38 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 1, JANUARY 2000

Matching and Retrieval Based on the Vocabulary and
Grammar of Color Patterns

Aleksandra Mojsilovic Member, IEEE Jelena Koveévic, Senior Member, IEERJianying Hy Member, IEEE
Robert J. SafranelSenior Member, IEEEand S. Kicha Ganapathivlember, IEEE

Abstract—We propose a perceptually based system for pattern innovative content-based search techniques as well as new
retrieval and matching. There is a need for such an “intelligent” types of queries.
retrieval system in applications such as digital museums and li-
braries, design, architecture, and digital stock photography. The .
central idea of the work is that similarity judgment has to be mod- A Previous Work
eled along perceptual dimensions. Hence, we detect basic visual One of the earliest CBR systems is ART MUSEUM [1]
categories that people use in judgment of similarity, and design a \ ;o6 retrieval is performed entirely based on edge features.
computational model that accepts patterns as input, and depending . . . ) .
on the query, produces a set of choices that follow human behavior The first commercial content-based image search engine with
in pattern matching. There are two major research aspects to our profound effects on later systems was QBIC [2]. As color
work. The first one addresses the issue of how humans perceiverepresentation, this system usest#&lement histogram and
and measure similarity within the domain of color patterns. To un- average of R, G, B), (v, i, ¢), and (, a, b) coordinates,

derstand and describe this mechanism we performed a subjective o raas for the description of texture it implements Tamura’s
experiment. The experiment yielded five perceptual criteria used

in comparison between color patterns (vocabulary), as well as a féature set [3]. In a similar fashion: color, texture, anq shape
set of rules governing the use of these criteria in similarity judg- are supported as a set of interactive tools for browsing and
ment (grammar). The second research aspect is the actual imple- searching images in the Photobook system developed at the
mentation of the perceptual criteria and rules in animage retrieval  \ T Media Lab [4]. In addition to these elementary features
system. Following the processing typical for human vision, we de- systems such as VisualSeek [5], Netra [6], and Virage [7]

sign a system to: 1) extract perceptual features from the vocabulary : . : .
and 2) perform the comparison between the patterns according to SUPPOrt queries based on spatial relationships and color layout.

the grammar rules. The modeling of human perception of color Moreover, in the Virage system [7], the user can select a
patterns is new—starting with a new color codebook design, com- combination of implemented features by adjusting the weights
pact color represe_ntz_atior_l, and texture descr_iptio_n through mul- according to his own “perception.” This paradigm is also sup-
e octon, WSyt pored in RetrevalWare search engine €], A iferent approsch
late with human performance. The performance of the system is {0 Similarity modeling is proposed in the MARS system [9],
illustrated with numerous examples from image databases from where the main focus is not in finding a best representation, but
different application domains. rather on the relevance feedback that will dynamically adapt
Index Terms—Color and texture classification, color and texture - Multiple visual features to different applications and different
extraction, image database retrieval. users. Hence, although great progress has been made, none of
the existing search engines offers a complete solution to the
general image retrieval problem, and there are still many open
research issues, preventing their use in a real applicatiny.
LEXIBLE retrieval and manipulation of image databaseis that so?
has become an important problem with application in
video editing, photo-journalism, art, fashion, cataloguing, r&. Motivation
tailing, interactive CAD, geographic data process’ing, etc. Until hile it is recognized that images can be described at a
recently, content-based retrieval ;ystems (CBR 5) have as‘?ﬁ talevel through color, texture, and shape of the objects
people for key words to search image and video databas\%hin the image, general image understanding is a hard

Unfortunately, this approach does not work well since Oliffere[Hroblem. Thus, one challenge is to accomplish image retrieval
people describe what they see or what they search for '

; : _ Hsed on similarities in the feature space without necessarily
different ways, and even the same person might describe

. diff v d di h text in which Ef'forming full-fledged scene analysis. Many of the existing
same image ditterently depending on the context in WRICh 4t gie g [7], [8], accomplish this task by expecting the user to

will be used. These problems stimulated the development Jzign a set of weights to color, shape, and texture features, thus
specifying the way these attributes are going to be combined
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F— 1 FTTTTTTTTTTTTTTTT 1 patterns is new—starting with a new color codebook design,
—> deccingiition i ! { compact color representation, and texture description through
| 7 ! l i multiple scale edge distribution along different directions. Fi-
i — ! | | nally, to model the human behavior in pattern matching, instead
| color distribution l E I & ofusing the traditional Euclidean metric to compare color and
§ | 1 | ! query | § texture feature vectors, we propose new distance functions that
£ ! generation of i ! E < correlate with human performance.
5o pattern map : | : - The outline of the paper is as follows. Section Il describes
;?; E Il { i dotatee | § the subjective experiment and analytical tools we used to inter-
! | extraction of texture i ! 2 pret the data. At the end of this section we list and describe in
! primitives ! ! I detail thefive perceptual categories (vocabulary) dive rules
| v ! l A4 i (grammar) used by humans in comparison of color patterns.
| [ estimation of primitive | | ] N { Section Ill gives an overview of the system together with its
' distribution I —>|  similarity judging  —p i i i
! ; ! | psychophysical background. Sections IV and V present the im-

b e e e plementation of feature extraction based on color and texture,
respectively, and the development of new color and texture met-

Fig. 1. Overview of the system. The two main parts deal with featur . . .
extraction and similarity measurement. Both the feature extraction aﬁ&s‘ Section VI describes how these features and distances are

similarity measurment parts mimic the behavior of the human visual systetiSed in similarity measurement and presents numerous exam-
Within the feature extraction part, color and texture are processed separateljles. Section VIl gives examples of different queries and the
corresponding search results. The final section includes discus-

perform similarity matching in a human-like manner one haon and conclusions.
to: 1) choose a specific application domain, 2) understand how
users judge similarity within that domain, and then 3) build a [I. VocABULARY AND GRAMMAR OF COLOR PATTERNS

system that will replicate human performance. . .
y P P .Our understanding of color patterns is very modest compared

Since color and texture are fundamental aspects of human vi- . :
to qur understanding of other visual phenomena such as color,

sual perception, we developed a set of techniques for search an rast level text That i v due to th
manipulation of color patterns. Moreover, there are agreatm rast or even gray-ievel texures. fhat 1s mainly due fo the
S : . fact that the basic dimensions of color patterns have not yet
applications for pattern retrieval in: arts and museums, fashigh,” ™. o . :
S L . L gen identified, a standardized set of features for addressing
garment and design industry, digital libraries, and digital sto<i

photography. Therefore, there isaneed for an “intelligent”visu?u?e'; Iorlgggir:lan:lo(\:/\r/]?r:igt:?esgtzsreioaerse tr:) Ott)eeéf;;b?ﬁer dar:ret\r/]i?)rues
information retrieval system that will perform pattern matchin 9 '

: N - vestigations in this field concentrated mainly on gray-level
in these applications. However, regardless of the application do- . ) .2
PP 9 bp tural textures [3], [10], [11]. Particularly interesting is work

main,toaccomplishretrieval successfully itis necessarytoundgf-RaO and Lohse 111 their research focused on how peoble
stand whattype of color and texture information humans actuaCY ssify textures i[n ]r.neaningful hierarchically struc?ure%l

use and how they combine them in deciding whether two patterng L S . :
L . : ; . tegories, identifying relevant features used in the perception
are similar. In this paper, we are focusing on the integration

color and texture features for pattern retrieval and matching. rgray-level textures. Similarly, here we determine the basic

aimistodetectbasic visual categoriesthat people useinjudgm %egones—vocabulary—used by humans in judging similarity

L X : A color patterns, their relative importance and relationships, as
of similarity, and then to design a computational model which ac- . .
g : . well as the hierarchy of rulesgrammar Later in the paper,
cepts one (or more) texture images as input, and dependmgton

the type of query, produces a set of choices that follow human b%tCUgh numerous se_arch examples _(see Figs. 8-13), we wil
havior i . show that these attributes are applicable to a broad range
avior in pattern matching.

fttextures, starting from simple patterns, all the way up to

There are two major research aspects in our work: The fird . :
complex, high-level visual texture phenomena.

one addresses the issue of how humans perceive and measure. . . S : .
is section describes the subjective experiment, and gives

similarity within the domain of color patterns. To understand | . . T : . : .
y P brief overview of multidimensional scaling and hierarchical

and describe this mechanism we performed a subjective expgp- . ! ; :
. : 3 L clustering techniques we used to interpret the experimental data.
ment. The experiment yielddive perceptual criteria important

for the comparison between the color patterns, as well as a 'gl t|d|m§n5|on'al scaling was a'pp'he('j 0 deFerm'me the'most im-
ortant dimensions of pattern similarity, while hierarchical clus-

of rules governing the use of these criteria in the similarity jud =ring heloed us understand how people combine these dimen
ment. Theive perceptual criteria are considered to belthsic g help peop

- . . sions when comparing color patterns. The results obtained are
vocabularywhereas the set of rules is considered ashtsic paring P

p " Iiﬁted and explained at the end of this section, while the details
gramma of the “color pattern language.” The second researc

aspectis the actual implementation of the perceptual criteria ard! be found in [14]
rules in the image retrieval system illustrated in Figs. 1 and 2. ,
Following the processing typical for human vision, we designd EXperimental Setup

system to 1) extract perceptual features from the vocabulary anduring the subjective testing, we used 25 patterns from in-
2) perform the comparison between the patterns accordingtéoior design catalogs. Twenty patterns were used in the ac-
the grammar rules. The modeling of human perception of coltwral study, whildfive patterns were used as a “warm-up” before
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Fig. 2. Two basic blocks of the feature extraction part from Fig. 1. (a) Color representation and modeling. (b) Texture representation and modeling.

r AT At the end of experiment, half of the subjects were presented
;; ”"i with pairs they thought the most similar, and asked to explain
) why. Their explanations were used later as an aid in the inter-
" pretation of the experimental results, as well as for the develop-
ment of the retrieval system. Experimental data were interpreted
using multidimensional scaling techniques yielding the vocab-
ulary and the hierarchical clustering analysis which, in turn, led
to the grammar rules.

B. Multidimensional Scaling

Multidimensional scalindMDS) is a set of techniques that
enables researchersto uncover the hidden structures in data[12].
MDS is designed to analyze distance-like data catiedlarity
Fig. 3. Pattern set used in the experiment. The patterns are obtained fi@ata; that is, data indicating the degree of similarity between two
an int(?rior des_ign database, containing_350 patterns. Twenty were s_eleqtgi-ns_ Traditionally, similarity data is obtained via Subjective
capturing a variety of features. Another five were used as a “warm up” in the . ] . T
study. The patterns are numbered from 1 through 20, starting at the upH&?aS_urement' Itis acquired by asking people to rank similarity
left-hand corner. of pairs of objects-stimuli—on some scale (as in our experi-

ment). The obtained similarity value connecting stimulus
each trial. This allowed the subjects to get comfortable witimulus; is denoted bys;;. Similarity values are arranged in
the testing procedure and to sharpen their own understandingcfimilarity matrixA, usually by averaging;; obtained from
similarity. The digitized version of the twenty patterns selecteall measurements. The aim of MDS is to place each stimulus
are displayed in Fig. 3. We selected patterns that capture a fram the input set into am-dimensional stimulus space (the
riety of differentimage features and their combinations. The septimal dimensionality of the space, should be also deter-
lection of stimuli is crucial for interpretation of the data. Sincenined in the experiment). The poinis = [z;1%s2 - - - Tin)
we postulated that visual similarity needs to be modeled byrgpresenting each stimulus are obtained so that the Euclidean
high number of dimensions, it was vital for this experiment tdistances!;; between each pair of points in the stimulus space
select the stimuli so that there is sufficient variation of potentiahatch as closely as possible the subjective similaritiedbe-
dimensions. tween corresponding pairs of stimuli. The coordinates of all

Twenty eight subjects participated in the study. The subjecttimuli (i.e., theconfiguratior) are stored in the matriX, also
were not familiar with the input data. They were presented wittalled thegroup configuration matrix.
all 190 possible pairs of stimuli. For each pair, the subjects wereDepending on the type of the MDS algorithm, one or several
asked to rate the degree of overall similarity on a scale rangisignilarity matrices are analyzed. The simplest algorithm is the
from zero for “very different” to 100 for “very similar.” There classical MDS (CMDS), where only one similarity matrix is an-
were no instructions concerning the characteristics on whiatyzed. The central concept of CMDS is that the distahgbe-
these similarity judgments were to be made since this was thieeen points in am-dimensional space will have the strongest
very information we were trying to discover. The order of prepossible relation to the similaritigg; from a single matrixA.
sentation was different for each subject and was determin€be traditional way to describe a desired relationship between
through the use of arandom number generator. This was doné@distance;; and the similarity;; is by the relationl = f(¢)
minimize the effect on the subsequent ratings of both the sasuch as
presentation order for all the subjects (group effect) as well as
the presentation order for one subject (individual effect). d=f(6)=ad+b (1)
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where, for a given configuration, valuesandb must be dis-  An important characteristic of CMDS is that once a configu-

covered using numerical optimization. There are many differeration of points is obtained, it can be rotated, implying that the
computational approaches for solving this equation [12]. Ondé@mensions are not meaningful. Thus, when interpreting the re-
the bestf is found, we then search for the best configuratdn sults, higher-dimensional CMDS soon becomes impractical. As
of points in the stimulus space. This procedure is repeated fipposed to CMDS, due to the algebra of the weighted Euclidian
differentn’s until further increase in the number of dimensionmodel, once the WMDS configuration is obtained, it cannot be
does not bring a reduction in the following error function (alsootated [12], [28]. However, the stability of configuration de-

known asstress formula 1 or Kruskal's stress formyla pends heavily on the accuracy of the model; if the model fits
that data well, the dimensions are meaningful which makes our
Z Z [f(8:5) — dij]? job of interpreting them much easier.
i
stres$A, X, f) = S5 6y - (2 c. Hierarchical Cluster Analysis
FR Y Given a similarity matrix, hierarchical cluster analysis (HCA)

o _ ) ~organizes a set of stimuli into similar units [13]. Therefore, HCA

A detailed introduction to the CMDS together with many imnpe|y ys discover the rules and the hierarchy we use in judging
portant implementation aspects can be found in [12]. Once thgilarity and pattern matching. This method starts from the
CMDS configuration is obtained we are left with the task of ingtimyus set to build a tree. Before the procedure begins, all
terpreting and labeling the dimensions we have. Usually, we algiimuyli are considered as separate clusters, hence there are as
to interpret each dimension of the space. However, the numbgs,y clusters as there are ranked stimuli. The tree is formed by
of dimensions does not necessarily reflect all the relevant Ch%‘ﬁ'ccessively joining the most similar pairs of stimuli into new
acteristics. Also, although a particular feature exists in the stifyysters. At every step, either an individual stimulus is added to
ulus set, it may not contribute strongly enough to become visikigs existing clusters, or two existing clusters are merged. The
as a separate dimension. Therefore, one useful role of MDSyjgyping continues until all stimuli are members of a single
to indicate which particular features are important. ~ cluster. How the similarity matrix is updated at each stage of

Another important MDS type is weighted multidimensionaje tree is determined by the joining algorithm. There are many
scaling (WMDS). It generalizes CMDS Euclidean distancgossible criteria for deciding how to merge clusters. Some of
model, so that several similarity matrices can be used. Thig simplest methods usesarest neighbor techniquevhere
model assumes that individuals vary in the importance th@ye first two objects combined are those that have the smallest
attach to each dimension of the stimulus space. In that Waitance between them. Another commonly used technique is
WMDS accounts for individual differences in human rege farthest neighbor technique where the distance between two
sponses. WMDS analyzes several similarity matrices, one fq(sters is obtained as the distance between their farthest points.
each of m subjects. In the WMDS modél;;, indicates the Tne centroid method calculates the distances between two clus-
similarity between stimuli and j, as judged by subjedt. iers s the distance between their means. Also, since the merging
The notion _of “individual taste” is_incorporated into the modeht cjusters at each step depends on the distance measure, dif-
through weightsuy;, for each subject = 1, - -, m and each ferent distance measures can result in different clustering solu-
dimension/ = 1, - - -, n. Just as in CMDS, WMDS determinesijons for the same clustering method [13].
the configuration of points in the group stimulus spa&e  Cjystering techniques are often used in combination with
However, in order to find the best possible configurationyps; to clarify the obtained dimensions. However, in the same
WMDS does not use distances among the points in the graygy as with the labeling of the dimensions in the MDS algo-
space. Instead, a configuration for each subject is made Ry interpretation of the clusters is usually done subjectively
altering the group configuration space according to the weighjgq strongly depends on the quality of the data.
wy;. Algebraically, given a poing; from the group space, the
points for subjeck are obtained as D. Vocabulary: Most Important Dimensions of Color Patterns

_ The first step in the data analysis was to arrange subjects’
ith =/ EA1P 3 . . L . ; .
itk R @) ratings into a similarity matrixA to be an input to the two-di-
In WMDS, the formula for stress is based on the squared drgensional (2-D) and three-dimensional (3-D) CMDS. Also,

tances calculated from each of m individual similarity matrice#MDS procedure was applied to the set of 28 individual simi-
larity matrices. WMDS was performed in two, three, fdiue,

Z Z [F(8i) — dijr)? and six dimensions. The stress index (4) for the 2-D solution
1 P was 0.31, indicating that a higher-dimensional solution is nec-
stres$A, Xi, f) = m Z PRY: 4) essary, that is, the error is still substantial. The stress values for
k Z Z 1(Bijr) the three-, fourdive-, and six-dimensional configurations were:
Y 0.26, 0.20, 0.18, and 0.16, respectively. We stopped at six di-
whered;;; are weighted Euclidean distances between stimufiensions since further increase did not result in a noticeable
¢ andj, for the subject. In that way, the WMDS model ac- decrease of the stress value. The 2—D CMDS configuration is
commodates very large differences among the individual rahown in Fig. 4. Dimensions derived from this configuration are:
ings, and even very different data from two subjects can fit inth presence/absence of a dominant color, or as we are going to
the same space. call it “the dimension of overall color,” and 2) color purity. It
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I[ : " patterns 16-20).

A color is perceived as dominant (such as in true multicolored
i

: g Dimension 2—Directionality and OrientationThis axis

| “ e represents a dominant orientation in the edge distribution,
: _ or a dominant direction in the repetition of the structural

! & element. The lowest values along this dimension have patterns
! with a single dominant orientation, such as stripes and then
(]

]

5
L
m' 3
1! l!l
B checkers (2, 4, 11-13). Midvalues are assigned to patterns with
ji Bl ____ g ____ color puity a noticeable but not dominant orientation (5, 10), followed
ti N Bl o by the patterns where a repetition of the structural element is
performed along two directions (3, 8, 9, 15). Finally, completely
nonoriented patterns and patterns with uniform distribution of
n edges or nondirectional placement of the structural element are
at the positive end of this dimension.
ot ; Dimension 3—Regularity and Placement Rul&sis
. dimension describes the regularity in the placement of the
- structural element, its repetition and uniformity. At the negative
end of this axis are regular, uniform, and repetitive patterns
Fig. 4. Multidimensional scaling results. Two-dimensional CMDS(WIth repetition completely determmed. by a certain set Of
configuration is shown. Horizontal axis represents the dimension of colBfacement rules), whereas at the opposite end are nonrepetitive
pruity whereas the vertical axis is the dimension of dominant color. or nonuniform patterns.
Dimension 4—Color Purity:This dimension arose somehow
unexpectedly, but it remained stable in all MDS configurations,

is interesting that both dimensions are purely color based, influstering results, even in the subjects’ explanations of their
cating that, at the coarsest level of judgment, people primarﬂ?”k'ngs- T_hls dimension divides patterns according to the de-
use color to judge similarity. As will be seen later, these dimefI€® Of their colorfulness. At the negative end are pale patterns
sions remained in all solutions. Moreover, the 2-D configuratidd- 10), patterns with unsaturated overtones (7), patterns with
strongly resembles one of the perpendicular projections in tH@minant “sandy” or “earthy” colors (5, 6, 11). At the positive
three-, four-, anfive-dimensional solutions. The same holds fofnd are patterns with very saturated and very pure colors (9, 13,
all three dimensions from the 3-D solution, indicating that thedé €tc.). Hence, this dimension can also be named the dimen-
features could be the most general in human perception. Both §#n of overall chroma or overall saturation within an image.

CMDS and WMDS, the same three dimensions emerged fromPimension 5—Pattern Complexity and Heavinesis di-
3-D configurations. They are mension showed only in the last, 5-D configuration, hence it

i can be seen as optional. Also, as we will show in the next sec-
1) overall color,; T o e ;
2) color purity: tion, it is n_ot used in judging similarity until the very I_aft Ie_vel
3) regularity and placement. o_f comparison. I_:or that r_eas”on we have also n_am_ed it a dimen-
) ] ) sion of general impression.” At one end of this dimension are
The four-dimensional (4-D) WMDS solution revealed folpatterns that are perceived as “light” and “soft” (1, 7, 10) while
lowing dimensions: at the other end are patterns described by subjects as “heavy,”
1) overall color; “busy,” and “sharp” (2, 3, 5, 17, 18, 19).
2) color purity,;
3) regularity and placement;
4) directionality.
The five-dimensional (5-D) WMDS solution came with the Having determined the dimensions of color patterns, we need
same four dominant characteristics with the addition of ta establish a set of rules governing their use. HCA achieves
dimension that we called “pattern heaviness.” Hence, asthat by ordering groups of patterns according to the degree of
result of the experiment, the followirfiye important similarity similarity, as perceived by subjects. Fig. 5 shows the ordering
criteria emerged. of clusters obtained as a result of the HCA, arising from the
Dimension 1—Overall Color:Overall color can be de- complete similarity matrix for 20 patterns used in the study. As
scribed in terms of the presence/absence of a dominant coboresult of the HCA, we derived a list of similarity rules and
At the negative end of this axis are patterns with an overalie sequence of their application based on the analysis given
impression of a single dominant color (patterns 4, 5, 8, 1%)elow. For example, we observed that the very first clusters were
This impression is created mostly because the percentageaihposed of pairs of equal patterns (clusters 21-23). These
one color is truly dominant. However, a multicolored imageere followed by the clusters of patterns with similar color and
can also create an impression of dominant color. This happ&mninant orientation. Thus, from the early stages of clustering
when all the colors within this image are similar, having similave were able to determine the initial rules used by humans in
hues but different intensities or saturation (pattern 7). At thedging similarity (Rules 1 and 2). These were followed by rules
positive end of this dimension are patterns where no singtenerging from the middle stages (Rules 3 and 4). Finally, at the

E. Grammar: Rules for Judging Similarity
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Fig. 5. Result of the HCA applied to the complete set of stimuli. Clusters 1 to 20 are original patterns, clusters 21 to 37 represent successive heaes$rof t
the last step, clusters 36 and 38 are joined to form the top cluster. The ordering of clusters was used to determine the rules and the sequendeatfatheir app
in pattern matching.

coarsest level of comparison we use Rule 5 (clusters 36—38 irRule 3: The third rule is that of similar pattern. It concerns
Fig. 5). either dimension 2 (directionalitgr dimension 3 (pattern regu-

In addition, to confirm the stability of rules, we have splitarity and placementrules). Hence, two patterns which are dom-
the original data in several ways and performed separate HCAiant along the same direction (or directions) are seen as sim-
for each part. As suggested in [12], we eliminated some of tiar, regardless of their color. One such example is the cluster
stimuli from the data matrix and determined the HCA trees f¢i2—14). In the same manner, seen as similar are patterns with
the remaining stimuli. The rules remained stable through vahe same placement or repetition of the structural element, even
ious solutions; thus we conclude that the 5-D configuration cé#tthe structural element is not exactly the same (see patterns 8
be used for modeling the similarity metrics of the human visuahd 9, or 17, 18 and 19).
system, together with the following rules: Rule 4: In the middle of the hierarchy comes the rule of dom-

Rule 1: The strongest similarity rule is that of equal patterrinant color. Two multicolored patterns are perceived as similar
Regardless of color, two textures with exactly the same pattefithey possess the same color distributions regardless of their
such as pairs (17, 18), (2, 11), and (3, 15) are always judgedctntent, directionality, placement, or repetition of a structural
be the most similar. Hence, this rule uses Dimensions 3 an@l2ment (patterns 16—20). This also holds for patterns that have
(pattern regularity and directionality). the same dominant or overall color (patterns 2—6). Hence, this

Rule 2: The second rule in the hierarchy is that of overaliule involves only the Dimension 1 (dominant color).
appearance. It uses the combination of Dimension 1 (dominanRule 5: Finally, at the very end of the hierarchy, comes the
color)andDimension 2 (directionality). Two patterns that haveule of general impression (Dimensions 4 and 5). This rule
similar values in both dimensions, such as pairs (10, 11), (1, d)vides patterns into “dim,” “smooth,” “earthy,” “romantic,” or
and the triplet (2, 4, 5) are also perceived as similar. “pale” (at one end of the corresponding dimension) as opposed

”ou
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to “bold,” “bright,” “strong,” “pure,” “sharp,” “abstract,” or ties of the human visual system and conclusions extracted from
“heavy” patterns (at the opposite end). This rule represents ther experiment.
complex combination of color, contrast, saturation, and spatial 1) The overall perception of color patterns is formed
frequency, and therefore a_pplies to patterns at the highest, through the interaction of luminance componeht
abstr_act level of understanding. _ chrominance component’ and achromatic pattern
This set of rules represents the basic grammar of pattern component4 P. The luminance and chrominance com-
matchlng. For actual implementation of the grammar. it is ponents approximate signal representation in the early
important to observe the way these ruleg are appllgd. Each visual cortical areas while the achromatic pattern com-
rule can be expressed as a logical combination (I.og|caI. OR, ponent approximates signal representation formed at
AND’ XO,R',NOT) of the pattern \{alues along the dimensions higher processing levels [15]. Our experimental results
involved in it. For example, consider cluster 24 composed of confirm this fact: we found that at the coarsest level
patterns 4 and 5 in Fig. 5. These patterns have similar overall of judgment only color features are used (2-D MDS)
color and dominant orientation, thus their values both along whereas texture information is added later and used in the
the dimensions 1 and 2 are very close. Consequently, they are detailed comparison. Therefore, our feature extraction
perceived as similar according to the Rule 2, which is expressed simulates the same mechanism: it decomposes the image

in the following way: map into luminance and chrominance components in the
(DIM(pattern4) similar to DIM; (pattern 5)) initial stages, and models pattern information later in the

AND(DIM,(pattern 4) similar to DIM,(patternb)). (5) sySFem. i i o
2) As in the human visual system the first approximation is

that each of these components is processed through sep-
arate pathways [16], [29]. While luminance and chromi-
nance components are used for the extraction of color-
We will summarize our findings thus far. To model the human ~ based information, the achromatic pattern component is

I1l. OVERVIEW OF THE SYSTEM

perception of similarity: used for the extraction of purely texture-based informa-
1) we determined the basic vocabulady of color tion. However, ?f we want to 'be more precise, we need to
patterns consisting of dimensions 1-57 — account for reS|dyaI interactions along the'pathv.vays [17].
{DIM,,---, DIMs}; As Wlll be shown in Sgctlon V, we accomplish this by ex-
2) we determined the gramma#, that is, the rules gov- tracting 'the gchromatlc pattern component from the colpr
erning the use of the dimensions from the vocabulary dlStI’!bUtIOh, instead of using thellummance S|gnql asin
V. Five rules ®i—Rs) were discovered so thaf = previous models. Moreover, the d|scret§ colord|§tr|but|on
{Ry, Ry, Rs, Ry, Rs}. is estimated through the use of a specially designed per-

ceptual codebook allowing the interaction between the lu-
minance and chrominance components (see Section 1V).
3) Features are extracted by combining three major do-
mains: a) nonoriented luminance domain represented
by the luminance component of an image, b) oriented
luminance domain represented by the achromatic pattern
map, and c¢) nonoriented color domain represented by
\ i : the chrominance component. The first two domains are
the d|stz?mce between the imagésand 5 according to essentially color blind, whereas the third domain carries
the rules; only the chromatic information. These three domains
Therefore, the system has two main parts: 1) the feature  zre well documented in the literature [18] and experi-
extraction part, measuring the dimensions frbirand 2) the mentally verified in perceptual computational models
search part, where similar patterns are found according to the o segregation of color textures [19]. Purely color-based
rules from(. The feature extraction part is designed to extract  gimensions (1 and 4) are extracted in the nonoriented
dimensions 1 to 4 of pattern similarity. Dimension 5 (pattern  gomains and are measured using the color feature vector.
complexity and heaviness) is not implemented, since our  Texture-based dimensions (2 and 3) are extracted in the
experiments have shown that people use this criterion only ata  griented luminance domain, through the scale-orientation
higher level of judgment, while comparing groups of textures processing of the achromatic pattern map.

[14]. Feature extraction is followed by judgment of similarity , . i
according to Rules 1-4 fror¥. Rule 5 is not supported in the 'In summary, our computaﬂpnal model is implemented as in
Fig. 1 and contains the following parts.

current implementation, since it is only used in combination
with dimension 5 at a higher level of pattern matching (such 1) Feature extraction blockvith the following components.

Having found the vocabulary and grammar, we need to design
a system that will, given an input imageand a queng):
1) measure the dimensiod&/ M;(A4) from the vocabulary,
t=1---,5;
2) for each imagées from the database, apply rulég —Rs
from < and obtain corresponding distance measures
dist1(A, B), ---, dists(A, B), wheredist;(A, B) is

as subdividing a group of patterns into romantic, abstract, » Image Decompositioinputimage is transformed into
geometric, bold, etc.). the Lab color space and decomposed into luminance
Let us now examine the system in more detail. It is important L and chrominanc€’ = («, b) components.

to note that the feature extraction part is developed accordingto ¢ Estimation of Color DistributionBoth 7. andC' maps
the following assumptions derived from psychophysical proper- are used for the color distribution estimation and
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extraction of color features. We are thus performingave to findZab coordinates ofV bin centers so that the overall

feature extraction along the color-based dimensiomsean-square classification error is minimized. This is exactly

1 and 4. the underlying problem in vector quantization (VQ). Hence,

» Pattern Map GenerationColor features extracted in we used the LBG vector quantization algorithm [21] to obtain
the second stage are used to build the achromatic patset of codebooks which optimally represent the valid colors

tern map. in the Lab space. In any VQ design, the training data have a

» Texture Primitive Extraction and EstimatiorThe large effect on the final result. A commonly used approach is to
achromatic pattern map is used to estimate the spatalect training images that are either representative of a given
distribution of texture primitives. We are thus perproblem so the codebook is optimally designed for that partic-
forming feature extraction along the texture-basedar application, or span enough of the input space so the re-
dimensions 2 and 3. sulting codebook can be used in different applications. The fol-

2) Similarity Measurementere similar patterns are foundlowing problem occurs with both approaches: In order to obtain
according to the rules frory. Given an input imagel, an accurate estimation for the color distribution, a large number

for every imageB in the database, ruleg;—R, are ap- of training images is required, resulting in a computationally
plied and corresponding distance measures are computgensive and possibly intractable design task. To overcome
Then, depending on a quegy, a set of best matches isthis problem, we have taken a different approach. Since we are
found. dealing with an arbitrary input, we can assume that every color
is equiprobable. Hence, a synthetic set of training data was gen-

erated by uniformly quantizing th&Y 7 space. The data was
transformed into thd.ab space and used as input to the stan-

The color information is used both for the extraction of colo/d@rd VQ design algorithm. This resulted in a set of codebooks
related dimensions (color features), and for the construction'&9ing in size from 16 to 512 colors. When used in the standard
the achromatic pattern map (used later in texture processirg)29e retrieval task, these codebooks performed quite well. For
therefore we aim for compact, perceptually-based color repf@ir task, however, these codebooks have one drawback; They

sentation. As illustrated in Fig. 2(a), this representation is oB€ designed as a global representation of the entire color space
tained through the following steps. and consequently, there is no structure to the bin centers. Our
1) The inputimage is transformed into theb color space purpose is to design a system which allows a user to interact
2 Its color; distrib%tion i determined usin avectolro ua'nt\l/yith the retrieval process. Therefore, the color representation
zation-based histogram technique 9 q must provide manipulation with colors in a “human-friendly

o . .manner.” To simulate human performance in color perception
3) Significant color features are determined from the his- P P ption,

a certain amount of structure on the relationships between the
togram. . X
. . . . I, a, andb components must be introduced. One possible way
4) These color features are used in conjunction with a new . - . .
. : imilar® accomplish this is by separating the luminarcdrom the
distance measure to determine the perceptual similari ¥ omi ! . .
S chrominanced, b) components. Starting from this assumption,
between two color distributions. ' ; ; : o .
we first applied one-dimensional (1-D) quantization on lumi-
nance values of the training data (using a Lloyd—Max quantizer).
Then, after partitioning the training data into slices of similar

Our goal is to produce a system that performs in accordarigglinance, a separate chrominance codebook was designed for
with human perception, hence we need a representation (cét@€h slice by applying the LBG algorithm to the appropriate
space) based on human color matching. @i is such a (a, b)_ components. _ o _
color space, since it was designed so that intercolor distancedhis color representation better mimics human perception
computed using thé ||> norm correspond to subjective colorand allows the formulation of functional queries such as looking
matching data [20]. After transforming an input image intéor “same but lighter color,” “paler,” “contrasting,” etc. For ex-
the Lab color space, the next step is to estimate the col@mple, the formulation of a query vector to search for a “lighter”
distribution by computing a histogram of the input color dat#&olor can be accomplished through the following steps:

Since linear Color_spaces (sgch as RGB) can be approximatecb extract the luminancég and the o,
by 3-D cubes, histogram bin centers can be computed by query color;

performmg separable, equidistant dlscretlz_anons along ez_;\ch ofz) find the codebook for a higher luminance leveb Lq;

the coordinate axes. Unfortunately, by_ going to th_e nonlinear 3) in this codebook, find the cell which correspondsitol)

Lab color space, the volume of all possible colors dl_storts f_rom entry which is the closest tag, bo) in the||||» sense;

cgbe t(_) an irregular cone and_conseqyently, there is no S|mple4) retrieve all images having.( a, b) as a dominant color.
discretization that can be applied to this volume. _ _ _

To estimate color distributions in theab space, we have to Moreover, starting from the relationship betwegna, andb
determine the set of bin centers and decision boundaries tWalues for a particular color, and its héieand saturatiory
minimize some error criterion. In theab color system|| || b

L . . — — 2 2
norm corresponds to perceptual similarity, thus representing the I = arctan e S =vat+b% (6)
optimal distance metric for that space [20]. Therefore, to oSimilar procedures can be applied to satisfy queries such as
tain an optimal set of bin centers and decision boundaries, tpaler color,” “bolder color,” “contrasting color,” etc. Finally,

IV. FEATURE EXTRACTION BASED ON COLOR INFORMATION

A. Color Representation

bg) pair for the
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in applications where the search is performed between differesite of the features needed for storage and indexing. Further-
databases or when the query image is supplied by the user, sapre, because of the codebook used, this representation facil-
aration of luminance and chrominance allows for elimination dtates queries containing an overall impression of patterns ex-
the unequal luminance condition. Since the chrominance copressed in a natural way, such as “find me all blue-yellow fab-
ponents contain the information about the type of color regandes,” “find me the same color, but a bit lighter,” etc. Finally, in
less of the intensity value, color features can be extracted omlgdition to storing the values of the dominant colors and their
in the chrominance domaifi(z, j) = {a(i, j), b(¢, j)}, for percentages, we are also storing the actual number of domi-
the corresponding luminance level, thus allowing for companant colors. This information is useful in addressing the more
ison between images of different quality. complex dimensions of pattern similarities as suggested in [14].
Namely, by using this feature we can search for simple and

) single colored patterns, versus heavy, multicolored ones.
B. Color Feature Extraction

Color histogram representations based on color codebogks
have been widely used as a feature vector in image segmelgr\ta-
tion and retrieval [22], [23]. Although good results have been
reported, a feature set based solely on the image histogram ma‘{}he color features described above, represented as color and
not provide areliable representation for pattern matching and f&€a pairs, allow the definition of a color metric that closely
trieval. This is due to the fact that most patterns are perceived@dtches human perception. The idea is that the similarity be-
combinations of a few dominant colors. For example, subjed¥€en two images in terms of color composition should be mea-
who participated in our previously reported subjective expeured by a combination of color and area differences.
ments [14], were not able to perceive nor distinguish more thanGiven two images, a query imagel and a target
six or seven colors, even when presented with very busy or miii@ge B, with N4 and Np dominant colors, and fea-
ticolored patterns. For that reason, we are proposing color féate vectors f.(A) = {(ia, pa)|Va € [1, Na]}, and
tures and associated distance measures consisting of the sub$é) = {(iz, ps)[Vb € [1, Np]}, respectively, we first
of colors (which best represent an image), augmented by @ggfine the similarity between these two images in terms of a
area percentage in which each of these colors occur. single dominant color. Suppose thas the dominant color in

In our system we have used a codebook with = 71 @mageA. Then, we measure the_s?milarity bgtweﬂrandB
colors denoted byC;; = {Ci, Cs, -+, C71} where each in terms of that color using the minimum of distance measures
color C; = {L;, a;, b;} is a three-dimensiondlab vector. As between the color elemef#, p) and the set of color elements
the first step in the feature extraction procedure (before higkis, py)[V b € [1, Npl}:
togram _calculation) in_qu image is conyolved withBaspline d(i, By= min _D((i, p), (is, ps)) (8)
smoothing kernel. This is done to refine contours of texture bell, Ns]
primitives and foreground regions, while eliminating most ovhere
orovides an optimal epresentation of a Sgnal inffissense. (o) (i p) : :
hence minimizing the perceptual error [24]. The second step D=l + V(L= Lo)* +(a =) + (b= by)*.

(after the histogram of an image was built) involves extraction )

of dominant colors to find colors from the codebook thabnce the distancé(i, B) has been calculated, besides its value
adequately describe a given texture pattern. This was doneviy also use its argument to store the color value fi®rihat,
sequentially increasing the number of colors until all colofer a particular colori from A, minimizes (8). We denote this
covering more than 3% of the image area have been extractedlor value byk(i, B) as

The remaining pixels were represented with their closest . _ .

matches (in|| |2 sense) from the extracted dominant colors. k(i, B) = arg d(i, B). (10)

Finally, the percentage of each dominant color was calculated ] o )
and the color feature vectors were obtained as Note that the distance between two color/area pairs is defined

as the sum of the distance in terms of the area percentage and
fe=AG;, pp)li €1, N, p; €10, 1]} (7)  the distance in thé&ab color space, both within the range [0, 1].
wherei; is the index in the codebook; is the corresponding In [25], Ma et al. used a different definition where the overall
percentage andv is the number of dominant colors in thedistance is the product of these two components. That defini-
image. Another similar representation has been successfuign, while being more intuitive, has the drawback that when
used in image retrieval [25]. either component distance is very small the remaining compo-
The proposed feature extraction scheme has several advsent becomes irrelevant. Consider the extreme case, when the
tages: It provides an optimal representation of the original coloolor distance between two color/area pairs is zero. This is not
content by minimizing the MSE introduced when using a smalhusual, since the color space has been heavily quantized. Then,
number of colors. Then, by exploiting the fact that the humaeven if the difference between the two area percentages is very
eye cannot perceive a large number of colors at the same tilagge, the overall distance is zero yielding a measure that does
nor is it able to distinguish close colors well, we provide aot match human perception. Our definition is a simple and ef-
very compact feature representation. This greatly reduces fhetive remedy to that problem—it guarantees that both color

Color Metric




MOJSILOVIC et al: VOCABULARY AND GRAMMAR OF COLOR PATTERNS a7

and area components contribute to the perception of color sit
ilarity.
Given the distance between two images in terms of one don
nant color as defined above, the distance in terms of overall col
composition is defined as the sum over all dominant colors froi
both images, in the following way.
1) Forimage4, forV a € [1, Na] find k4(é,, B) and the
corresponding distanci,, B).

2) Repeat this procedure for all dominant colorghinthat
is, forV b € [1, Ng] find kg (is, B) andd(i;, A).

3) calculate the overall distance as

distd, By= > d(ia, B)+ Y d(is, A). (11)

a€[l,Na] be[l, Ng] Fig. 6. Human perception and understanding of form, shape, and orientation
is unrelated to color. The system models this through the use of the achromatic
pattern map. (a) Two identical textures with different color distributions
are perceived as identical. (b) However, modeling of these patterns by their
luminance components results in different feature vectors. (c) The solution is

: ; : map dominant colors from both patterns into the same gray-scale values,
Having obtained the color feature vector, the extraction sulting in an achromatic pattern map. This representation corresponds

texture features involves the following steps [see Fig. 2(b)]: to human perception. Consequently, the feature vectors extracted from the
1) spatial smoothing, to refine texture primitives and remo\#hromatic pattern maps are almost identical.
background noise;

2) building the achromatic pattern map; E_revious models, we decided to compute polar edge maps and
3) building the edge map from the achromatic patter mapsq them to extract distribution of edges along different direc-

4) application of a nonlinear mechanism to suppress NONt§Gns. This approach allowed us to obtain the edge distribution

tur_ed edges; . o for an arbitrary orientation with low computational cost. It also
5) orientation processing to extract the distribution of patteffqyced certain flexibility in the extraction of texture fea-

contours glong different spa_tlal directions; ... tures since, if necessary, the orientation selectivity can be en-
6) computation of a scale-spatial texture edge distribution, 5 ceq by choosing an arbitrary number of orientations. In our
Spatial smoothing of the inputimage is performed during thg/stem, we used edge-amplitude and edge-angle maps, calcu-
extraction of color features. Then, the color feature represqgted at each image point. Edge maps were obtained by con-
tation is used for construction of the achromatic pattern mag|lving an input achromatic pattern map with the horizontal and
The achromatic map is obtained in the following manner: FQgrtical derivatives of a Gaussian and converting the result into

a given texture, by using the number of its dominant colérs polar coordinates. The derivatives of a Gaussian aloagdy
a gray level range of 0-255 is discretized imfolevels. Then, axes were computed as

dominant colors are mapped into gray levels according to the 52 2, .3
following rule: Level 0 is assigned to the dominant color with ~ 9=(%, J) = o™ gy (i, ) = je Y (12)
the highest percentage of pixels, the next level is assignedwbile the derivatives of the achromatic pattern map aloagd
the second dominant color, etc., until the level 255 has been ggxes were computed as

V. FEATURE EXTRACTION BASED ON TEXTURE INFORMATION

signed to a dominant color with the lowest area percentage. In Au(iy §) = (90 ¥ AP)(G, §)
other words, the achromatic pattern map models the fact that oo ‘ R
human perception and understanding of form, shape, and ori- Ay (i, ) = (g9 * AP)(i, j) (13)

entation is completely unrelated to color. Furthermore, it rétherex stands for 2-D convolution. These derivatives were then
solves the problem of secondary interactions between the liansformed into their polar representation as

minance and chrominance pathways. As an example, consider . o o

a pair of textures in Fig. 6(a). The values in the luminance map AG, 5 = \/Ax(l’ P+ Ay G0

are much higher for the texture on top, hence the edge ampli- 6(i, j) = tan~" Ay (3, j) 0(i, j) € (_z z] (14)
tudes, and edge distributions are different for these two images ’ A1, 5) ’ 2721

[see Fig. 6(b)]. Moreover, the dominant colors are not close, ) )
which makes the classification of these two patterns as sim-€Xture phenon:enon is created through the perception of
ilar (either using luminance, chrominance, or color features) ¥0age “edgeness” along different directions, over different
tremely difficult. However, in our model, the Waythatluminancécales' Hence, to estimate the placement and organization of

and chrominance are coupled into a single pattern map gu%)gture primitives, we do not need information about the edge

antees that both textures will have identical achromatic pattesrli‘iength at a certain_ poin_t; rather, we _only_need to know whether
maps [see Fig. 6(c)], leading to almost identical texture featu g ©d9€ exists at this point and the direction of the edge. There-
vectors. fore, after the transformation into the polar representation, the
The objective of edge and orientation processing is to extr&fPlitude map is nonlinearly processed as
information about the pattern contours from the achromatic pat- Aoli, j) = 1, med(A(i, j)>T
tern map. Instead of applying a bank of oriented filters, as in AR 0, med(A(7, j)) < T

(15)
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where meé) represents the median value calculated over a 5
x 5 neighborhood. Nonlinear median operation was introduced
to suppress false edges in the presence of stronger ones, and
eliminate weak edges introduced by noise. The quantization
threshold!" is determined as

T=pa—2y/0} (16)

wherep 4 ands? are the mean and variance of the edge ampli-

tude, estimated on a set of 300 images. This selection allowed
all the major edges to be preserved. After quantizing the am-
plitude map, we perform the discretization of the angle space,
leIdIng itinto the six bins correspondlng to directiorfs 80", Fig. 7. Discrimination of textures based on the mean and variance of texture

60, 90°, 120, and 150, respectively. For each direction an AMedge distribution. (a) If two textures have different degrees of regularity,
plitude mapAe,(i, ]) is built as characterized by different variances, they are immediately perceived as
different. (b) However, if two textures have similar degrees of regularity,
characterized by similar variances, perception of similarity depends on pattern
Ael (i, _]) quality, which is modeled by the mean values of edge distribution.

_ L Al ) =16, et
L0 A, ) =0veG, ) ¢e T

b)

the standard deviation estimates the uniformity, regularity and
(17) repetitiveness at this scale, thus addressing the dimension of pat-
tern regularity.

To address the textural behavior at different scales, we és- Texture Metric

timate mean and variance of edge density distribution, by ap-, previously mentioned, at any particular scale, the mean

plying overlapping windows of different sizes to the set of _di\'/alues measure the overall edge pattern and the standard devi-

rectional amplitude maps. For a given scale, along a given direg;o < measure the uniformity

and dip 5 texture similarity between two images is a combination of

viding that value by the total number of pixels in the window. Wg, o g6 0 factors in the following way: If two textures have very

us_ed four scales, with the following parameters for the slidingga ent degrees of uniformity [as in Fig. 7(a)] they are imme-
window: diately perceived as different. On the other hand, if their de-
grees of uniformity, regularity and repetitiveness are close [as in

Scale1: WS1 =3Wx 3H, N =30, Fig. 7(b)], their overall patterns should be further examined to
Scale 2: WS, = % W x % H, N5 =056, judge similarity. The smooth transition between these two fac-
Scale 3: WSs = %W % %H, N3 = 80, torsdcan be imp_lte?en;ed u;sing_ thetl_;)_g_is;[ic funcltiont,v\fzorl?mcz)gly
used as an excitation function in artificial neural networks .
Scale4: WSy=4W x & H, Ny=224 [26]

Thus, the distance between the query imagand the target

. . . imageB, with texture feature vectors
whereWS; and N; are window size and number of windows 9

for scalei, andW and Hf are the width and height of the input ~ f,(A) = [’y --- 0%5] and f.(B) = [uy - o0%]

texture. Note that the above approach is scale (zoom) invariant. (19)
In other words, the same pattern at different scales will have ) ) ]
similar feature vectors. respectively, is defined as
Hence, at the output of the texture processing block, we have 0; 0 _ i
M;? =|ph — pigl,
a texture feature vector of length 48: 9. 9. 9.
J — a 7
Dy’ =loiy — o] (20)

0, 81 0, 0 86 Bs 61 6 s 0
fo=[pitol piPol - pitotpustayt - pgtoy®]  (18)

dfj :wM(z, GJ)MZGJ + wD(i, GJ)Df]

Wherepfj andaf 7 stand for mean and standard deviation of tex- .
e—oz(DlJ —Do)

ture edges at scalealong the directio;. Each feature com- . i

ponent is normalized so that it assumes the mean value of zero 1+ e—a(D77 ~Do)

and standard deviation of one over the whole database. In that 1 N

way this feature vector essentially models both texture-related + D, (21)

- %i_ ]
dimensions (directionality and regularity): The distribution es- L ema(Pii=Pe)

timates along the different directions address the dimension of
directionality. At any particular scale, the mean value can be un- disf A, B) = Z Z dfj. (22)
derstood as an estimation of the overall pattern quality, whereas T



MOJSILOVIC et al: VOCABULARY AND GRAMMAR OF COLOR PATTERNS 49

b)

Fig. 8. Examples of the search mechanism using Rule 1 (the rule of equal pattern). This is the strongest rule people use when judging similamtystThe lef
image is the query pattern following by four best matches. (a) Example from the Interior Design database. (b) Example from the Corel databaseedark tex

At each scalé and directior?;, the dlstance functloni isthe used to achieve this. We used Powell's algorithm [27] and the
weighted sum of two terms: the firat,’ measurmg the differ- optimal parameters derived were:= 10 and Do = 0.95.
ence in mean edge density and the sechd. measuring the
difference in standard deviation, or regularity. The weighting
factors,wy (4, 0;) andwp (7, 0;), are designed such that when
the difference in standard deviation is small, the first term is In this part of the system, we perform similarity measurement
more dominant; as itincreases, the second term becomes ddrased on the rules from our gramndarThe system was tested
nant, thus matching human perception as stated above. Thegrathe following databases: Corel (more than 2000 images), in-
rametersy and Do control the behavior of the weighting fac-terior design (350 images), architectural surfaces (600 images),
tors, wherex controls the sharpness of the transition, dhd stones (350 images), historic ornaments (110 images), and ori-
defines the transition point. These two parameters are currerghtal carpets (100 images).
trained using 40 images taken from an interior design databaseThe current implementation of our system supports four
in the following way: First, ten images were selected as reprstrongest rules for judging the similarity between patterns.
sentatives of the database. Then, for each representative, tiitese we briefly summarize the rules and their implementation
comparison images were chosen as the most similar, close, anthe system. For more details on rules, see Section Il or [14].
least similar to the representative. For each representative imagapplying Rule 1: The first similarity rule is that oéqual pat-
Liyi=1,---,10, the comparison images; ;, j =1, ---, 3 tern.Regardless of color, two textures with exactly the same pat-
are ordered in decreasing similarity. Thus, 4§ and{C}; ;} tern are always judged to be similar. Hence, this rule concerns
represent the ground truth. For any given set of parameters the similarity only in the domain of texture features, without
Do), the rankings of the comparison images as given by thetual involvement of any color-based information. Therefore,
distance function can be computed. Let rafk, Do) repre- this rule is implemented by comparing texture features only,
sents the ranking of the comparison image; for representa- using the texture metric (20)—(22). The same search mechanism
tive image/;. Ideally, we would like to achieve supports Rule 3dqual directionality, regularity or placement
. o . as well. According to that rule, two patterns that are dominant
rank; (o, Do) = j, Vi, jli €1, 10}, j €1, 3] (23) along the same di%ections are seen gs similar, regardless of their
color. In the same manner, seen as similar are textures with the
The deviation from ground truth is computed as same placement or repetition of the structural element, even if
the structural element is not exactly the same. Hence, the value
(a, Do) = Z di(, Do) (24) ofthe distance function in the texture domain reflects either pat-
tern identity or pattern similarity. For example, very small dis-
where tances mean that two patterns are exactly the same (implying
that the rule of identity was used), whereas somewhat larger dis-
di(a, Do) tances imply that the similarity was judged by the less rigorous
rules of equal directionality or regularity. Examples of the equal
=" | distLi, C; ;) — dist I, Ci rank,j(a, 0o)| - (25) pattern search mechanism are given in Fig. 8, while the exam-
' ples of similar pattern search mechanism are given in Fig. 10.
The goal of parameter training is to minimize function Applying Rule 2: The second in the hierarchy of similarities
D(«, Do). Many standard optimization algorithms can bés the combination of dominant colors and texture directionality,

VI. SIMILARITY MEASUREMENT
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Fig. 9. Examples of the search mechanism using Rule 2 (the rule of similar overall appearance). This is the second strongest rule people useggwhen judgin
similarity. This rule comes into play when there are no identical patterns. The leftmost image is the query pattern followed by four best mateimepld&dm
the Historic Ornaments database. (b) Example from the Stones database: various types of green marble.

b)

Fig. 10. Examples of the search mechanism using Rule 3 (the rule of similar pattern). The leftmost image is the query pattern following by foundmest matc
(a) Example from the Oriental Carpets database. (b) Example from the Architectural Surfaces database.

yielding images with similar overall appearance. The actual imelor domain and is applied by comparing color features only.
plementation of this rule involves comparison of both color andin example of the search is given in Fig. 11.
texture features. Therefore the search is first performed in the
texture domain, using texture features and metrics (20)—(22).
A set of selected patterns is then subjected to another search,
this time in the color domain, using color features (7) and color As explained in the introduction, one of the assumptions
metric (8)—-(11). Examples of this search mechanism are givabout the model is that chromatic and achromatic components
in Fig. 9. are processed through mostly separate pathways. Hence, by
Applying Rule 3: The same mechanism as in Applying Rulseparating color representation and color metric from texture
1 is used here, and the search examples are given in Fig. 10representation and texture metric, we add a significant amount
Applying Rule 4: According to therule of dominant color, of flexibility into the system in terms of manipulation of image
two patterns are perceived as similar if they possess the sdemtures. This is an extremely important issue in many practical
color distributions regardless of texture quality, texture contempplications, since it allows for different types of queries.
directionality, placement, or repetition of a structural elemenAs input into the system the user is expected to supply: a) a
This also holds for patterns that have the same dominantcurery and b) patterns to begin the search. The rules explained
overall color. Hence, this rule concerns only similarity in thén the previous section model typical human queries, such

VIl. QUERY TYPES AND OTHER SEARCH EXAMPLES
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Fig. 11. Example of the search mechanism using Rule 4 (the rule of dominant color). The leftmost image is the query pattern followed by four best matches
Example is from the Historic Ornaments database: Islamic designs with lettering from an illuminated Koran, 14th or 15th century.
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Fig. 12. Different types of queries supported by the system. (a) Query by sketch. The user supplies a sketch (bitmap image) of a desired patterst (the lef
image). Four best matches are given from the interior Design database. (b) Combination query. The desired pattern (stripes) is taken from age (fiystit im
from left) and the desired color (blue) from another (second from left). Four best matches are given on the right.
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as: “find the same pattern” (Rule 1), “find all patterns withmage [see Fig. 12(b)], or in a search where the desired pattern
similar overall appearance” (Rule 2), “find similar patternsis specified by an input image and the desired color is selected
(Rule 3), “find all patterns of similar color,” “find all patterns from the color map.

of a given color,” “find patterns that match a given pattern” To conclude this section, we present retrieval results on
(Rule 4). Moreover, due to the way the color codebook eneral class of images from the Corel database. Although our
designed, the system supports additional queries such as “faydtem was designed specifically for color patterns, the search
darker patterns,” “find more saturated patterns,” “find simpleesults demonstrate robustness of the algorithm to other types of
patterns,” “find multicolored patterns,” and “find contrastingmages (such as natural scenes and images with homogeneous
patterns.” The input pattern the user provides can be suppliegions as in Fig. 13).

by the user, selected from a database, or given in the form of a

sketch. If the user has color preferences, they can be specified Vil
either from the color codebook, or from another pattern.

As an example, let us discuss query by sketch. There ardtis our belief that a good working system for image retrieval
certain situations when the user is unable to supply an imagist accomplish visual similarity along perceptual dimensions.
of the pattern he is trying to find. Hence, instead of browsing/ith this as the central thrust of our research, we performed sub-
through the database manually, our system provides tools fegtive experiments and analyzed them using multidimensional
sketching the pattern and formulating a query based on the 6aling techniques to extract the relevant dimensions. We then
tained bitmap image. In that case, without any lowpass priéterpreted these dimensions along perceptual categories, and
filtering, only texture feature vector is computed for the bitmapsed hierarchical clustering to determine how these categories
image and used in the search. One such query and four ¥ combined in measuring similarity of color patterns. Having
matches are given in Fig. 12(a). Furthermore, this search meékscovered the psychophysical basis of pattern matching, we de-
anism allows the user to specify a desired color, by selecting@loped algorithms for feature extraction and image retrieval in
colori = {L;, a;, b;} from the codebook. Then, the search ithe domain of color patterns. As part of this research we realized
performed in two iterations. First a subset of patterns is selecteed for distance metrics that are better matched to human per-
based on color similarity. Color similarity between the cologeption. Distance metrics that we developed for color matching

. Di1scussioN ANDCONCLUSIONS

i and target imageB, with the color feature vectof.(B) = (8)—(11) and texture matching (20)—(22) satisfy this criterion.
{(iy, py)|V b € [1, Ng]} is calculated as While most of our research has been directed at color pat-
terns, we believe that the underlying methodology has greater

d(i, B) = min D.(i, i), significance beyond color and texture. We believe that such a
be[lv NB]

.. methodology, if applied to other retrieval tasks (such as shape
De(i, iv) =/(Li = Lo) + (a; — a0) + (b = bs)*. (26)  4pq objectguyndersptznding), will result in a systeﬁn that is bettgr
Next, within the selected set, a search based on texture featumegched to human expectations. A major advantage of such an
is performed to select the best match. A similar search meclagproach is that it eliminates the need for selecting the visual
nism is applied for combination query, where the desired pattggrimitives for image retrieval and expecting the user to assign
is taken from one inputimage and the desired color from anotheeights to them, as in most current systems. Furthermore, as can




52 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 1, JANUARY 2000

a)

b

)

Fig. 13. Examples of the serch algorithms applied to the general class of images. The leftmost image is the query pattern followed by four bgst)matches.
Application of Rule 2 (the rule of overall appearance). Example from the Corel database: Tulips. (b) Application of Rule 3 (the rule of similarpattepte
from the Corel database: Alaska. (c) Application of Rule 4 (the rule of dominant color). Example from the Corel database: Vegetables.

be seen from the results, our rules of pattern matching are robustt) modeling an image pattern with its achromatic pattern

enough to work in various domains, including digital museums  map;

[Figs. 9(a) and 11], architecture [Figs. 8(b) and 10(b)], interior 5) extracting texture features from edge representation of the
design [Fig. 9(b)], and fashion and design industry [Figs. 8(a)  achromatic pattern map at different scales, along different
and 12]. In general, as long as there is no meaning attached to directions.

the patterns (or even images) our approach should work well.This has been the approach we have taken toward building
However, when building any system dealing with image simin image retrieval system that has human like performance and
larity, one should be aware of the importance of image contenti§havior. Besides image retrieval, the proposed model can be
domain SpeCifiC information, and additional studies addreSSiognzed in other areas such as perceptua”y based Segmentation
this issue need to be conducted. and coding, pattern recognition and machine vision as well as

The important reason for the success of our system is thafgt effectively employing perceptual characteristics in scientific
implements the following experimental, biological, and physiisualization of large data sets.

ological observations.
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