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Abstract

We extend to general �nite groups a well�known relation used for checking the orthogonality of a system of

vectors as well as for orthogonalizing a nonorthogonal one� This� in turn is used for designing local orthogonal

bases obtained by unitary transformations of a single prototype �lter� The �rst part of this work considered

the abelian groups of unitary transformations� while here we deal with nonabelian groups� As an example�

we show how to build such bases where the group of unitary transformations consists of modulations and

rotations� Such bases are useful for building systems for evaluating image quality�

� Introduction

In the �rst part of this work ���� we showed how to design local orthogonal bases on �nite abelian groups� In

this part we make the extension to �nite nonabelian groups� and in particular� to the group of modulations and

rotations�

To work with such groups� we need to extend the following well�known fact�

hf�t	� f�t � n	i 
 ��n	 �
�X

n���

jF �� � ��k	j� 
 �� ��	

where f�t	 is a continuous�time function and F ��	 is its Fourier transform� Property ��	 proves its usefulness

both in testing the orthogonality of f�t	 with respect to its integer translations as well as in producing functions

enjoying such a property� Property ��	 can also be seen as a necessary and sucient condition for the orthogonality

of f with respect to the functions obtained by applying to f a group of unitary linear transformations� actually

translations by integer values� Note that although the group in � is in�nite� in this work we study only �nite

groups� Relation � serves only as a guiding light�

�



As mentioned earlier� in ��� we extended ��� to �nite abelian groups� Our aim here is to do the same for the

nonabelian groups�

The outline of the paper is as follows� All the preliminaries as well as the abelian case are covered in ���� Section

	 extends those results to nonabelian groups� Section 
 discusses the �lter design problem while Section � gives

an example of a design where the group consists of modulations and rotations� Appendix A collects the proofs

of all of the results in the paper�

� Orthonormal Sets Obtained from Finite Nonabelian Groups of Lin�

ear Transformations

Our discussion in ��� on how to build orthonormal sets of vectors obtained by applying �nite abelian groups

of unitary linear transformations is far from being completely general� Indeed� the group of rotations and

modulations that triggered this work is not abelian� thus� the previous theory has to be modi�ed to be able to

work with such a group� The main problem that arises with noncommutative groups is that the representations

are no longer one dimensional which gives rise to some technical diculties� Note that in this section we work

with the vector sets introduced and formally described in ���� and denoted by bold capital letters�

��� Fourier Transform as a Tool for Nonabelian Groups

Consider the de�nition of the Fourier transform for nonabelian groups as given in Appendix A of ���� We want to

apply the Fourier transform given by ���� in Part I ��� to the condition of fUB j U � �g being an orthonormal

system �where B is a vector set�� that is�

fB� UBg � �UI � �	�

Thus� multiply both sides of �	� by �ij� �U � and sum over U � �� yielding

���� i� j�
�
� fB�

X

U��

U�ij� �U �Bg �
X

U��

I�ij� �U ��U � �
�

De�ne

U ij
�

�
�

dim����

j�j

X

U��

U�ij� �U �� ���

Note that while �ij� are scalars� U ij
� are matrices� of the same dimension as U � By using ��� in �
�� and remembering

that ���I� � I for each �� one obtains

j�j

dim����
fB�U ij

� Bg � I�ij� �I� � �i�jI � ���

	



that is�

fB�U ij
� Bg �

dim����

j�j
I�i�j � ���

Note the similarity of ��� with ���� and ���� from 	
� �in ���� and ���� indices i and j do not appear because for

abelian groups each representation is a scalar��

As in the treatment of abelian groups� ��� is our analysis tool now we want to �nd the corresponding orthonor�

malization tool� Conceptually� dealing with abelian groups does not di�er from dealing with nonabelian ones we

thus limit ourselves to stating and proving the algorithm�

A major role in the proof is played by the following property� a generalization of Property 
 from 	
�� which we

give here without proof�

Property � If matrices U ij
� are as in ���� then

U i�j�
��

U i�j�
��

� �j��i�������U
i�j�
��

�

�
U ij
�

�T
� Uji

� �

���

Equation ��� tells us that U ii
� are projections therefore it makes sense to speak about a basis of the space Vi

�

associated with U ii
� � A geometric interpretation of ��� is given later in this section�

To obtain a vector set �B with N vectors which are orthogonal with respect to the action of �� proceed as follows�

Algorithm �


� For each �� �nd an orthonormal basis of V�
� and extract from it dim���� blocks�

�B���� �B���� � � � � �B��dim��
�
��

each one consisting of N vectors� Of course� the dimension of V�
� must be greater or equal than dim����N �

�This might seem an unnecessary restriction at this point� but is perfectly reasonable� as is demonstrated

shortly��

�� Compute

�B �
X

�

dim��
�
�X

j��

Uj�
�

�B��j � ���

�� The vector set �B is orthonormal with respect to the action of ��

The proof is similar to that for the abelian groups which is given in Appendix C of 	
��

In the �rst step of Algorithm 
 we required that the dimension of V�
� be at least dim����N � Let us examine this

requirement�

�



�� As proven in the following �see Corollary ��� vector spaces Vj
� have the same dimension �that is assumed

to be at least dim����N ��

�� Therefore� the vector space V� associated with P� �
P

j U
jj
� � being the direct sum of Vj

� � has dimension at

least dim����
�
N �

�� Finally� vector space V� being direct sum of the vector spaces V� � has dimension at least

X

�

dim����
�
N � N

X

�

dim����
�
� ���

	� A theorem of group theory states that the sum on the right
hand side of ��� is equal to the cardinality of

� �see below Corollary 	 in Appending A of ���� that is� the dimension of V has to be at least

dim�V� � j�jN� ����

�� If we apply � to a vector set B of dimension N � we obtain j�jN vectors� Furthermore� if we want these

vectors to be orthogonal to one another �which implies linear independence� condition ���� is obvious�

The �rst step of Algorithm � requires one to choose a set of vectors belonging to V�

� and orthogonal to one another�

Since U��

� is the projection associated with V�

� one can simply extract some linearly independent columns from

U��

� and orthogonalize them� Another way of obtaining such a vector set is given later�

��� Geometric Interpretation

In this subsection we give a geometric interpretation of the algorithm we just presented� Such an interpretation

is instrumental in Section � where it is used to produce a parameterization of a basis orthogonal with respect to

the action of ��

More precisely� it is shown that with each Ujj
� we can associate a vector space Vj

� and that matrices U ij
� act as

linear transformations between such spaces� This structure enable us to �nd a basis of V such that each U ij
� has

a simple form�

����� Structure of V

We already observed that U ii
� are orthogonal projections� Now we want to prove that matrix U ij

� is a linear

transformation mapping Vj
� into Vi

� � more precisely� we have the following property� whose proof can be found

in Appendix A�

	



Property � U ij
� is an invertible linear transformation between Vj

� and Vi
� � that is� V

i
� � U ij

� V
j
� and ker

�
U ij
�

�
�

Vj
� � f�g�

A corollary easily follows�

Corollary � Vector spaces Vj
� and Vi

� have the same dimension�

Note that U ij
� is not invertible if considered as a linear transformation from V in itself� but it becomes invertible

when thought of as a map from Vj
� to Vi

� �

It is worth observing that there is no linear transformation �in the set of U ij
� � linking two spaces relative to two

di�erent representations �that is� having di�erent ��� This situation is depicted in Figure � where each space

Vj
�� associated with projection Ujj

� � is represented by a box labeled by the projection itself and the boxes are

connected by branches labeled by the name of the matrix U ij
� that maps one space in another� Not all the

branches are shown in order not to clog the 	gure�

The sum of all the projections corresponding to the same representation is

P�
�
�
X

j

Ujj
� � ����

and is still a projection because Ujj
� are orthogonal to one another� The corresponding space is represented in

Figure � as a line encircling the spaces relative to Ujj
� and labeled with P�� The collection of all spaces V� forms

the complete vector space V�

It is interesting to observe that the spaces relative to Ujj
� in Figure � can be interpreted as 
clans� �represented

by projections P�� in which every member can go into any other member of the same clan� but not into a member

of a di�erent one�

We will see later that such a clan structure imposes certain conditions on the spaces belonging to the same clan�

but not on the spaces from di�erent clans�

����� A Particular Basis

This geometric interpretation is useful because it allows us to choose a suitable basis for V such that matrices

U ij
� have a simple form� �The consequences of this are exploited in Section ���

Since V is a direct sum of the spaces Vj
� �associated with Ujj

� �� a basis of V can be obtained by a direct sum

of bases of Vj
�� The resulting structure of a vector from V is depicted in Figure �a� where it is displayed as a

�



sequence of blocks� each block being associated with a Ujj
� � The blocks relative to the same � can be thought of

as making a �macro�block� relative to the space V� �associated with P��� The remainder of the �gure will be

explained later�

We proceed in the following way�

� First� we �nd a basis for the space V�

� �

� Next� such a basis is modi�ed to obtain the bases for each Vj� �

� Finally� by repeating the previous two steps for each �� we have the basis for V�

����� Finding a Basis for V�

�

Consider the matrix U��

� and choose rank
�
U��

�

�
of its linearly independent columns as a basis for the associated

vector space V�

�� Then� orthogonalize them �using the Gram�Schmidt orthogonalization procedure� for example��

Such vectors form an orthonormal basis for V�

� �

With respect to such a basis� the linear transformation U��

� � restricted to V�

�� is represented by an identity matrix

because each vector of the basis maps in itself with the action of U��

� � Moreover� if the basis of V is chosen as direct

sum of bases of Vj�� matrix U��

� � with respect to such a basis� is a diagonal matrix having 	
s in correspondence

to the block relative to V�

� and zero otherwise� therefore it is a pseudo�identity��

����� Finding a Basis for each Vj�

To modify the basis for V�

� to obtain bases for Vj�� remember that Uj�
� is an invertible transformations between

V�

� and Vj�� and that vector spaces V�

� and Vj� have the same dimension� Therefore� a basis for Vj� can be obtained

by applying Uj�
� to a basis of V�

��

By transforming a vector Uj�
� v� v � V�

�� with U
jj
� we obtain

U
jj
� U

j�
� v � U

j�
� v� �	�

because of ���� Equation �	� says that� with this particular choice of a basis� Ujj
� is a pseudo�identity as well�

We see that by using these bases� P�� being the direct sum of Ujj
� � is still represented as a diagonal matrix with

	
s in the blocks corresponding to � and zero otherwise �that is� P� is a pseudo�identity as well��

�By pseudo�identity� we denote diagonal matrices having only zeros and ones on the main diagonal�

�



A pictorial representation of the e�ect both of P� and Ujj
� is given in Figures ��b� and ��c�� There� the action

of P� on a vector� depicted as a row of �blocks�� is seen as a sieve� passing all Ujj
� and stopping Ujj

��
� for �� �� ��

The interpretation of Ujj
� is similar� only with a thinner sieve�

To understand Figure ��d� depicting the action of U ij
� � note that if v � V�

�� then vector Uj�
� v � Vj

� will have�

with respect to the basis Uj�
� B� the same components that v has with respect to the basis of B� Therefore� the

e�ect of Uj�
� can be seen as a movement of the block corresponding to U��

� to the position corresponding to Ujj
� �

In Figure ��c� this is depicted as a sieve which causes block movement using a bent output channel�

����� Geometric Interpretation of Orthogonality Conditions

With such a basis choice we can give an interesting interpretation to �	�� Let us suppose� for simplicity� that the

vector set B is actually a single vector b� Then� �	� becomes

hb�U ij
� bi �

dim����

j
j
�i�j � ����

Let us interpret ���� in the spirit of Figure � with the help of Figure �� Figure � shows that the action of U ij
� is

to put block b� into the position of block b� and zero otherwise� When computing the scalar product between b

and U ij
� b it is clear that one obtains something that can be loosely called �the scalar product between blocks b�

and b��� Therefore� ���� is a condition between two blocks belonging to the same macroblock� note that there

is no constraint on the blocks of di�erent macroblocks�

These reasonings can be summarized as follows�

Conditions �	�� for the orthogonality of b with respect to the action of 
� mean that� with respect to

our canonical basis� the blocks of b belonging to the same macroblock have to be of unit norm and

orthogonal to one another�

The same reasoning can also be carried out more formally by multiplying U ij
� in ���� by U ii

� on the left and by

Ujj
� on the right� It is possible to do so because of ���� Then� U ii

� can be brought on the left side of the scalar

product �because it is selfadjoint� and an interpretation analogous to Figure � can be given�

Note that for abelian groups there is only one block for each macroblock� because of this� the condition of

crossorthogonality between blocks disappears and only the condition on the unitary norm remains� as previously

seen�

�



����� Parameterization of Vectors Satisfying ����

The geometric interpretation can be used to express a vector satisfying ���� as a function of certain free param�

eters� This can be useful� for example� while designing b using an optimization technique �as will be seen in

Section �� because the resulting problem is unconstrained�

Figure � shows how to proceed� Vector b is decomposed into macro�blocks and the blocks of each macro�block

are organized as the columns of a matrix A�k � Orthogonality condition between blocks implies that the columns

of matrix A�k are orthogonal to one another� that is

A
T
�k
A�k � I� ����

Note that there are no constraints between matrices with di	erent ��

We can summarize these reasonings as follows


Each vector b orthogonal with respect to the action of � can be constructed by choosing a set of

orthogonal matrices A�k and using their columns as blocks of b�

The importance of the above is that an orthogonal matrix �even if not square� can be parameterized using Givens�

rotations ��� This procedure yields the desired description of b as a function of free parameters �the angles of

Givens� rotations��

Figure � shows the reconstruction of b using the Givens rotations �kn� Figure ��a� shows how each block is

associated with a set of rotations �kn that are used to construct the matrix A�k �Figure ��b��� The columns of

such a matrix are subsequently used in Figure ��c� as blocks of b�

��� An Algorithm to Choose the Orthonormal Basis

As explained in Section ���� we need� for each �� a set of vectors �B���� �B���� � � � � �B��dim��
�
� belonging to V�

� and

orthogonal to one another� While it is possible to choose such vectors from an orthonormal basis of V�
�� it would

be interesting if we could obtain them from the starting vector set B�

Remember that for abelian groups there is a way to modify B to obtain a set orthonormal with respect to the

action of �� In this section we present an analogous method that works for nonabelian groups�

Observe how vector sets �B��j are used
 They are multiplied by U�j
� and summed in ���� Each term U

�j
�

�B��j in

�



��� is the projection of �B on Vj
� � indeed

Ujj
�

�B � Ujj
�

X

�

dim��
�
�X

j��

Uj�
�

�B��j � Ujj
� Uj�

�
�B��j � Uj�

�
�B��j � ����

because of Property �	 If the canonical basis described previously is used
 Uj�
�

�B��j is the block of �B corresponding

to Vj
�	 If B is not orthogonal with respect to the action of � it is because its blocks are not orthogonal to one

another	 A remedy is to project B onto Vj
�
 map the projections into V�� 
 orthogonalize the obtained vectors and

map them back into their spaces Vj
� 	 This
 obviously
 yields a set of vectors suitable for use in Algorithm �	 Let

us summarize these observations in the form of an algorithm�

Algorithm �

�	 For each �

�	�	 For j � �� � � � � dim����

�	�	�	 Project B on Vj
� in order to obtain Bj 	

�	�		 Apply U�j
� to Bj to obtain B�

j

�
� U�j

� Bj � V��	

�		 Concatenate vector sets B�
j to obtain a larger vector set B�	 Note that the orthogonality condition

can be expressed as fB��B�g � I 	

�	�	 In general
 matrix A
�

� fB�
�B

�g is not an identity� it is always a positive semi�de�nite matrix	

Assume that A is invertible and decompose A with the singular value decomposition as A �

O
T
S
�
O
 with S having only nonnegative values on the main diagonal	

�	�	 De�ne �
B

� �

� B
�
O

T
S
��
O	 �The de�nition of the product of a vector set with a matrix can be

found in Appendix B	� Then
 �
B

� satis�es the orthogonality condition� indeed


f �
B

�
�
�
B

�g � fB�
O

T
S
��
O�B

�
O

T
S
��
Og�

�
�
O

T
S
��
O

�T
fB�

�B
�gOT

S
��
O�

�
�
O

T
S
��
O

�T
O

T
S
�
O

�
O

T
S
��
O

�
� I�

����

�	�	 Disassemble �
B

� in order to obtain blocks �B��j 	

Note that in Algorithm  the columns of A are orthogonalized using the singular value decomposition and not

the more common Gram�Schmidt orthogonalization procedure	 The use of the singular value decomposition gives

to Algorithm  the following interesting property
 whose proof can be found in Appendix A�

�



Property � When vectors are chosen as described in Algorithm �� vector set �B is the vector set orthogonal with

respect to the action of � having the minimum distance from B�

Note that Property � can be seen as the generalization of Property � from ���� which will be exploited in Section

� to help our �lter design�

� Filter Design

The theory presented in the previous sections describes how to �nd a set orthonormal with respect to a trans	

formation group �� In particular� we are searching for bases with local orthogonal structure ���� �
��

Local orthogonal bases extend the well	known modulated lapped transforms �also known as local trigonometric

bases� �� to a more general setting� In ���� the impulse responses of the �lters constituting the �lter bank are

expressed as the columns of the matrix ��nal basis�

WKG� ����

where G is a unitary matrix �starting basis�� andW and K are two matrices �windowing and symmetry reduction�

which depend on the �lter bank structure and whose exact form does not matter for the purposes of this work�

Because of this� in the following we simply use the matrix L
�
�WK� In �
� the design of matrixW is discussed�

while G is left undetermined� its design is the goal of this section�

In the introduction we suggested that a �lter bank invariant under the action of a given group can be useful to

analyze an image and to �nd its local symmetries and regularities� The technique in ��� allows us to design a

multidimensional �lter bank starting from an orthonormal basis� If such a basis is designed to be invariant with

respect to a group action we can obtain a set of �lters that can be used for this purpose�

��� Problem Statement

Therefore� we require G to be a matrix whose columns are obtained by applying a transformation group � to a

single vector g� that is�

G �
�
g U�g U�g � � �

�
� ����

with Un � �� More generally we could ask that the columns of G be obtained with the action of � on two or

more vectors� for example

G �
�
g
�
g
�

U�g� U�g� � � �
�
� ����

��



For the sake of simplicity� we limit ourselves to having only one vector� Bearing this in mind� the �lters of the

designed �lter bank have impulse responses Lg� LU�g �LU�g� � � � � with Un � ��

��� Cost Function

It is common practice to design �lters optimizing some measure of frequential and�or temporal error� We could�

for example� specify in which region of the time�frequency plane should our �lter mostly reside� That way we

impose a certain time�frequency localization on the �lter� Then� we can express the power in time and frequency

domains� respectively� as

PT �
X

n

��n�g��n� � gTCTg �

PF � gT
�Z

�

�	�
W	�
WT 	�
d�

�
g � gTCF g�

	��


where g is our �lter� �	�
 and ��n� are weighting functions describing the prescribed time�frequency region�W	�


is a column vector containing exp	j�n
 and CT and CF are time and frequency costs� respectively� By summing

PT and PF we see that our objective function is a a quadratic function of each �lter g� that is� the cost function

has the form 	we also add LU 


X
U��

	LUg
TCULUg� 	�


Note that 	�
 could become a weighted sum by multiplying each term by a real number� Such a number can

successively be absorbed in the corresponding cost matrix� as we assume in the following�

Let us modify 	�
 to obtain a simpler expression�X
U��

	LUg
TCULUg �
X
U��

gTUT
L
TC

U
LUg�

� gT

�X
U��

UT
L
TCULU

�
g �

� gTCg �

	��


where

C
�
�
X
U��

UT
L
TCULU� 	��


Equation 	��
 shows that the global cost function 	�
 can be expressed as a quadratic cost of the single vector

g� yielding a simpler problem�

��� True Cost Function Minimization

As seen in the previous sections� the vector g is not free since the demand that it be orthogonal with respect to

the action of group � gives to g a particular structure� The parameterization developed in Section �� that allows





us to obtain g as a function of certain free parameters that can be interpreted as certain Givens� rotations� will

be useful�

We now have a simple problem of unconstrained optimization with a quadratic cost function that can be easily

solved with numerical methods�

��� A Simpler Approach

Often the use of a quadratic cost is motivated more by theoretical convenience than by a real cost with a quadratic

characteristic� Bearing this in mind� a solution that might not achieve the minimum cost� but is close to the

optimal solution can be interesting if� for example� it is simpler to compute� Indeed� to obtain the vector g from

Givens� rotations is theoretically simple� but is computationally intensive� and when included in an optimization

loop� can give rise to long design times� Although �lter design is usually made o��line� that is� without severe

fast computation requirements� a faster design procedure can allow for trying several types of �lters� Therefore�

a suboptimal� but faster solution can be interesting� To this end we can exploit Property � stating that� if we

choose our vector in the particular way described in Section �� the resulting vector has minimum distance from

the original one�

The idea is to minimize function ���	 with kgk 
 � as the only constraint� Such a condition is necessary because

otherwise we could achieve arbitrarily small values by simply scaling g� This problem has a well�known solution�

g is the eigenvector of C having the minimum eigenvalue�

Now� if we apply Algorithm � to such a g� we obtain the vector g orthogonal with respect to the action of �

and having a minimum distance from g� Since both vectors are constrained to be of unit norm� the minimum

distance is equivalent to the minimum angle between the two vectors� that is�

kg � gk 
 hg � g � g � gi 
 kgk� kgk � �hg� gi 
 �� � cos��	� ���	

where � 
 arccos�hg� gi	 is the angle between the two vectors� It is worth observing that we can always impose

cos��	 
 hg � gi � � because we can substitute g with �g without changing the cost function� The e�ect on the

�lter coe�cients is simply a change of sign� To have a vector with the minimumdistance from the �unconstrained	

optimal one is acceptable� but we would like to know if it is necessarily the optimum �with the constraint for it

to be orthogonal with respect to �	� Although we are not guaranteed that g is the optimum� we can obtain an

estimate of how much g is far from the optimum�

��



To understand what can happen� remember that we assumed C to be symmetric� Because of this� it can be

diagonalized and by rescaling we can set the minimum eigenvalue equal to �� Therefore� we can assume C to be

diagonal with the eigenvalues ordered along the main diagonal as

C �

�
����

�
��

� � �

�N

�
���� � ����

with �� � � � �� � � � � � �N � Then� in the unconstrained optimization� we obtain g � ��� 	� � � �� 	
T � Since its

normalized �g version is such that hg� �gi � cos��� and k�gk � �� the following is true�

�g � �cos���� sin���v
T � ���

where v is a vector with kvk � �� The value that the objective function ���� attains on vector ��� is

cos���� � sin����vTCv� ����

Since kvk � �� the value of the second term in ���� lies between sin������ and sin�����N � From ���� it is clear

that� if � is �xed� the lesser the value of vTCv� the lesser the value of ���� �since sin���� � 	�� Since v is

independent from � we can choose it equal to �	� �� 	� � � �
T and the worst possible value of ���� becomes equal to

cos���� � sin������� ����

We know that � is the minimum possible angle between g and �g � We would like to say that ���� is the minimum

cost that a vector having an angle greater or equal to � with g can achieve� Can we choose �� � � in order to

decrease the value of ����� It is easy to see that it is not possible� Although easy to prove it formally� a geometric

interpretation is clearer� Equation ���� is the distance from the origin of a point lying on an ellipse centered in

the origin and having the axis of length � and �� � �� respectively� The situation is depicted in Figure  where

the shadowed zone is the forbidden zone� From Figure  it is clear that it is not possible to choose a greater ��

and obtain a lesser value of ����� Therefore� the minimum value that the cost function can achieve on the set of

the vectors orthogonal with respect to the action of � is �����

Since the value of � can be estimated by the scalar product hg � �gi and the value of �� can be easily obtained by

matrix C � ���� can be used to get a rough idea if we are close or not to the minimum� Note that the estimate

���� can be pessimistic although we might have reached the true minimum�

��



� Design of Filters on Groups of Modulations and Rotations

As an example of using the noncommutative groups� we study the case that triggered this work� that is� the

group of rotations and modulations �translations in frequency�� We do this in the following order� determine the

frequency translations group T � determine the frequency rotation group R� put T and R together in order to

obtain �� �nd the irreducible representations of � and �nally� design the prototype �lter and the corresponding

orthonormal set obtained by translations and rotations�

��� Determining the Group of Modulations

We start by determining the modulation group� Let s�n�� n � Z
�� be a two�dimensional signal and de�ne its

Fourier transform as

S���
�

�
X

n�Z�

exp��j	��Tn�s�n�� �	
�

Note that in �	
� the frequency variable � � ���� ���
T has been scaled in such a way that S��� is periodic� on

Z
�� The Fourier transform of the modulated version of s�n�� that is� of exp��j	���

Tn�s�n�� is S������ Since

translations in frequency are easier to handle than modulations in time� we work in the frequency domain� As

the frequency translation group we use the lattice generated by a rational matrix Q

� �Q�
�
� fx j x � Qm�m � Z

�g� ����

Group � �Q� poses a technical problem� the theory developed in the preceding sections works for �nite groups�

but the cardinality of � �Q� is in�nite� This cannot be avoided by choosing another group because if �� �� �

belongs to T � every integer multiple of �� belongs to T as well� giving rise to an in�nite group� However� here

we can exploit the periodicity of S���� If the condition � �Q� � Z
� is imposed� one can choose for T the quotient

group � �Q� �Z�� that is� T � fm j m � k� mod Z���k � � �Q�g� It is possible to prove that the cardinality of

T is ��j det�Q�j ��� In this example we use Q � diag������ ������

��� Determining the Group of Rotations

Let us now try to determine the rotation group� As a �rst attempt� one could de�ne the rotation of the signal s�n�

as s�Rn�� where R is one of Givens� rotation matrices� However� since the signal s�n� is de�ned on Z�� matrixR

must be an integer matrix for s�Rn� to make sense for every n� Therefore� we need an �approximate rotation��

�This convention is not commonly used in signal processing where S��� is periodic on ��Z�� However� it simpli�es many later
derivations�

��



Observe that if in a Givens� rotations matrix one poses �� � ���k then matrix R satis�es the following�

�
Rk � I

Rn �� I� � � n � k�
���	

Our de�nition of approximate rotation is inspired by ���	 and we search for an integer matrix R satisfying it


Note that ���	 implies that all the eigenvalues of R are kth roots of unity and this agrees with the idea that

R should represent a rotation
 Unlike when R has real elements� it is not trivial to �nd an integer matrix R

satisfying ���	 for a given k
 Indeed� the following negative result holds� There is no � � � integer matrix R

satisfying ���	 if k � � or k � 
 In the following we use k � 


To �nd R� observe that the eigenvalues of R must be exp��j���	 implying that

det�R � I�	 � ��� e�j���	��� e�j���	 � �� � �� � � �� �Tr�R	�� det�R	� ���	

By calling rij the generic element of R� from ���	 we obtain

det�R	 � r��r�� � r��r�� � �

Tr�R	 � r�� � r�� � ��

���	

One could choose� for example� the matrix

R �

�
� �
�� �

�
� ���	

for which� R� � I and Rk �� I for � � k � 


Since we decided to handle modulations in the frequency domain� we need to do the same for rotations
 The

Fourier transform of s�Rn	 is S�R�T�	� and thus in what follows we use IR instead of R�T since it is necessary

to write powers of R�T 
 If R is as in ���	� then

IR �

�
� �
�� �

�
� ���	

Note that IR� � I and that the set R � fI� IR� IR�� � � � � IR�g is a group


��� Determining the Group of Modulations and Rotations Acting on a Point

Let us now combine modulations and rotations
 We �rst �nd a condition so that by applying a rotation IR

to � �Q	 one must obtain � �Q	 again
 If � �Q	 is not changed by rotation IR� it is not changed by multiple

rotations IRk� that is� � �Q	 is invariant with respect to the action ofR
 This can be written as� for every m � Z
��

IRQm � � �Q	 needs to be satis�ed� or� in other words� � �IRQ	 � � �Q	� which is equivalent to requiring the

��



existence of an integer matrix N such that IRQ � QN� or� equivalently� N � Q��IRQ � Z
���� This� in turn

implies that

� �IRQ� � � �QN� � � �Q� � ����

Under the above assumptions� the smallest group � containing both our frequency translation group T and the

modulation group R is the group of a	ne transformations mapping � into


� � IRa
� �m� a � Z� m � T � ����

Equation ���� can be written in a more convenient form as

�

�


�
�

�
IRa m

� 

��
�



�
a � Z� m � T � ����

Therefore� a generic element of group � has the form

U �m� a� �

�
IRa m

� 

�
� ����

Using ���� we give the composition law of � and the form of the inverse

U �m�� a��U �m�� a�� �

�
IRa� m�

� 

��
IRa� m�

� 

�
�

�

�
IRa��a� IRa�m� �m�

� 

�
� U �IRa�m� �m�� a� � a��� ����

U���m� a� �

�
IRa m

� 

���
�

�
IR�a �IR�am
� 

�
� U ��IR�am��a�� ���

Let us now summarize certain properties of group ��

� Both the translation group T and the rotation group R are subgroups of � and their generic elements �pure

translation or pure rotation� can respectively be written as

pure translation � UT �m� �

�
I m

� 

�
� ����

pure rotation � UR�a� �

�
IRa �

� 

�
� ����

� The generic element of � given by ���� can always be written as

U �m� a� �

�
IRa

m

� 

�
�

�
I m

� 

� �
IRa

�

� 

�
� UT �m�UR�a�� ����

�



that is� as the product of a pure translation by a pure rotation� Moreover� decomposition ���� is unique�

The utility of decomposition ���� is twofold� First� we have the possibility of writing every element of � in

a �normalized� form� Moreover� ���� simpli	es the study of the action of �� For example� when necessary

to verify if a given vector space V is invariant with respect to the action of some representation of �� it is

su
cient to check the invariance of V with respect to pure rotations and pure translations�

� The combination of any element of � and its inverse with a pure translation is still a pure translation�

U���m�� a�UT �m��U �m�� a� �

�
IRa

m�

� �

��� �
I m�

� �

��
IRa

m�

� �

�
�

�
I IR�am�

� �

�
� UT �IR

�a
m���
���

In group theory T is called a normal subgroup of �� In ��� the resulting pure translation can be interpreted

as the original translation rotated by IR�a� Property ��� is used when searching for the irreducible

representations of �� Note that a similar property does not hold for pure rotations�

Let us summarize what we have achieved so far�

� We found modulation and rotation groups� T � fm j m � � �Q� �Z�g and R � fI� IR� IR�� � � � � IR�g�

respectively� with Q � diag������ ����� and IR from ���� Remember that these operate in frequency

domain�

� We put these groups together in order to get the 	nal group � � fU �m� a� j U �m� a� � UT �m�UR�a�� UT �m�

from ���� and UR�a� from ����g� Note that each element of group � operates on a single point in frequency

� � ���� ���T �

��� Determining the Irreducible Representations of �

To apply the theory presented so far� we need to 	nd the irreducible representations of �� Since � is a non�

commutative group� 	nding its irreducible representations is not straightforward �see Appendix A in the 	rst

part of this work for details of representation theory�� The construction used to obtain � from T and R is

well�known in group theory and � is called the semi�direct product of T and R� It is known that one can 	nd

every irreducible representation of � by starting from the representations of T ���� However� since using such

results would require too much group machinery� one can follow a more intuitive approach that resembles the

general one� Unfortunately� even this process is quite involved and we just give the irreducible representations�

��



It is possible to show that every irreducible representation of � can be indexed by a vector k � Z
���

�
Q��

�
and

an integer l � �� � � � � jRj�N � �� with N the �rst integer such that�

RNk � k� ��	


Depending on k� N could be � in which case l � �� � � � � � �for k � ��� �T
� N � � with l � �� � �for example for

k � ��� �T
 and N � 	 with l � � �for example for k � ��� �T
�

We also need the following representation of T � indexed by k � Z
���

�
Q��

�

�k�UT �m


�
�

�
����

exp��j��kTm

exp��j��kT IRm


� � �

exp��j��kT IRN��
m


�
���� � ���


The above matrix could be a scalar� a �� � or a 	� 	 matrix� depending on k�

Now we give the form of the generic irreducible representation of � relative to k and l� that is�

�k�l�UT �m

 � �k�UT �m

�

�k�l�UR�a

 � exp��j��la�	
Ta
N �

���


with k � Z
���

�
Q��

�
and l � �� � � � � jRj�N � �� and TN being the circular translation N � N matrix

TN
�
�

�
������

� � � � � � � �
� � � � � � � �
� � � � � � � �

�� �

� � � � � � � �

�
������
� ���


Note that� since every element of � can be written as a product of an element of T with one element of R� from

���
 and the fact that �k�l is a homomorphism �see Appendix A in the �rst part of this work
� one can obtain

the value of the irreducible representation �k�l for the generic element of � as

�k�l�IR
a ��m
 � �k�l�U �m� a

 � �k�l�UT �m
UR�a

 �

�k�l�UT �m

�k�l�UR�a

 � �k�m
 exp��j��la�	
Ta
N � ���


��� Determining the Group of Modulations and Rotations Acting on a Vector

To complete the design� we need to put modulations and translations in a matrix form�� Note that now we �nd

the structure of the new group �� in time domain�� To that end� we need to �x the �lter support� in order to

�Note that ���� is an equality between classes of Z���
�
Q��

�
and it holds as soon as RN �k � �k �mod �

�
Q��

�
�� with �k any

representative of class k� It is possible to show that N always divides jRj � ��
�In other words� we construct a matrix that describes the action of a modulation and a rotation on the whole signal	
lter� as

opposed to a single point we considered until now�
�Note that here we use ��� T ��R�� T ��R�� to distinguish the group and its elements operating on the whole vector as opposed

to a single point�

��



work with a �nite�dimensional vector space� Of course� such a support has to be invariant with respect to the

action of R� An easy way to �nd a suitable support is to choose a �mother� set A and de�ne

B � A � RA � � � � � R
�A� ��	


Then� we order the points of B in order to map a function f�n
 de�ned on B in a column vector f � A particularly

useful ordering can be obtained as follows� Consider the set of orbits resulting from the action of R on B�� The

only orbit with just one element is O�

�

� f�� �Tg while every other orbit has six elements� Choose any ordering

for the other orbits and construct the vector f as

f
�

�

�
����

f�O�

f�O�

f�O�


���

�
���� � ���


where f�Oi
 denotes the block vector with the values assumed by f on the ith orbit� To order the points inside

a given orbit Oi� choose as the �rst point any or � Oi and order the other points as or �R��or � � � � �R��or �

Let us show an example of construction of vector f � As the �rst orbit� choose the only orbit with one element

O� � f�� �Tg� Therefore� the �rst element of f is f�� 
� To get the second orbit� choose another point �for

example �� 	�T
 and take all the vectors of the form R
�k�� 	�T � k � � � � � � �� that is

O� �
�
�� 	�T � ��	� �T � ��	��	�T � ���	�T � �	� �T � �	� 	�T

�
� ���


To �nd the third orbit choose� for example� �� �� to obtain f as

f �

�
������������������

f�� 

f�� 	

f��	� 

f��	��	

f���	

f�	� 

f�	� 	

f�� �

f���� 

f������


���

�
������������������

� ���


The procedure is iterated until all the points of B are used�

We now need to �nd the new group elements consisting of matrices performing modulations and rotations of the

whole vector f � With ordering as above� these matrices assume a particularly simple form�

�An orbit of a point n is obtained by applying the elements of R to n�

	�



� Modulations correspond to a point�by�point multiplication of the function f by complex exponentials� The

resulting matrix is diagonal�

� The e�ect of rotation R is to circularly rotate points of every orbit� The corresponding matrix is block

diagonal� with every block a circular translation matrix corresponding to one orbit�

As an example� let us construct the matrices related to rotations and modulations in the speci�c case of f from

����� By applying a rotation R to �lter f�n� one obtains a new signal g�n� de�ned as

g�n� 	 f�Rn�� ����

Let g be the vector corresponding to �lter g�n�� It is possible to write the components of g as a function of f as

follows


g 	

�
��������������

g��� ��
g��� ��
g���� ��
g�������
g������
g��� ��
g��� ��
g��� �
���

�
��������������

	

�
��������������

f��� ��
f��� ��
f��� ��
f���� ��
f�������
f������
f��� ��
f�� �
���

�
��������������

	 U�R�a�

�
��������������

f��� ��
f��� ��
f���� ��
f�������
f������
f��� ��
f��� ��
f��� �
���

�
��������������

� ����

Then� matrix U�
R
�a� is

U�
R�a� 	

�
����

�
T
a
�

� � �

T
a

�

�
����
�������

� ����

In ����� empty entries are understood to be zero� We now construct the matrix relative to a modulation by

exp��j�mT
n�� By modulating f�n� one obtains a new signal g�n� de�ned as

g�n� 	 f�n� exp��j�mT
n�� ����

The corresponding vector g is

g 	

�
��������������

g��� ��
g��� ��
g���� ��
g�������
g������
g��� ��
g��� ��
g��� �
���

�
��������������

	

�
��������������

exp��j�mT ��� ��T � f��� ��
exp��j�mT ��� ��T � f��� ��
exp��j�mT ��� ��T � f��� ��
exp��j�mT ���� ��T � f���� ��
exp��j�mT �������T � f�������
exp��j�mT ������T � f������
exp��j�mT ��� ��T � f��� ��
exp��j�mT �� �T � f�� �
���

�
��������������

	 U�T �m�f � ����

�



Then� the matrix U�
T
�m� is

U�
T �m� �

�
������

�
exp��j��mT ��� ��T�

exp��j��mT ��� ��T�
exp��j��mT ���� ��T �

	 	 	

�
������
�������

�
�
��

Therefore� every matrix of ��� being the product of U�
R
�a� and U�

T
�m� is in a block�diagonal form� that is� �� is

of the form

�� � fU��m� a� j U��m� a� � U�
T �m�U�

R�a�� U
�
T �m� from �
�� and U�

R�a� from ���g� �
��

Note that these are operating on the whole vector f � not a single point only as in ����	 Note also that we

have constructed matrices U��m� a� � U�
T
�m�U�

R
�a� which are block�diagonal and is thus well suited for �nding

representations	 We do that �rst for translations and then for rotations	

Let us �rst consider U�
T
�m�	 By comparing the block Mor

�m� in �
�� corresponding to a certain orbit Or

�excluding O�� with �or�UT �m�� given in ���� we can see that

Mor
�m� � diag�fexp��j��mTR�ior�� i � �� � � � � g� � diag�fexp��j��or

T IRim�� i � �� � � � � g� � �or�m��
�
��

since mTR�ior is a scalar	 Moreover� by using �
�� and the fact that IRQ � QN �see the beginning of this

section� it is possible to prove that if o�r � or �Q�T s� s � Z
�� then Mor

� Mo
�

r
	 In other words� representation

Mor
depends only on the equivalence class of Z���

�
Q�T

�
to which or belongs	 This suggests to collect equivalent

orbits by letting them appear next to each other in the ordering	 In the following we assume such an ordering	

As a result� U�
T �m� can be further expressed as

U�
T �m� �

�
���������

�
�or����UT �m��

	 	 	

�or����UT �m��
�or� ���UT �m��

	 	 	

�
���������

�

�
����

�
Ir� � �or����UTm��

Ir� � �or� ���UTm��
	 	 	

�
���� �

�
��

where the dimension of Irl for each distinct orbit tells us how many times a particular block appears	 What the

above expression means is that the matrix U�
T is in a way its own representation	

��



For rotations� we can follow the same path� namely

U�

R�a� �

�
���������

�
�or� �l�UR�a��

� � �

�or� �l�UR�a��
�or��l�UR�a��

� � �

�
���������

�

�
����

�
Ir� � �or� �l�UR�a��

Ir� � �or� �l�UR�a��
� � �

�
���� �

����

Therefore� the �nal element of group 	� as well as its representation can be written as

�
����

�
Ir� � �or����UT �m��

Ir� � �or� ���UT �m��
� � �

�
����

�
����

�
Ir� � �or� �l�UR�a��

Ir� � �or��l�UR�a��
� � �

�
���� �

�

�
����

�
Ir� � �or� ���UT �m���or� �l�UR�a��

Ir� � �or� ���UT �m���or��l�UR�a��
� � �

�
���� �

With the chosen ordering� the form of matrices of 	� is so simple that we can compute their Fourier transform

U ij

k�l
in closed form� Observe that� given the block
diagonal nature of 	�� we just need to compute the Fourier

transform rU ij
k�l of the block relative to or � Consider �rst jOrj � �� Then N � � and l � �� From ��� and

orthogonality relations one obtains

rU ij

k��
�

�

��
��or � k�eij ���

where eij is a �� � matrix having � in row i� column j and zero otherwise�

On the other hand� if jOrj � �� that is� or � o� � ��� ��T � then N � � and l � �� � � � � � yielding

�U
ij

k�l �
�

�� � �
��k���l�� ����

By putting together expressions ��� and ���� one obtains the general form of U ij
k�l

U ij
k�l �

�
�������

� � �

�

I � rU ij
k�l

�
�� �

�
�������
� ����

��



that is� U ij

k�l is a block diagonal matrix� zero everywhere but on the blocks relative to or � k �mod �
�
Q�T

�
��

In ���� I is an identity matrix of suitable dimensions� Note� from ����� that the dimension of V�

k�l is equal to the

number of orbits relative to the same representation �k�l� Remember that dim�V�

k�l� � dim��k�l�� This implies

that the number of orbits relative to representation �k�l must be greater or equal than dim��k�l�� that is� the

support must be big enough�

��� Finding the Filter

In this example we used the support of Figure ��a� that has been determined via ��	� with A suitably chosen

in order to have enough orbits� Then� we applied Algorithm 	 in order to obtain the 
lter of Figure ��b�� As a

starting 
lter we used

h�x� y�
�

� exp���������x� ���	y��� sin���x�	��� ����

The purpose of the gaussian part is to give a lowpass shape to the 
lter� while the modulation with the sinusoid

has been used to make the orthogonalization of h�x� y� easier� Indeed� without the sinusoid� h�x� y� would be

nonnegative everywhere and such a function cannot be� even approximately� orthogonal to its own rotation�

Because of this� although the algorithm 
nds the orthogonal 
lter that is closest to h�x� y�� 
lter ���� could be

too far from the set of the 
lters orthogonal with respect to the action of �� and the output of Algorithm 	 would

not be meaningful�

A Proofs

Proof of correctness of ���� Using ��� in the left�hand side of ���� one obtains

f �B�U ij
�
�Bg �

X

i����

X

i����

fU i��
��

�B�� �i��U
ij
� U

i��
��

�B�� �i�g�

�
X

i����

X

i����

f �B���i� �U
�i�
��
U ij
� U

i��
��

�B�� �i�g�
����

Because of ���� in ���� the only terms that remain are for i� � i� i� � j and �� � �� � �� and ���� can be

rewritten as

fB�U ij
� Bg � f �B��i�U

�i
� U

ij
� U

j�
�

�B��jg� ����

Using ��� once more� we get

fB�U ij
� Bg � f �B��i�U

��

�
�B��jg � f �B��i� �B��jg � I�i�j � ��	�

In ��	� we used the fact that U��

�
�B��j � �B��j since �B��j belongs to V�

� and U��

� is its projection operator�

��



The above holds since U��

� projects �B��j onto the same space Vj
� and �B��i are all orthogonal to one another�

Proof of Property �� We need to prove two facts� that Vi
� � U ij

� Vj
� and that ker

�
U ij
�

�
� Vj

� � f�g�

In order to prove the �rst fact we show that if v � Vj
� then U ij

� v � Vi
� and that if v� � Vi

� then there exists

v � Vj
� such that v� � U ij

� v� Indeed� if v � Vj
� � then

U ii
�

�
U ij
� v

�
� U ij

� v ��	


because of Property �� Equation ��	
 says that the projection of U ij
� v on Vi

� is equal to U ij
� v itself� that is� U ij

� v

belongs to Vi
� � To prove that for each v� � Vi

� there exists a v � Vj
� such that v� � U ij

� v� it is su�cient to verify

that v
�
� Uji

� v� works� Indeed

U ij
� Uji

� v� � U ii
� v� � v� ��


and the �rst fact is proved�

To prove the second fact let us suppose that there exists a v from Vj
� which also belongs to the kernel of U ij

� �

that is

U ij
� v � �� ���


By multiplying ���
 by Uji
� one obtains

Uji
� U ij

� v � Ujj
� v � �� ���


However� remember that v � Vj
�� This immediately means that

v � �� ���


that is� the only vector in ker
�
U ij
�

�
� Vj

� is the zero vector�

To prove Property  we need the following lemma�

Lemma A�� Matrices U ij
� are unitary transformations between Vj

� and Vi
� �

Proof� Let b� c � Vj
� � then

hU ij
� b�U ij

� ci � hb�Uji
� U ij

� ci � hb�Ujj
� ci � hb� ci� ���


	�



Note that ���� still holds if vectors b and c are replaced with vector sets�

Proof of Property �� In Algorithm � vector set B is projected on spaces Vj
� to obtain vector sets Bj�� Such

vector sets are mapped in V�

�� via U
�j
� � to obtain B�

j�� Note that the original vector set can be expressed as

X

��j

Uj�
� B

�

j� �
X

��j

Uj�
� U�j

� Bj� �
X

��j

Ujj
� Bj� � B ����

because V is direct sum of vector spaces Vj
��

In the second step of Algorithm �� for each �� vector sets B�

j�� are �clustered	 together and orthogonalized� By

looking at Algorithm � and Property � from 
�� note that B�

j�� are orthogonalized via the SVD for vector set�

Because of Property � the new vector sets B
�

j�� are such that the following quantity�

X

j

k 
B

�

j�� �B
�

j��k
� ����

is minimized for each �� The new vector set B is

B �
X

��j

Uj�
�

B
�

j�� ����

The distance between B and B can be written as

k
X

�

X

j

Uj�
�

B
�

j� � Uj�
� B

�

j�k
�
� ����

Because the terms inside the sum of ���� are orthogonal to one another �they belong to vector spaces Vj
� �

orthogonal to one another� one can apply the Pythagorean theorem to obtain

X

�

X

j

kUj�
�

�
B
�

j� �B
�

j�

�
k�� ����

Since each Uj�
� is unitary �Lemma A��� ���� can be rewritten as

X
�

X
j

kUj�
�

�
B
�

j� �B
�

j�

�
k� �

X
�

X
j

k
�
B
�

j� �B
�

j�

�
k�

�
X
�

k
X
j

�
B
�

j� �B
�

j�

�
k��

����

In ���� it has been possible to bring
P

j inside the norm again because of the Pythagorean theorem� Since each

term in
P

� is independently minimized� the global sum is minimized too�
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