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Multiple Description Perceptual Audio Coding with
Correlating Transforms
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Abstract—In audio communication over a lossy packet network,
concealment techniques are used to mitigate the effects of lost
packets. This concealment is markedly improved if the compressed
representation retains redundancy to aid in the estimation of lost
information. A perceptual audio coder employing multiple de-
scription correlating transforms demonstrates this phenomenon.

Index Terms—Audio coding, multiple descriptions, packetized
audio, robust communication.

I. INTRODUCTION

M OST state-of-the-art audio coders combine source
coding principles with perceptual modeling. These

coders, calledperceptual audio coders, use human hearing
models to determine perceptual relevance and then eliminate
redundancy with the minimal degradation of relevant infor-
mation [1], [2]. Perceptual audio coders are naturally frame-
or packet-based because perceptual masking thresholds are
computed for finite input blocks. Each packet contains certain
control information followed by entropy-coded quantized
subband samples. In a communication environment, packets
may be lost due to network congestion or uncorrected bit errors
on a radio link. The decoder must then conceal the loss as much
as possible.

A naive approach is to use a stationary model for the signal
and replace the lost frame with the conditional expectation of
that frame given the surrounding received frames. This results
in a reconstructed frame which is nearly zero and has an audible
dropout. A perceptually superior technique is to interpolate by
extending the sinusoidal components from neighboring frames,
but this too will leave an audible impairment unless the duration
of the lost segment is very short.

This paper addresses the design of a system that is robust
to packet losses. We will concentrate on Internet applications,
where we may assume that packets either arrive correctly or are
lost completely and that packets are identified by headers. Pairs
of packets are made statistically predictable from each other.
When one of a pair is lost, a reasonable estimate can be com-
puted, but there is a price to be paid: correlation implies a reduc-
tion of source coding efficiency. The tool for this is the multiple
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description correlating transform (MDCT) introduced by Wang
et al.[3], [4] and developed further by Goyal and Kovac̆ević[5],
[6]. The MDCT allows the correlation and predictability to be
continuously adjustable.

The introduction of MDCT’s in the Bell Labs PAC coder [2]
yields a multiple description PAC (MDPAC) coder. The mod-
ification of the existing coder is simple because the perceptual
masking is undisturbed. Nevertheless, MDPAC achieves consid-
erable perceptual improvement with only a small increase in bit
rate when the packet loss probability is moderate. This demon-
strates another application domain for MDCT, which thus far
has been limited to image coding [3], [7].

II. PERCEPTUALAUDIO CODING

Human perception plays a key role in compression of audio
material. As a result, recent audio standards work has concen-
trated on a class of audio coders known asperceptual coders.
Rather than trying to model the source, perceptual coders model
the listener and attempt to removeirrelevant information con-
tained in the input signal. For a given bit rate, a perceptual coder
will typically have a lower SNR than a lossy source coder design
to maximize SNR, but will provide superior perceived quality
to the listener. The combination of an appropriatesignal rep-
resentation, by means of a transform or a filter bank, and the
psychoacoustic modelof the destination provide the means to
achieve efficient compression.

A. Bell Labs PAC Coder

A block diagram of the PAC coder is as shown in Fig. 1.
PAC divides the input signal into 1024-sample blocks of
data—frames—used throughout the encoding process. It
consists of five basic parts:

• Theanalysis filter bankconverts the time-domain data to
frequency domain. First, the 1024-sample block is ana-
lyzed and, depending on its characteristics, such as sta-
tionarity and time resolvability, a modified discrete cosine
transform or a discrete wavelet transform is applied [2].
The total given bit rate and the sampling rate also play
a role in the design of the transform. The analysis fil-
tering produces either 1024- or 128-sample blocks of fre-
quency-domain coefficients. In either case, the base unit
for further processing is a block of 1024 samples.

• Theperceptual modelis used in computing the frequency-
domain threshold of masking both from the time-domain
signal and from the output of the analysis filter bank. A
threshold of masking is the maximum noise one can add
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Fig. 1. PAC encoder block diagram.

to the audio signal at a given frequency without percep-
tibly altering it. Depending on the transform that was used
previously, each 1024-sample block is split into a pre-
defined number of groups of bands—scale factor bands.
Within each scale factor band, a perceptual threshold value
is computed.

• Quantization:Within each scale factor band the quanti-
zation step sizes are adjusted according to the computed
perceptual threshold values in order to meet the noise level
requirements. The quantization step sizes may also be ad-
justed to comply with a target bit rate, hence the feedback
from the noiseless coder to the quantizer.

• Noiseless coding:Huffman coding is used to provide an
efficient representation of the quantized coefficients. A
set of optimized codebooks is used; each codebook codes
sets of two or four coefficients. For efficiency, consecu-
tive scale factor bands with the same quantization step size
are grouped into sections, and the same codebook is used
within each section. Failure to meet the target bit rate may
trigger a recomputation of quantization step sizes.

• The frame formatterforms the bit stream, adding to the
coded quantized coefficients the side information needed
at the decoder to reconstruct the 1024-sample block. This
block is defined as theframeand contains, along with one
1024-sample or eight 128-sample blocks, the following
side information for each of them: the transform used in
the analysis filter bank, section boundaries, codebooks,
and quantization step sizes for sections. Side information
accounts for 15% to 20% of the total bit rate of the coded
signal.

At the decoder, the entropy coding, quantization, and trans-
form blocks are inverted and an error mitigation block is added
between the inverse quantization and the synthesis filter bank.
In this block, lost frames are interpolated based on the preceding
and following frames.

III. M ULTIPLE DESCRIPTIONCORRELATING TRANSFORMS

Traditionally, source and channel coding are separate; in
essence, the source coding is designed with the assumption of
a single lossless channel. When there are delay or complexity
constraints, the channel coding will sometimes fail, resulting

in poor performance.1 This problem is particularly acute for
channels with unpredictable variation, such as the Internet. In
multiple description (MD) coding, the source encoder produces
distinct descriptions for each of channels. A reconstruction
may be formed from any subset of the channels and the problem
is to make these reconstructions simultaneously “good.” Of
course, for a given total rate over the channels, there is a
tradeoff between the qualities of the various reconstructions:
At the one extreme, all the channels carry the same information
and the reconstruction from any one channel is good (as a
function of the received bit rate), but the reconstruction quality
does not improve when more channels are received. At the
other extreme, the bits from a source code are arbitrarily
allocated to the channels. In this case, the reconstruction is
good only when all the channels are received.

In this work, we equate channels with packets and limit our
attention to channels; extensions to will be clear.
Audio segments will be encoded in a long sequence of pairs of
packets with the multiple description character. The first prac-
tical MD coding technique was quantizer-centric [8], but here
we apply a transform-centric technique developed in [3]–[6].2

Suppose we are given a zero-mean jointly Gaussian
two-dimensional source vector. Without loss of gener-
ality—applying a Karhunen-Loève transform if necessary—we
may assume . Suppose is
encoded using a standard transform coder consisting of a linear
transform followed by a scalar quantizer and a scalar entropy
coder. An optimal transform, giving maximal coding gain, is
the identity transform. Suppose each transform coefficient is
a “description” in an MD scheme. Now what happens if one
component is erased? When the low-variance component is lost
the distortion is low, but when the high-variance component is
lost the distortion is high. To improve upon this, each transform
coefficient must capture some of the first component; in other
words, the basis vectors should be skewed toward the first
principal axis, or toward the component with larger variance.
For a given quantizer, this reduces the average distortion when
a component is lost. However, there is a price to be paid: Since
the transform coefficients are correlated, the rate needed to
transmit them is increased.

The specific steps to implement an MDCT of the source
vector are as follows.

1) Uniform quantization: , where denotes
rounding to the nearest multiple of.

2) where is invertible.
3) The descriptions and are separately entropy coded.

The use of a discrete transform is to ensure cubic partition cells,
as suggested in [4].

When both and are received, is recovered exactly.
Otherwise, when one is lost the reconstruction ofis the condi-
tional expectation given the received data. Sinceis Gaussian,
the conditional expectation has a simple form when the quanti-
zation error is small [5]; we will use this form although the data
is not actually Gaussian.

1Here retransmission is considered part of channel coding.
2See [6], [8], and [9] for comprehensive introductions to MD coding.
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It is shown in [5] that if and are equally likely to be lost,
an optimal transform over a certain set of quasilinear transforms
is3

The invertibility of this transform is easy to verify. The relevant
conditional expectations give reconstructions

(1)

and

(2)

The parameter controls the trade-off between the redun-
dancy and the average distortion when one component is lost.
When distortion is measured in MSE per component and re-
dundancy in bits per component and the quantization error is
neglected, the trade-off follows [5]

(3)

To encode more than two variables, one can form pairs of com-
ponents and apply an MDCT to each pair. The allocation of re-
dundancy to pairs is a simple convex optimization. The optimal
coupling of variables pairs the largest variance component with
the smallest variance component, the second largest with the
second smallest, etc. [6], [9].

IV. M ULTIPLE DESCRIPTIONPERCEPTUALAUDIO CODER

Fig. 2 depicts the MD version of the PAC coder. The only
change to the PAC coder is the addition of an MDCT block with
off-line design of transform parameters.

• An MDCT block is inserted between the quantizer and the
noiseless coder. Within each 1024-sample unit, MDCT is
applied to pairs of quantized coefficients, producing pairs of
MD-domain coefficients. Within each pair, one MD-domain
coefficient is assigned to each of Channel 1 and Channel 2.
The pairings and the parameters of the transforms are side
information.

In the decoder we add an inverse MDCT block that uses
the side information (see Fig. 3).

• Inverse MD transform—This block performs the estimation
and recovery of lost MD-domain coefficients when neces-
sary. When both channels are received, this block simply in-
verts the MDCT’s. When one channel is received, estimation
follows (1)–(2). When both channels are lost, the built-in loss
mitigation feature of PAC is used.

3Optimization criteria for other numbers of components and probabilities of
loss are also given in [5].

Fig. 2. MDPAC encoder block diagram.

Fig. 3. MDPAC decoder block diagram.

Fig. 4. Frequency-domain coefficient variances at bit rates (from left to right)
20 kbps, 30 kbps, and 48 kbps for File 9.

A. Audio File Statistics

The second-order statistics of the source are needed for de-
signing the optimal pairing and transform and for the estimation
of lost coefficients. In the PAC structure, the bit rate affects the
choice of analysis transform and thus the coefficient variances.
This can be seen in Fig. 4, which gives the frequency-domain
coefficient variances for an audio segment at three different bit
rates. A bit rate of 20 kbps, suitable for Internet applications,



AREAN et al.: MULTIPLE DESCRIPTION PERCEPTUAL AUDIO CODING 143

TABLE I
DESCRIPTIONS OF THEANALYZED AUDIO FILES

Fig. 5. Pairing design for audio file 6 coded at 20 kbps. Dotted vertical lines
indicate scale factor band boundaries.

is used in subsequent analyses. Five files recommended by the
European Broadcast Union [10] and four other files were ana-
lyzed. Table I gives brief descriptions of the files used in this
project.

B. Pairing and Transform Design

In the theoretical development of MDCT in [3]–[6], each
transform coefficient has equal weight in the distortion metric
and is quantized with an identical quantizer. In perceptual audio
coding, the perceptual relevance and quantizer scaling of a trans-
form coefficient are determined by its scale factor band; hence,
to apply the MDCT without modification we should pair coeffi-
cients only within scale factor bands. Within each band, the op-
timal pairing described in Section III can be used. Fig. 5 shows
this pairing for audio file 6 compressed to 20 kbps (mono).

The allocation of redundancies between pairs follows (3).
Fig. 6 depicts, for the same audio file, the optimal redundancy
allocation between pairs and the optimal transform parameter
for each pair. For comparison, mean redundancies of 0.1 and
0.5 bits per variable are shown; subsequent experiments use

. (In the actual implementation, the very small values

of in the scale factor band where the variance drops sharply
are adjusted upward.)

C. Entropy Coding and Side Information

The entropy coding of PAC is unchanged, aside from insuring
that the channels are coded independently.4 The basic PAC
side information must be duplicated so that it appears in both
Channel 1 and Channel 2. In the monophonic case, this leads
to an increase in the total bit rate of up to 20%. The MDCT
parameters also constitute side information. We assume this is
transmitted once, reliably, at the beginning of the transmission.
With excessively fine coding (512's at 32 bits each and 512
10-bit integers to describe the pairing), the side information is
less than 3 kB. This is small when amortized across the whole
audio segment.

V. EXPERIMENTAL RESULTS

To sensibly judge the performance of the MDPAC system
one musthear the results. To enable this, sample audio files
have been provided on-line inaiff, next, andwaveformats at
http://cm.bell-labs.com/who/jelena/Interests/MD/AudioDemo
/DemoList.html.

The reader is invited to listen to the samples as the experi-
ments are described.

Experiments were performed with the following two coders
and bit rates:

• Coder 1: Original (single description) PAC at 20 kbps.
• Coder 2: MDPAC at 20 kbps or 26 kbps.

The rate of 26 kbps was chosen so thatwith no packet losses
there is no perceptual difference between Coder 1 and Coder 2.
Of the extra 6 kbps, 4 kbps are due to duplication of side infor-
mation for independent transmission over each channel and 2
kbps are due to redundancy introduced by MDCT. The coders
were simulated with various packet loss probabilities. In all
cases packet losses were assumed to be independent. For the
MD coder, the two channels were assigned separate packet loss
probabilities to allow greater generality in the simulations.

4We did not redesign the Huffman codes, so the performance could probably
be improved slightly.
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Fig. 6. Transform design for audio file 6 coded at 20 kbps: (a) optimally allocated redundancies; and (b)�'s for each of the 512 pairs.

First let us note the performance with no packet losses. The
performance of Coder 2 at 20 kbps is worse than that of Coder
1; the difference is small but certainly noticeable. As mentioned
above, the performance of Coder 2 at 26 kbps is virtually iden-
tical to that of Coder 1. For the remainder of the section we
compare Coder 2 at 26 kbps to Coder 1 with various packet loss
probabilities in order to ascertain the robustness gained with the
extra 6 kbps.

First suppose Coder 2 is operated such that one channel expe-
riences no packet losses and the other has% losses. In com-
parison to Coder 1 with % losses, Coder 2 performs compa-
rably for or ; it sounds dramatically better for

.
In many cases, the two virtual channels will have identical

packet loss probabilities. Coders 1 and 2 were simulated for
various packet loss probabilities. At packet loss probabilities
of 5 to 20%, the performances of the coders are compa-
rable because the simple frame interpolation in PAC works
well. At higher packet loss probabilities, such as 50%, both
coders are significantly degraded, but Coder 2 sounds much
better. The MD coder might be improved with attention to
smoothing the transitions between correctly received frames,
frames estimated from one channel, and frames that are lost
completely.

In conclusion, we find that inclusion of multiple descrip-
tion correlating transforms is a very easy way to improve
the robustness of a perceptual audio coder. The MDCT does
not affect the perceptual masking threshold calculation, but
performance might be improved by accounting for cross-fre-
quency masking. Further gains are expected from reducing
side information.
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