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Abstract
The quadtree data structure is widely used in digital image pro-
cessing and computer graphics for modeling spatial segmenta-
tion of images and surfaces. A quadtree is a tree in which each
node has four descendants. Since most algorithms based on
quadtrees require complex navigation between nodes, efficient
traversal methods as well as efficient storage techniques are of
great interest. In this paper, we first propose an efficient indexing
scheme for a linear (pointerless) quadtree data structure. Such a
quadtree is stored using a unidimensional array of nodes. Our in-
dexing scheme has the property that the navigation between any
pair of nodes can be computed in constant time. Moreover, the
navigation across multiple quadtrees can be achieved at the same
cost. We illustrate our results on applications in computer graph-
ics. We first show how the problem of computing a so-called re-
stricted quadtree can be solved at optimal cost, e.g with a compu-
tational complexity having the order of magnitude of the problem
size. Then, we explain how this problem can be solved in the case
of surfaces modeled using multiple quadtrees. Finally, we show
how a tessellated sphere can be implemented and navigated using
our data structure.

1 Introduction
The quadtree data structure is a tree in which each node has at
most four children. In digital image processing, quadtrees are
used to efficiently store image segmentations [3] (see Figure 1(a))
or to compress images by hierarchically storing color intensities
[6]. In computer graphics, quadtrees and octrees (tridimensional
generalization of quadtrees) are used as spatial partitioning rep-
resentations. More recently, quadtrees have become popular to
store triangulated surfaces [8, 4]. For example, a triangulated sur-
face can represent a planar approximation of a bivariate function
���� �� (see Figure 1(b)). In this case, each node in the quadtree
is used to store a subset of the triangles. An interesting problem is
the computation of the so-called restricted quadtree [11]. Consid-
er a quadtree used to store a triangulation as depicted in Figure 2.
In the figure1, the arrow links a node and its corresponding region
in the triangulation. In this particular case, each leaf node rep-
resents a set of eight triangles. This triangulation is embedded,
in that it can be generated by recursive subdivision of an initial
square containing two triangles. Figure 3 shows the subdivision

1Note that for clarity, we link together only the nodes having a com-
mon father, and located at the same level.

a. b.

Figure 1: (a) Image partition. (b) Triangulated surface.

a. b.

Figure 2: (a) Quadtree. (b) Triangulation.

process as well as the vertices (black dots) used to construct the
triangles. Each nonleaf node contains a basic set of eight trian-
gles (see Figure 3(c)) embedded in a denser triangulation repre-
sented by its corresponding subtree. Due to its recursive nature,
the quadtree is therefore adequate to store an embedded trian-
gulation. Note that, although the triangulation in Figure 2(b) is
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a. b. c. d. e.

Figure 3: (a)-(e) Subdivision process yielding an embedded set of
triangulations.

uniform, the one in Figure 1(b) (represented as a top-viewed ren-
dered surface) is not. This is because the former corresponds to a
balanced quadtree (each node has exactly four children), where-
as the latter corresponds to an unbalanced quadtree. Moreover,
each node may contain from four up to eight triangles. There-
fore, a nonuniform triangulation can be computed by deleting
nodes of its quadtree representation. This leads to a restricted
quadtree[11]: consider the deletion a quadtree node, or equiva-



b.a.

Figure 4: (a) Simplified triangulation leading to discontinuities in
the rendered surface. (b) Simplified triangulation corresponding
to a restricted quadtree.

lently the removal of all triangles represented by the subtree root-
ed at this particular node. If no care is taken, the triangle edges in
the resulting simplified triangulation might not be coplanar, as de-
picted in Figure 4(a). Therefore, once rendered, the triangulated
surface will have discontinuities. To ensure coplanarity, addition-
al nodes have to be pruned at the same time, leading to a restricted
quadtree. A restricted quadtree can be seen as the tree satisfying
the coplanarity requirement (Figure 5). Although this problem
has been studied previously, either only particular cases such as
deleting only leaf nodes have been solved [5], or computationally
suboptimal algorithms based on a quadtree structure using point-
ers have been given [10]. We attribute this to a lack of adapted and
efficient navigation method for the quadtree data structure. We s-

b.a.

Figure 5: (a) Quadtree corresponding to Figure 4a. (b) Restricted
quadtree (corresponding to Figure 4b.)

tart with the basic properties of quadtrees. Then, we introduce an
indexing scheme for the quadtree, called z-ordering, allowing to
navigate between any pair of nodes in constant time. Note that
the navigation is not restricted to neighbor nodes, or does not re-
quire a particular index format for the node as in previous works
[12, 8]. Our indexing scheme allows us to extend the navigation
across multiple quadtrees with no increase in cost. We illustrate
our results with applications in computer graphics. We first give
an algorithm to compute a restricted quadtree having a computa-
tional cost of the order of magnitude of the problem size. Then,
we explain how this problem can be solved in the case of surfaces
modeled using multiple quadtrees. Finally, we show how a tes-
sellated sphere can be implemented and navigated using our data
structure.

2 Linear quadtree

A quadtree of depth � contains
����

��� �� nodes, with indices rang-
ing from �� � � � � �

�
��� � �� � �. Given a particular node � � �

and a tree of depth � � �, the following is true:

Parent node index: ��� �

�
�� (1)

Children node indices: ��� �� � � � � � � �� (2)

Level of the node: ���	��
�� ���� (3)

The quadtree is simply stored as a linear array of nodes (no explic-
it index for the nodes needs to be stored). Equations (1)-(3) do not
reveal the spatial organization of the nodes, since they are valid
for any permutation of the child indices. We organize a quadtree
node and its children as in Figure 6(b). Figure 6(a) shows a possi-
ble spatial organization for the child node indices, whereas Figure
6(b) shows an alternate one, named z-ordering (see solid arrows).
This particular ordering has the property that the difference be-
tween any pair of horizontal nodes is �, whereas the difference
between any pair of vertical nodes is � (see dashed arrows). We
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Figure 6: Child node indices: (a) Example. (b) z-ordering.

construct the indexing using the ordering of Figure 6(b) for the
odd quadtree levels, and a vertically mirrored version for the even
levels. Figure 7 shows the resulting indexing for a quadtree of
depth 4. Once recursively applied, the z-ordering yields the fol-

56

58 57

68

55

53

61 66

67

6970

65

5960

6364

45

37

36 35

34

32 31

29

38

52

50

48 47

3940

42

46

25

77

84 83

82

76 75

74

80

17

19 20

628178

79

73

49

244344

41 22

71

30

72

18

51

54

21 26

33

28

+5

+2

+2

+2
+1

+2

+6

-19

9

87

65

4 3

10

2723

1615

11 12

13 14

2

+2

-1

+6

+2

+2

-5+1

-1

1

0 +22

+6

-1 -1 -1+5

Figure 7: Spatial index organization using z-ordering for a
quadtree of depth 4.

lowing key property: the horizontal/vertical difference between
the indices of neighbor pairs is constant for a particular colum-
n/row. In Figure 7, the index differences are denoted next to the
arrows. It is now possible to derive general expressions for the



distance between two neighbor nodes located at the same level.
However, to do this, we first need to find the closest common fa-
ther of the two nodes. In other words, we need to seek the root
of the smallest subtree containing both nodes. Consider two n-
odes �� and �� located at level 	. We call the unique integer �
solving (4) the relative level distance (RLD) between �� and ��.
Their closest common father is located at level 	 � �. The RLD
is found solving the following equation

��� � �

��
� � ��� � �

��
�� (4)

We can then derive equations expressing the vertical and horizon-
tal differences between the indices. Assume now that the quadtree
has a toroidal structure, e.g that the rightmost nodes, at a par-
ticular level, are neighbors with the leftmost nodes, and that the
topmost nodes are neighbors with the bottommost nodes. Then,
additional equations can be derived to find the neighbor nodes as-
suming such structure. We will see later that these equations can
be used to derive a single expression for the distance between any
pair of nodes (not necessarily neighbors). We express now the
general distances between the node indices (the proofs are given
in the appendix).

Property 1. z-ordering
The horizontal/vertical difference between the indices of neigh-

bor pairs, having a relative level distance �, is constant for a
particular column/row. The horizontal differences are

Æ���� �
�



�� �

�



�������� (5)

Æ����� �
�



���� �

�



������ (toroidal) (6)

The vertical differences are

Æ���� �
�



�� �

�



� (7)

Æ����� �
�



���� � �



� (toroidal) (8)

In the next section, we explain how to use Property 2.1 to nav-
igate the quadtree in constant time.

3 Navigation

Due to the recursive nature of the quadtree, we can state a set of
equations to express the relative level distances ��, e.g solving
(4), for any level � of the quadtree:

�� �
�
� 
� �

�
� 
� �

�
�
�
�

�� �
�

�� � 
� �� �
�
�


� �
�


��� �� � 
���
�
�

(9)

These equations generate a vector for each level of the quadtree.
The elements of the vector are accessed by a node to find its rel-
ative level distance with the western, eastern, northern and south-
ern neighbors. The vectors containing the index difference be-
tween the columns and the rows of the spatial quadtree can be
derived from (9) and (5)-(8). The horizontal indexing differences

between the columns of the quadtree ���, at level �, are given by

��� �
�

Æ����� �Æ���� Æ�����
�
� (10)


� �
� �Æ����

�
� (11)

��� �
�

Æ����� �� 
� Æ����� ��
�
� (12)


� �
� �
��� �Æ���� �� �
���

�
� (13)

whereas the vertical indexing differences between the rows ���,
at level �, are given by

��� �
� �Æ����� Æ���� �Æ�����

�
� (14)


� �
�

Æ����
�
� (15)

��� �
� �Æ����� �� 
� �Æ����� ��

�
� (16)


� �
�


��� Æ���� �� 
���
�
� (17)

To access the indexing differences (or distance) vectors, we need
to compute, for a particular node, its position ���� ��� on a
�� � �� grid, where � is the level at which the node is locat-
ed in the quadtree. This position can be found using the local
index ���	
� � � � ��� � ��

 of the node within its level,
and examine its corresponding expression in base �. Assume ��
to be the coefficients of ���	
� in base �. Then, since each lo-
cal node index ���	
� is unique within its level, the coefficients
�� � ������ � � � � ��� provide a unique path to its location on the
grid. More details can be found in [2]. Using the coordinates
���� ��� and the vectors given by (12) and (16), the distances
from node � to its neighbors �’s are

western neighbor: � � � � ��������� (18)

eastern neighbor: � � � � ������ � ��� (19)

northern neighbor: � � � � ��������� (20)

southern neighbor: � � � � ������ � ��� (21)

where ������ and ������ denote the access to the ith coefficient
of the respective vector. Consider, for example, node � located
at the second level in the quadtree (Figure 7). The local index of
this node is ���	
� � � � �

�
��� � �� � 
 and its expression in

base � is the sequence ���� ��� � ��� 
�. The location of the
node within the level grid is ���� ��� � ��� ��. We can use the
distance vectors ��� and ��� (for level 2) to find its neighbors:

western neighbor is � � �������� � ��

eastern neighbor is � � � �����
� � ���

northern neighbor is � � �������� � ��

southern neighbor is � � � �����
� � ���

as one can verify in Figure 7. Note that node 8 is located on
the “edge” of the quadtree at its level. It does not therefore have
an eastern neighbor (if we do not consider the quadtree a torus).
Consequently, node 11 is node’s 8 eastern neighbor using (6).

Equations (5)-(8) can be used in an iterative way to derive a
single expression for an arbitrary distance in the quadtree (Figure
8). The idea is to follow a path of nodes, starting from the initial
node, leading to the destination node. Note that only the coor-
dinates ���� ��� for the initial node need to be computed, since
the subsequent coordinates, for the nodes along the path, can be



q

p
b.

q

a.
p

Figure 8: Distances between: (a) two diagonal nodes at the same
level. (b) two diagonal nodes at different levels.

easily derived from ���� ���. Consider the node � in Figure 8(a),
the distance to its neighbor � is

� � � � ������ � �����������

For example, if � � �
 (then �� � 
 and �� � 
), the north-
eastern neighbor � at the same level is

� � �
 ������������
� � �
 � �� � � ��

On the other hand, the distance between node � and its neighbor
� in Figure 8(b) is given by

� � � � 
�� � ���������� � ������������ � ���

As previously, when � � �
, the neighbor � at the next level is

� � �
 � �� ������������
� � 

 � 
� �� � 
��

Both examples can be verified in Figure 7.

4 Applications
In this section, we illustrate our results with two application-
s in computer graphics. We first give an optimal algorith-
m to compute a restricted quadtree using a linear implemen-
tation of the quadtree. Then, we show how a data struc-
ture modeled with multiple quadtrees can be efficiently navigat-
ed. A Java applet illustrating the first example is available at
http://lcavwww.epfl.ch/Triangulation.

Recall the problem introduced in Section 1. The quadtree is
used to store an embedded triangulation. This class of triangula-
tions is widely used to model triangulated surfaced from terrain
elevation data [7, 9, 1]. When modeled using a quadtree, trian-
gles can be removed from the original triangulation by deleting
quadtree nodes (Figure 4). As seen in Section 1, not all quadtree
configurations yield a triangulation in which all triangle edges are
coplanar (Figure 4 and 5). Such a “valid” quadtree is called a
restricted quadtree [11]. We consider here the computation of
a restricted quadtree resulting from the deletion of an arbitrary
quadtree node. We start by computing the size of the problem
and then state an algorithm solving the problem with a computa-
tional complexity having the order of magnitude of the problem
size. The algorithm is therefore optimal and solves the problem
at minimal cost.

According to Figure 4, the amount of nodes to delete with a
particular quadtree node to obtain a restricted quadtree, is pro-
portional to the level at which this particular node is located. We

evaluate the size of the problem by counting the number of nodes
to visit to avoid noncoplanar triangle edges. This number is lin-
early proportional to the number of triangles contained in the sim-
plified region. Figure 9 depicts the shape of a simplified region.
Note that, in Figure 4(b), the region is incomplete because of the
node location. In [2], we prove that, in the worst case, the size
of the region is ��

�
��, where � is the total number of triangles

contained in the quadtree. We also show that, in expectation (i.e.
when choosing an arbitrary node), the region has constant size
����. An optimal algorithm solving the problem with the same
complexity magnitudes can be implemented as depicted in Figure
9(b). Using (5)-(8), we construct an algorithm visiting once and
only once the nodes containing the triangles to delete jointly, thus
solving the problem in its size.

p
7

3

b.

8

a.

27282324

Figure 9: (a) Simplified region after deletion of node �. (b) An
example of node traversal.

Consider again the case in which a quadtree is used to store
an embedded triangulation. Consider further that the triangula-
tion is distributed among multiple quadtrees, as depicted in Figure
10. In this figure, the triangulation is stored across nine quadtrees
and the root node of the central quadtree has been deleted. The
simplifications required to obtain a set of restricted quadtrees can
be computed using (6) and (8) implementing a toroidal structure.
Using the same argument, the same data structure can be used to

17

central 
17

patch

Figure 10: Triangulation formed by multiple quadtrees.

model closed objects such as the sphere. A sphere can be tessel-
lated by radially projecting the vertices of a subdivided octahe-
dron (Figure 11). Such an object can be constructed using two



embedded triangulations, therefore using two quadtrees. To pre-
serve the sphere topology, the root nodes must contain at least the
triangles obtained at the second step of the subdivision process
(Figure 3(b)).

1

1 1 1

11

1

1

Figure 11: Regularly subdivided octahedron constructed with two
triangulations. The radial projection of the vertices can be used to
obtain a uniform tessellation of the sphere. Note that the vertices
labeled � must remain in the model to preserve the topology.

5 Appendix
Proof of Property 2.1 We first prove by induction the horizon-
tal distance Æ����: consider � � �, which gives the horizontal
distance between two nodes having the same father node. We
then have Æ��� � �� � �, which is consistent with the z-ordering
of the indices (see Figure 6(b)). Equation (5) can be rewritten as

Æ���� � �� �

����

���

�����������

by using the following:

Æ���� � �Æ��� � �� � �������

and we show that

Æ���� � ������ �
����

���

���������� � �������

� �� �

����

���

�����������

�
�



�� �

�



��������

which proves the equation. Due to the lack of space, we only give
the induction steps for the three remaining equations. The same
procedure can be repeated for the vertical distance Æ����. When
� � � (relative vertical distance between two nodes having the
same father node), we have Æ��� � �� � �, which is consistent
with the z-ordering of the indices. Equation (7) can be rewritten
as

Æ����

�
� �� �

����

���

���

Therefore, the induction step Æ���� � �Æ���� ��� � can be used
to prove the equation. The horizontal torus is given by 6. One
can verify that Æ���� � �� � �, which is still compliant with the
z-ordering. Equation (6) can be rewritten as

Æ����� �
��

���

���������

and the induction step Æ����� � �Æ������������� can be used to
prove the equation. Similarly, we can verify that for the vertical
torus distance Æ�����, we have Æ���� � �� � �, which is still
compliant with the z-ordering. Equation (8) can be rewritten as

Æ����� � �

��

���

���

and the induction step Æ����� � �Æ���� � �� � � can be used to
prove the equation. �
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