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Abstract

Quantized frame expansions are proposed as a method for generalized multiple
description coding, where each quantized coefficient is a description. Whereas
previous investigations have revealed the robustness of frame expansions to
additive noise and quantization, this represents a new application of frame
expansions. The performance of a system based on quantized frame expansions
is compared to that of a system with a conventional block channel code. The
new system performs well when the number of lost descriptions (erasures on an
erasure channel) is hard to predict.

1 Introduction

The problem of transmitting data over heterogenous networks has recently received
considerable attention. A typical scenario might require data to move from a fiber
link to a wireless link, which necessitates dropping packets to accommodate the lower
capacity of the latter. If the network is able to provide preferential treatment to
some packets, then the use of a multiresolution or layered source coding system is the
obvious solution. But what if the network will not look inside packets and discrimi-
nate? Then packets will be dropped at random, and it is not clear how the source (or
source—channel) coding should be designed. If packet retransmission is not an option
(e.g., due to a delay constraint or lack of a feedback channel), one has to devise a way
of getting meaningful information to the recipient despite the loss. The situation is
similar if packets are lost due to transmission errors or congestion.

This problem is a generalization of the “multiple description” (MD) problem.
In the MD problem, a source is described by two descriptions at rates Ry and Rs.
These two descriptions individually lead to reconstructions with distortions D; and
Dy, respectively; the two descriptions together yield a reconstruction with distortion
Dy. The original problem, as posed by Gersho, Witsenhausen, Wolf, Wyner, Ziv and
Ozarow in 1979, was to characterize the achievable quintuples (Ry, Ry, Do, D1, D3).
The first design algorithm for practical MD coding was given by Vaishampayan [1] and



the first transform-based approach was devised by Wang, Orchard, and Reibman [2].
For more background on MD coding, see [1, 3] and the references therein.

Describing a source with M packets (descriptions) such that any subset of the
packets yields a useful reconstruction is a generalization of the MD problem. We
propose the use of linear transforms from RY to RM (with M > N) followed by
scalar quantization as a computationally simple approach to generalized MD coding.
Linear transform approaches for M = N are investigated in [2, 4, 5].

2 Problem Statement

Consider communicating a source taking values in R across an erasure channel.
Denote the channel alphabet by X' and suppose | X'| = 20V/M¥E where M is the number
of channel uses per N-tuple and R is the overall rate per component (including channel
coding). The objective of this paper is to compare the following two techniques:

e Conventional system: Each component of the source vector is quantized us-
ing an (N/M)R-bit quantizer, giving N codewords. A linear systematic block
code XN — XM is applied to the quantizer output, and the M resulting code-
words are sent on the channel.

e Quantized frame (QF) system: The source vector is expanded using a
linear transform £ : RY — RM. Each transform coefficient is quantized using
an (N/M)R-bit quantizer. The M resulting codewords are sent on the channel.

Since a linear block code is a linear transform, the difference between the systems is
the swapping of transform and quantization operations. The second system uses a
QF expansion. For details on frames and QF expansions, see [6, 7].

The conventional system works by producing a linear dependence between the
transmitted symbols. A valid transmitted M-tuple must lie in a specified N-dim-
ensional subspace of X™. When N or more symbols are received, they are consistent
with exactly one valid element of XYM, so the information symbols are known. This
works very well when exactly NV of the M transmitted codewords are received. How-
ever, when more or less than N codewords are received, there either is no benefit
from the extra information or it is difficult to recover partial information about the
source vector.

The QF system has a similar way of adding redundancy. Denote the signal vector
by x. The expanded signal y = Fx has a linear dependence between its components.
Thus, if N or more components of y are known, x can be recovered exactly. However,
the components of y are not directly transmitted; it is the quantization that makes
the two systems different. Quantization makes the components of § = Q(y) linearly
independent, so each component of y—even in excess of N—gives distinct information
on the value of z. It is known that from a source coding point of view, a QF expansion
(with linear reconstruction) is not competitive with a basis expansion [3, 7, 8]. Here
the “baseline” fidelity is given by a basis expansion, and the noise reduction property
of frames [7] improves the fidelity when we are “lucky” to receive more than N
components.



One should not get the impression that the QF system is automatically as good
as the conventional system when N components are received and better when more
than N are received. The comparison is more subtle because all basis expansions are
not equally good. The conventional system can use the best orthogonal basis (the
Karhunen—Loeve transform) or at least an orthogonal basis. On the other hand, it is
not possible to make all N-element subsets of the frame associated with F' orthogonal.
Quantizing in a nonorthogonal basis is inherently suboptimal [9].

When less than N components are received, the QF representation fails to localize
x to a finite cell. Neglect quantization error for the moment, and assume k£ < N
components are received. RY can be decomposed into a k-dimensional subspace and
an (N —k)-dimensional perpendicular subspace such that the component of x in the -
dimensional subspace is completely specified and the component in the perpendicular
subspace is unknown. In many applications the source is known to have mean zero,
so the component in the perpendicular subspace can be estimated as zero. Thus
the reconstruction process may follow the same linear algebraic calculations for any
k < N received components without a distinction between systematic and parity
parts of the code.

We examine the QF system in two steps: First, we assume that the quantization
error is additive white noise, independent of the source, and that a linear reconstruc-
tion is used. Then, we consider the communication of a white Gaussian source and fix
the quantization to be unbounded and uniform. This facilitates a specific numerical
comparison between the conventional and QF systems using the earlier analysis.

3 Effect of Erasures

Let ® = {¢p}2L, C RY be a tight frame with ||| = 1 for all k, and let F' be the
frame operator associated with ®.! ® being a frame means that there exist A and B,
0 < A< B < oo, such that

M
Al < 3 e, ol < Bllal? for all & € RY.

k=1

With the normalization and tightness of the frame, A = B = M/N. The frame
operator I is given by a matrix with kth row equal to ¢§. A source vector z € RY
is represented by ¢ = Q(y), where y = Fa and ) is a scalar quantizer. Since the
components of 3§ will be used as “descriptions” in a multiple description system,
we are interested in the distortion incurred in reconstruction from a subset of the
components of .

We will model n = § —y as white noise independent of  with component variances
02. This is a common model, though 7 is actually completely determined by x when
() is a deterministic quantizer. If subtractive dithered uniform quantization with step
size A is used, the model is precisely valid with o2 = A?/12 [10]. We will ignore the

! Definitions of frame terminology are kept to a minimum; the reader is referred to [6] for details.



distribution of the quantization error and use linear reconstruction strategies that
minimize the residual ||§ — F'Z|[,.

Each of the M channels of the multiple description system carries one coefficient
(x, ¢r) + nk. If there are no erasures, the linear reconstruction that minimizes the

MSE uses the dual frame & = (N/M)® [6]; the resulting reconstruction error is given
by
N,

MSEy = E[N7'[z =[] = To?. (1)

3.1 Effect of Erasures on the Structure of a Frame Suppose now that some
of the descriptions are lost. Let £ denote the index set of the erasures, so 4 for k €
are lost. The number of erasures is denoted e = |F|. The description at the decoder
is an expansion with respect to " = & \ {pr}rep. If ' is a frame then, under the
assumptions on the quantization noise, the best linear reconstruction uses the frame
dual to ¢’ [6].

When is @ a frame? The following proposition shows that when one element of
a normalized tight frame is deleted, the remaining set of vectors is a frame, but not
a tight frame:?

Proposition 1 Let ® = {¢; }2L, C RY be a tight frame with ||¢x|| =1 for all k. For
any 1, ' = &\ ¢; is a frame. O has lower frame bound A" = M/N — 1 and upper
frame bound B' = M/N.

Proposition 1 can be extended to more erasures if M/N is large. Specifically,
e erasures will leave a frame when M/N > e. This is a far cry from being able to
guarantee that M — N erasures leaves a basis for RY. Fortunately, there exist families
of frames for which this is true. One such family is the harmonic frames.

Harmonic frames, or Fourier frames, give overcomplete discrete Fourier expan-
sions. A harmonic tight frame is given by

1 .
@k[i]:\/—ﬁwﬁ‘”“‘”, i=0,1,...,N—1, k=0,1,....M—1, (2

where Wy = e/27/M is the Mth root of unity. (A real harmonic tight frame could be

defined similarly.) The following result guarantees that after erasing up to M — N
elements from a harmonic tight frame, we still have a frame.

Proposition 2 Let ® = {¢4}2, C CN be a harmonic tight frame, with ox as in (2).
Then, any subset of N or more vectors from ® forms a frame.

3.2 Effect of Erasures on the MSE We now consider the effect of erasures on
the MSE. Assume that ® = & \ {¢k}rer is a frame; hence, ¢ < M — N. Larger
numbers of erasures are considered in Section 4. When @’ is not a frame, x can only
be estimated to within a subspace and distributional knowledge is needed to get a
good estimate.

2Proofs of Propositions 1 and 2 are omitted due to lack of space.



When any one element of ® is erased, the MSE is given by

1 N 1
MSE; = <1+ M_N> Svidh <1+ M_N> MSEq. (3)

This result can be obtained by averaging the power of the quantization noise projected
on to RY by the frame dual to .2

Assume now that there are e erasures. Let ¢ be the N X e matrix comprised of
the erased components and let P, = ¢*p. Let

M M N
Then the MSE with e erasures is

N N\ N M '
A1) = (Ie = —Pw) , BY =240 4 —A@Pp AO 0O = <_P e~ B @P@> '

1 7

MSE, = [1 —— > B@C.(;)] MSEq. (4)

A simple special case is when the erased components are pairwise orthogonal. In
this case, P, = I. and MSE, reduces to

(&
MSE, = <1+ M_N> MSE,. (5)

The analysis presented thus far makes no assumptions about the source and
instead makes strong assumptions about the quantization error. In effect, it is a
distortion-only analysis; since the source has not entered the picture, there is no
relationship between o and the rate. This is remedied in the following section.

4 Performance Analysis and Comparisons

Let x be a zero-mean, white, Gaussian vector with covariance matrix R, = o%ly.
This source is convenient for analytical comparisons between the QF system and a
conventional communication system that combines scalar quantization with a block
channel code. Entropy-coded uniform quantization (ECUQ) will be used in both
systems. The distortion—rate performance of ECUQ on a Gaussian variable with
variance o2 will be denoted D,z(R). This function directly gives the performance of
the conventional system when the channel code is successful in eliminating the effect
of erasures and is also useful in describing the performance of the QF system.

4.1 Performance of the Conventional System We first analyze the conven-
tional system. For coding at a total rate of R bits per component of x (including
channel coding), N R bits are split among M descriptions. Thus the overall average
distortion per component with e erasures is

7 N
De:Dﬂ(WR), for ¢ = 0,1,...., M—N. (6)

3For complete derivations of (3), (4), and (5), see [3].




When e > M — N, the channel code cannot correct all of the erased information
symbols. Since the code is systematic, the decoder will have received some number
of information symbols and some number of parity symbols. Assume that the de-
coder discards the parity symbols and estimates the erased information symbols by
their means. Denoting the number of erased information symbols by e, the average
distortion per component for e, erased information symbols is then

- ., N—e  /NR
1%::%H+ N?Dﬂgﬁ), for e = M—N+41,...,M—1, M. (7)

As it is, (7) does not completely describe the average distortion because the relation-
ship between e and e, is not specified. In fact, given that there are e total erasures, e;
is a random variable. There are ( ]\g ) ways that ¢ erasures can occur and we assume

these to be equally likely. The probability of & erased information symbols is then

e—@%#ﬁﬁkgmm@ND::<¥>4<i><%:g>.

Using this gives the average distortion per component as

min(e,N)
D. = P(es = k| e total erasures) D,
es=e—(M—N)
—1 min(e,N)

— s N — e NR
- (V) ()OS sG]

e €s e — €4 N N M

es=e—(M—N)

fore=M-—-N+1, ..., M —1, M, because the received components of & are subject

to quantization error and the erased components have variance 2.

There is no denying that discarding the parity symbols is not the optimal recon-
struction strategy—to minimize MSE or probability of error. However, it comes close
to minimizing the MSE: actually minimizing the MSE seems computationally diffi-
cult. Investigation of a couple of cases provides a credible justification for discarding
the parity information. Consider e = M — N + 1, one more erasure than can be
corrected. One extreme case is e; = 1, where all the parity symbols are erased. In
this case there is no parity information, so estimating the erased information symbol
by its mean is clearly the best that can be done. In the other extreme case, ¢, = ¢
and all the parity information is received. For convenience, number the erased com-
ponents so that &y, &o, ..., T, are lost. If a single one of these were known, then the
rest could be determined because the code can correct e — 1 erasures. So a possible
decoding method is as follows: For each possible value of #, determine 25, Z3, ...,
Z.. Since the z;’s are independent, it is easy to compute the probabilities of each of
the [#1, &9, ..., 2|7 vectors. The centroid of the vectors gives the minimum MSE
estimate.

There are two main difficulties with this computation. Firstly, the number of
possibilities to enumerate is exponential in e — (M — N)—namely | X |*~M=N) where
X is the alphabet for —and may be very large. More importantly, it may simply



not be useful to compute the probability density of the possible vectors. The nature
of the channel code is to make values in each possible [y, 3, ..., 2.]7
or less uniform. Thus the minimum MSE estimate is often close to simply estimating
each component by its mean.

vector more

4.2 Performance of the QF System When [ is the frame operator associated
with a normalized tight frame ®, each component of y = Fz is still Gaussian with
2, Thus D,», as defined previously, can again be used to
describe the distortion-rate characteristics of the quantized coefficients 7;’s. These
distortions, however, do not equal the component distortions in the reconstruction of
x because of the use of frames and nonorthogonal bases.

We assume the frame is designed such that all subsets of at least N elements form

mean zero and variance o

a frame, as with harmonic frames (see Proposition 2). Then when there are at most

M — N erasures, we can approximate the distortion using (4). Specifically, using (1)
2

and noting that D,> connects the coding rate to the quantization noise power o, we
obtain N NE
Do = —D, <—> (9)
M M

which is better than the performance of the conventional system. For ¢ =1, 2, ...,
M — N, there is no simple closed form for the distortion, but it can be written as

D. = ceDgz)(%), for e =1,2,...,M—N. (10)
The constant ¢, is M/N times the average of the bracketed term of (4), where the av-
erage is taken over all possible positions of e erasures. With a given frame, additional
measurements always reduce the average reconstruction error (that is, more erasures
always increase it), so {c.}M5" is an increasing sequence.

When there are more than N — M erasures, the decoder has less than a basis
representation of x. The source vector x can be orthogonally decomposed as

T=x5+ Tg1L where x5 € S = span({ps}rer)-

Since the source is white and Gaussian, g and xg1 are independent. Thus not
only does the decoder have no direct measurement of xg1, but it has absolutely no
way to estimate it aside from using its mean. Estimating xg1 = 0 introduces a
distortion of N7'(e — (M — N))o? because the dimension of S*is e — (M — N). The
received coefficients {§ } rgr provide a quantized basis representation of . The basis
will generally be a nonorthogonal basis, so the per component distortion will exceed
Dy2(NR/M) by a constant factor which depends on the skew of the basis. Thus we
conclude

_ e—(M—-N) , M-—e

D, = N o+ ¥ ceDg2<

NR
M

), for ¢ = M—N+1,.... M—1, M.
(11)

The constant factor ¢. is computed in [3] using techniques from [7]. It is always

larger than 1, since it is not possible for all subsets of a given size of the frame to be
orthogonal.
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Figure 1: Comparison between conventional and quantized frame systems for N = 4,
M = 5. (a) The table gives the average distortion-rate performance for each possible
number of erasures. (b) Plotted is the SNR for each number of erasures at rate R = 3.
(c¢) The channel is assumed to be memoryless with erasure probability 1/5; the SNR
is given as a function of total rate. (d) The probability of erasure is varied for three
fixed rates; the SNR advantage of the QF system, which may be negative, is shown.

4.3 A Numerical Example Comparing (6) and (8) to (9)—(11) does not imme-
diately reveal the relative merits of the two systems. This section presents a simple
numerical example to compare the two systems. This example is developed in greater
detail in [3].

Let N =4 and M =5 and let ® be a 5-element tight frame in R*. The table in
Figure 1 gives distortion expressions based on (6)—(11). These are evaluated at a rate
of 3 bits per component, yielding the signal-to-noise ratios shown in the bar graph.
At this rate, the QF system is superior except when there is exactly one erasure.

The number of erasures is random. If we assume the erasures are independent,
then a single probability of erasure fixes weightings for the distortions of Figure 1(a)—
(b). Comparisons at different rates and probabilities of erasure are shown in Fig-



ure 1(c)—(d). At moderate-to-high rates, the QF system exhibits a robustness to
mismatch between the probability of erasure and the fraction of rate allocated to
channel coding.

4.4 Asymptotic Behavior The example presented in Section 4.3 provides some
insight into the performance of the QF system, but it is just a single example. At
this time, we are unable to make strong statements about the potential of the QF
system because the achievable sets of ¢.’s are unknown. Nevertheless, we may make
a few comments on the asymptotic behavior of the QF system. Both high rate and
large block length asymptotics are considered.

In the limit of high rate, quantization error is negligible in comparison to the
distortion caused by completely missing one orthogonal component of the source.
The distortion goes to zero when there are at most M — N erasures, but for larger
numbers of erasures the distortion approaches N™'(e — (M — N))o?. Compared to
an unconstrained multiple description source coding scheme, the asymptotic perfor-
mance with more than M — N erasures is very poor. One could use M independent
vector quantizers to form the M descriptions. In this case every side distortion would
asymptotically approach zero. Such a scheme would presumably have high encoding
and decoding complexity (in time, memory, or both); this is why we are interested in
linear transform-based approaches.

Comparing the QF system to the conventional system at high rate, the QF system
is better when there are more than M — N erasures. In this case, the QF system
loses an e — (M — N)-dimensional part of the signal while the conventional system
loses at least this much; averaging over all erasure patterns, the conventional system
loses even more. For lower numbers of erasures, the relative performance depends on
the factor ¢.. This constant generally depends on the tight frame, but has a simple
form in two cases: ¢cg = N/M and ¢, = M~'N(1+ (M — N)71). Tt is also known that
ey—ny must be larger than 1. {c, i\igN is monotonic in the number of erasures and
crosses | somewhere between e =0 and e = M — N.

In information theory it is typical to look at performance limits as the block size
grows without bound. In channel coding for a memoryless channel this makes the
number of erasures predictable, by the law of large numbers. Using multiple descrip-
tion coding as an abstraction for coding for an erasure channel is in part an attempt
to avoid large block sizes and to cope with unpredictable channels. Nevertheless, it
is useful understand the performance of the QF system with large block sizes.

A performance analysis must depend in some part on a choice of a set of frames.
Intuition suggests that the best frame, at least for a white source, is one that uniformly
covers space. The following proposition shows that asymptotically, the most uniform
frame approaches an orthonormal basis in a certain sense (for a proof, see [3]):

Proposition 3 Suppose that M/N = r, with 1 <r < 2. Let ® = {©x }L, be a frame
in RN, If the design of ® is the packing of M lines in RY such that the minimum
angular separation is maximized, then as N — oo (M increasing accordingly as M =
|rN|) the elements of ® become pairwise orthogonal.



An upper bound on the constant in (10), cp—n, close to 1 would be useful in
bounding the worst case performance of the QF system with respect to the conven-
tional system. Proposition 3 suggests that if a frame is designed to maximize unifor-
mity in the specified manner and any M — N elements of the frame are deleted, the
remaining set is approximately an orthonormal basis. Unfortunately, the convergence
in Proposition 3 does not lead to small bounds on the ¢.’s. Numerical computations
show that as M and N are increased with M/N held constant, the constant factor
cyp—n increases. This holds for harmonic frames as well as frames designed as in
Proposition 3. This negative result on using the QF system with large M — N should
not discourage its use in systems with small numbers of descriptions.
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