk ��E�

Since the source is white and Gaussian� xS and xS� are independent� Thus not
only does the decoder have no direct measurement of xS�� but it has absolutely no
way to estimate it aside from using its mean� Estimating xS� � � introduces a
distortion of N���e� �M �N�� because the dimension of S� is e� �M �N� The
received coe	cients f�ykgk ��E provide a quantized basis representation of xS� The basis
will generally be a nonorthogonal basis� so the per component distortion will exceed
D���NR�M by a constant factor which depends on the skew of the basis� Thus we
conclude

�De �
e� �M �N

N
���

M � e

N
ceD��

�NR

M

�
� for e � M�N��� � � � � M��� M�

���
The constant factor ce is computed in ��� using techniques from ���� It is always
larger than �� since it is not possible for all subsets of a given size of the frame to be
orthogonal�
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Figure �� Comparison between conventional and quantized frame systems for N � ��
M � �� �a� The table gives the average distortion	rate performance for each possible
number of erasures� �b� Plotted is the SNR for each number of erasures at rate R � 
�
�c� The channel is assumed to be memoryless with erasure probability ���� the SNR
is given as a function of total rate� �d� The probability of erasure is varied for three
�xed rates� the SNR advantage of the QF system� which may be negative� is shown�

��� A Numerical Example Comparing �� and ��� to ���	���� does not imme�
diately reveal the relative merits of the two systems� This section presents a simple
numerical example to compare the two systems� This example is developed in greater
detail in �
��

Let N � � and M � � and let � be a ��element tight frame in R�� The table in
Figure � gives distortion expressions based on ��	����� These are evaluated at a rate
of 
 bits per component� yielding the signal�to�noise ratios shown in the bar graph�
At this rate� the QF system is superior except when there is exactly one erasure�

The number of erasures is random� If we assume the erasures are independent�
then a single probability of erasure �xes weightings for the distortions of Figure ��a�	
�b�� Comparisons at di�erent rates and probabilities of erasure are shown in Fig�



ure ��c���d�� At moderate�to�high rates� the QF system exhibits a robustness to
mismatch between the probability of erasure and the fraction of rate allocated to
channel coding�

��� Asymptotic Behavior The example presented in Section ��� provides some
insight into the performance of the QF system� but it is just a single example� At
this time� we are unable to make strong statements about the potential of the QF
system because the achievable sets of ce	s are unknown� Nevertheless� we may make
a few comments on the asymptotic behavior of the QF system� Both high rate and
large block length asymptotics are considered�

In the limit of high rate� quantization error is negligible in comparison to the
distortion caused by completely missing one orthogonal component of the source�
The distortion goes to zero when there are at most M � N erasures� but for larger
numbers of erasures the distortion approaches N���e � �M � N����� Compared to
an unconstrained multiple description source coding scheme� the asymptotic perfor�
mance with more than M �N erasures is very poor� One could use M independent
vector quantizers to form the M descriptions� In this case every side distortion would
asymptotically approach zero� Such a scheme would presumably have high encoding
and decoding complexity �in time� memory� or both�
 this is why we are interested in
linear transform�based approaches�

Comparing the QF system to the conventional system at high rate� the QF system
is better when there are more than M � N erasures� In this case� the QF system
loses an e � �M � N��dimensional part of the signal while the conventional system
loses at least this much
 averaging over all erasure patterns� the conventional system
loses even more� For lower numbers of erasures� the relative performance depends on
the factor ce� This constant generally depends on the tight frame� but has a simple
form in two cases� c� � N�M and c� � M��N�� �M �N����� It is also known that
cM�N must be larger than �� fceg

M�N

e��
is monotonic in the number of erasures and

crosses � somewhere between e � � and e �M �N �
In information theory it is typical to look at performance limits as the block size

grows without bound� In channel coding for a memoryless channel this makes the
number of erasures predictable� by the law of large numbers� Using multiple descrip�
tion coding as an abstraction for coding for an erasure channel is in part an attempt
to avoid large block sizes and to cope with unpredictable channels� Nevertheless� it
is useful understand the performance of the QF system with large block sizes�

A performance analysis must depend in some part on a choice of a set of frames�
Intuition suggests that the best frame� at least for a white source� is one that uniformly
covers space� The following proposition shows that asymptotically� the most uniform
frame approaches an orthonormal basis in a certain sense �for a proof� see �����

Proposition � Suppose that M�N � r� with � � r � �� Let � � f�kgMk�� be a frame
in RN� If the design of � is the packing of M lines in RN such that the minimum
angular separation is maximized� then as N �� �M increasing accordingly as M �
brNc� the elements of � become pairwise orthogonal�



An upper bound on the constant in ����� cM�N � close to � would be useful in
bounding the worst case performance of the QF system with respect to the conven�
tional system� Proposition � suggests that if a frame is designed to maximize unifor�
mity in the speci�ed manner and any M �N elements of the frame are deleted� the
remaining set is approximately an orthonormal basis� Unfortunately� the convergence
in Proposition � does not lead to small bounds on the ce	s� Numerical computations
show that as M and N are increased with M�N held constant� the constant factor
cM�N increases� This holds for harmonic frames as well as frames designed as in
Proposition �� This negative result on using the QF system with largeM �N should
not discourage its use in systems with small numbers of descriptions�
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