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Abstract—We propose a perceptually based system for pattern
retrieval and matching. There is a need for such an “intelligent”
retrieval system in applications such as digital museums and li-
braries, design, architecture, and digital stock photography. The
central idea of the work is that similarity judgment has to be mod-
eled along perceptual dimensions. Hence, we detect basic visual
categories that people use in judgment of similarity, and design a
computational model that accepts patterns as input, and depending
on the query, produces a set of choices that follow human behavior
in pattern matching. There are two major research aspects to our
work. The first one addresses the issue of how humans perceive
and measure similarity within the domain of color patterns. To un-
derstand and describe this mechanism we performed a subjective
experiment. The experiment yielded five perceptual criteria used
in comparison between color patterns (vocabulary), as well as a
set of rules governing the use of these criteria in similarity judg-
ment (grammar). The second research aspect is the actual imple-
mentation of the perceptual criteria and rules in an image retrieval
system. Following the processing typical for human vision, we de-
sign a system to: 1) extract perceptual features from the vocabulary
and 2) perform the comparison between the patterns according to
the grammar rules. The modeling of human perception of color
patterns is new—starting with a new color codebook design, com-
pact color representation, and texture description through mul-
tiple scale edge distribution along different directions. Moreover,
we propose new color and texture distance functions that corre-
late with human performance. The performance of the system is
illustrated with numerous examples from image databases from
different application domains.

Index Terms—Color and texture classification, color and texture
extraction, image database retrieval.

I. INTRODUCTION

F LEXIBLE retrieval and manipulation of image databases
has become an important problem with application in

video editing, photo-journalism, art, fashion, cataloguing, re-
tailing, interactive CAD, geographic data processing, etc. Until
recently, content-based retrieval systems (CBR’s) have asked
people for key words to search image and video databases.
Unfortunately, this approach does not work well since different
people describe what they see or what they search for in
different ways, and even the same person might describe the
same image differently depending on the context in which it
will be used. These problems stimulated the development of
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innovative content-based search techniques as well as new
types of queries.

A. Previous Work

One of the earliest CBR systems is ART MUSEUM [1],
where retrieval is performed entirely based on edge features.
The first commercial content-based image search engine with
profound effects on later systems was QBIC [2]. As color
representation, this system uses ak-element histogram and
average of (R; G; B), (Y; i; q), and (L; a; b) coordinates,
whereas for the description of texture it implements Tamura’s
feature set [3]. In a similar fashion, color, texture, and shape
are supported as a set of interactive tools for browsing and
searching images in the Photobook system developed at the
MIT Media Lab [4]. In addition to these elementary features,
systems such as VisualSeek [5], Netra [6], and Virage [7]
support queries based on spatial relationships and color layout.
Moreover, in the Virage system [7], the user can select a
combination of implemented features by adjusting the weights
according to his own “perception.” This paradigm is also sup-
ported in RetrievalWare search engine [8]. A different approach
to similarity modeling is proposed in the MARS system [9],
where the main focus is not in finding a best representation, but
rather on the relevance feedback that will dynamically adapt
multiple visual features to different applications and different
users. Hence, although great progress has been made, none of
the existing search engines offers a complete solution to the
general image retrieval problem, and there are still many open
research issues, preventing their use in a real application.Why
is that so?

B. Motivation

While it is recognized that images can be described at a
metalevel through color, texture, and shape of the objects
within the image, general image understanding is a hard
problem. Thus, one challenge is to accomplish image retrieval
based on similarities in the feature space without necessarily
performing full-fledged scene analysis. Many of the existing
systems [7], [8], accomplish this task by expecting the user to
assign a set of weights to color, shape, and texture features, thus
specifying the way these attributes are going to be combined
in the algorithm. Unfortunately, certain problems arise from
this approach: First, this is certainly not the way matching is
performed in the human visual system. Further, humans have no
general notion of similarity; instead, they possess a functional
notion of similarity within a particular domain. Therefore, to
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MOJSILOVIĆet al.: VOCABULARY AND GRAMMAR OF COLOR PATTERNS 39

Fig. 1. Overview of the system. The two main parts deal with feature
extraction and similarity measurement. Both the feature extraction and
similarity measurment parts mimic the behavior of the human visual system.
Within the feature extraction part, color and texture are processed separately.

perform similarity matching in a human-like manner one has
to: 1) choose a specific application domain, 2) understand how
users judge similarity within that domain, and then 3) build a
system that will replicate human performance.

Since color and texture are fundamental aspects of human vi-
sual perception, we developed a set of techniques for search and
manipulation of color patterns. Moreover, there are a great many
applications for pattern retrieval in: arts and museums, fashion,
garment and design industry, digital libraries, and digital stock
photography.Therefore, there isa need for an “intelligent” visual
information retrieval system that will perform pattern matching
in these applications. However, regardless of the application do-
main,toaccomplishretrievalsuccessfully it isnecessary tounder-
standwhat type of colorand texture information humans actually
useand how they combine them indeciding whether twopatterns
are similar. In this paper, we are focusing on the integration of
color and texture features for pattern retrieval and matching. Our
aimis todetectbasicvisualcategories thatpeopleuse in judgment
ofsimilarity, and then todesign acomputational model whichac-
cepts one (or more) texture images as input, and depending on
the type of query, produces a set of choices that followhuman be-
havior in pattern matching.

There are two major research aspects in our work: The first
one addresses the issue of how humans perceive and measure
similarity within the domain of color patterns. To understand
and describe this mechanism we performed a subjective experi-
ment. The experiment yieldedfive perceptual criteria important
for the comparison between the color patterns, as well as a set
of rules governing the use of these criteria in the similarity judg-
ment. Thefive perceptual criteria are considered to be thebasic
vocabulary,whereas the set of rules is considered as thebasic
grammar of the “color pattern language.” The second research
aspect is the actual implementation of the perceptual criteria and
rules in the image retrieval system illustrated in Figs. 1 and 2.
Following the processing typical for human vision, we design a
system to 1) extract perceptual features from the vocabulary and
2) perform the comparison between the patterns according to
the grammar rules. The modeling of human perception of color

patterns is new—starting with a new color codebook design,
compact color representation, and texture description through
multiple scale edge distribution along different directions. Fi-
nally, to model the human behavior in pattern matching, instead
of using the traditional Euclidean metric to compare color and
texture feature vectors, we propose new distance functions that
correlate with human performance.

The outline of the paper is as follows. Section II describes
the subjective experiment and analytical tools we used to inter-
pret the data. At the end of this section we list and describe in
detail thefive perceptual categories (vocabulary) andfive rules
(grammar) used by humans in comparison of color patterns.
Section III gives an overview of the system together with its
psychophysical background. Sections IV and V present the im-
plementation of feature extraction based on color and texture,
respectively, and the development of new color and texture met-
rics. Section VI describes how these features and distances are
used in similarity measurement and presents numerous exam-
ples. Section VII gives examples of different queries and the
corresponding search results. The final section includes discus-
sion and conclusions.

II. V OCABULARY AND GRAMMAR OF COLOR PATTERNS

Our understanding of color patterns is very modest compared
to our understanding of other visual phenomena such as color,
contrast or even gray-level textures. That is mainly due to the
fact that the basic dimensions of color patterns have not yet
been identified, a standardized set of features for addressing
their important characteristics does not exist, nor are there
rules defining how these features are to be combined. Previous
investigations in this field concentrated mainly on gray-level
natural textures [3], [10], [11]. Particularly interesting is work
of Rao and Lohse [11]: their research focused on how people
classify textures in meaningful, hierarchically structured
categories, identifying relevant features used in the perception
of gray-level textures. Similarly, here we determine the basic
categories—vocabulary—used by humans in judging similarity
of color patterns, their relative importance and relationships, as
well as the hierarchy of rules—grammar. Later in the paper,
through numerous search examples (see Figs. 8–13), we will
show that these attributes are applicable to a broad range
of textures, starting from simple patterns, all the way up to
complex, high-level visual texture phenomena.

This section describes the subjective experiment, and gives
a brief overview of multidimensional scaling and hierarchical
clustering techniques we used to interpret the experimental data.
Multidimensional scaling was applied to determine the most im-
portant dimensions of pattern similarity, while hierarchical clus-
tering helped us understand how people combine these dimen-
sions when comparing color patterns. The results obtained are
listed and explained at the end of this section, while the details
can be found in [14].

A. Experimental Setup

During the subjective testing, we used 25 patterns from in-
terior design catalogs. Twenty patterns were used in the ac-
tual study, whilefive patterns were used as a “warm-up” before
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(a)

(b)

Fig. 2. Two basic blocks of the feature extraction part from Fig. 1. (a) Color representation and modeling. (b) Texture representation and modeling.

Fig. 3. Pattern set used in the experiment. The patterns are obtained from
an interior design database, containing 350 patterns. Twenty were selected
capturing a variety of features. Another five were used as a “warm up” in the
study. The patterns are numbered from 1 through 20, starting at the upper
left-hand corner.

each trial. This allowed the subjects to get comfortable with
the testing procedure and to sharpen their own understanding of
similarity. The digitized version of the twenty patterns selected
are displayed in Fig. 3. We selected patterns that capture a va-
riety of different image features and their combinations. The se-
lection of stimuli is crucial for interpretation of the data. Since
we postulated that visual similarity needs to be modeled by a
high number of dimensions, it was vital for this experiment to
select the stimuli so that there is sufficient variation of potential
dimensions.

Twenty eight subjects participated in the study. The subjects
were not familiar with the input data. They were presented with
all 190 possible pairs of stimuli. For each pair, the subjects were
asked to rate the degree of overall similarity on a scale ranging
from zero for “very different” to 100 for “very similar.” There
were no instructions concerning the characteristics on which
these similarity judgments were to be made since this was the
very information we were trying to discover. The order of pre-
sentation was different for each subject and was determined
through the use of a random number generator. This was done to
minimize the effect on the subsequent ratings of both the same
presentation order for all the subjects (group effect) as well as
the presentation order for one subject (individual effect).

At the end of experiment, half of the subjects were presented
with pairs they thought the most similar, and asked to explain
why. Their explanations were used later as an aid in the inter-
pretation of the experimental results, as well as for the develop-
ment of the retrieval system. Experimental data were interpreted
using multidimensional scaling techniques yielding the vocab-
ulary and the hierarchical clustering analysis which, in turn, led
to the grammar rules.

B. Multidimensional Scaling

Multidimensional scaling(MDS) is a set of techniques that
enables researchers to uncover the hidden structures in data [12].
MDS is designed to analyze distance-like data calledsimilarity
data; that is, data indicating the degree of similarity between two
items. Traditionally, similarity data is obtained via subjective
measurement. It is acquired by asking people to rank similarity
of pairs of objects—stimuli—on some scale (as in our experi-
ment). The obtained similarity value connecting stimulusi to
stimulusj is denoted by�ij . Similarity values are arranged in
a similarity matrix�, usually by averaging�ij obtained from
all measurements. The aim of MDS is to place each stimulus
from the input set into ann-dimensional stimulus space (the
optimal dimensionality of the space,n, should be also deter-
mined in the experiment). The pointsxxxi = [xi1xi2 � � � xin]
representing each stimulus are obtained so that the Euclidean
distancesdij between each pair of points in the stimulus space
match as closely as possible the subjective similarities�ij be-
tween corresponding pairs of stimuli. The coordinates of all
stimuli (i.e., theconfiguration) are stored in the matrixXXX , also
called thegroup configuration matrix.

Depending on the type of the MDS algorithm, one or several
similarity matrices are analyzed. The simplest algorithm is the
classical MDS (CMDS), where only one similarity matrix is an-
alyzed. The central concept of CMDS is that the distancedij be-
tween points in ann-dimensional space will have the strongest
possible relation to the similarities�ij from a single matrix�.
The traditional way to describe a desired relationship between
the distancedij and the similarity�ij is by the relationd = f (�)
such as

d = f(�) = a� + b (1)
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where, for a given configuration, valuesa andb must be dis-
covered using numerical optimization. There are many different
computational approaches for solving this equation [12]. Once
the bestf is found, we then search for the best configurationXXX

of points in the stimulus space. This procedure is repeated for
differentn’s until further increase in the number of dimensions
does not bring a reduction in the following error function (also
known asstress formula 1 or Kruskal’s stress formula):

stress(�; XXX; f ) =

vuuuuut
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[f(�ij)� dij]
2
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j

f(�ij )2
: (2)

A detailed introduction to the CMDS together with many im-
portant implementation aspects can be found in [12]. Once the
CMDS configuration is obtained we are left with the task of in-
terpreting and labeling the dimensions we have. Usually, we aim
to interpret each dimension of the space. However, the number
of dimensions does not necessarily reflect all the relevant char-
acteristics. Also, although a particular feature exists in the stim-
ulus set, it may not contribute strongly enough to become visible
as a separate dimension. Therefore, one useful role of MDS is
to indicate which particular features are important.

Another important MDS type is weighted multidimensional
scaling (WMDS). It generalizes CMDS Euclidean distance
model, so that several similarity matrices can be used. This
model assumes that individuals vary in the importance they
attach to each dimension of the stimulus space. In that way
WMDS accounts for individual differences in human re-
sponses. WMDS analyzes several similarity matrices, one for
each of m subjects. In the WMDS model,�ijk indicates the
similarity between stimulii and j, as judged by subjectk.
The notion of “individual taste” is incorporated into the model
through weightswkl, for each subjectk = 1; � � � ; m and each
dimensionl = 1; � � � ; n. Just as in CMDS, WMDS determines
the configuration of points in the group stimulus spaceXXX .
However, in order to find the best possible configuration,
WMDS does not use distances among the points in the group
space. Instead, a configuration for each subject is made by
altering the group configuration space according to the weights
wkl. Algebraically, given a pointxxxi from the group space, the
points for subjectk are obtained as

xilk =
p
wlk � xil: (3)

In WMDS, the formula for stress is based on the squared dis-
tances calculated from each of m individual similarity matrices

stress(�; Xk; f) =
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wheredijk are weighted Euclidean distances between stimuli
i andj, for the subjectk. In that way, the WMDS model ac-
commodates very large differences among the individual rat-
ings, and even very different data from two subjects can fit into
the same space.

An important characteristic of CMDS is that once a configu-
ration of points is obtained, it can be rotated, implying that the
dimensions are not meaningful. Thus, when interpreting the re-
sults, higher-dimensional CMDS soon becomes impractical. As
opposed to CMDS, due to the algebra of the weighted Euclidian
model, once the WMDS configuration is obtained, it cannot be
rotated [12], [28]. However, the stability of configuration de-
pends heavily on the accuracy of the model; if the model fits
that data well, the dimensions are meaningful which makes our
job of interpreting them much easier.

C. Hierarchical Cluster Analysis

Given a similarity matrix, hierarchical cluster analysis (HCA)
organizes a set of stimuli into similar units [13]. Therefore, HCA
help us discover the rules and the hierarchy we use in judging
similarity and pattern matching. This method starts from the
stimulus set to build a tree. Before the procedure begins, all
stimuli are considered as separate clusters, hence there are as
many clusters as there are ranked stimuli. The tree is formed by
successively joining the most similar pairs of stimuli into new
clusters. At every step, either an individual stimulus is added to
the existing clusters, or two existing clusters are merged. The
grouping continues until all stimuli are members of a single
cluster. How the similarity matrix is updated at each stage of
the tree is determined by the joining algorithm. There are many
possible criteria for deciding how to merge clusters. Some of
the simplest methods usenearest neighbor technique, where
the first two objects combined are those that have the smallest
distance between them. Another commonly used technique is
the farthest neighbor technique where the distance between two
clusters is obtained as the distance between their farthest points.
The centroid method calculates the distances between two clus-
ters as the distance between their means. Also, since the merging
of clusters at each step depends on the distance measure, dif-
ferent distance measures can result in different clustering solu-
tions for the same clustering method [13].

Clustering techniques are often used in combination with
MDS, to clarify the obtained dimensions. However, in the same
way as with the labeling of the dimensions in the MDS algo-
rithm, interpretation of the clusters is usually done subjectively
and strongly depends on the quality of the data.

D. Vocabulary: Most Important Dimensions of Color Patterns

The first step in the data analysis was to arrange subjects’
ratings into a similarity matrix� to be an input to the two-di-
mensional (2–D) and three-dimensional (3–D) CMDS. Also,
WMDS procedure was applied to the set of 28 individual simi-
larity matrices. WMDS was performed in two, three, four,five,
and six dimensions. The stress index (4) for the 2-D solution
was 0.31, indicating that a higher-dimensional solution is nec-
essary, that is, the error is still substantial. The stress values for
the three-, four-,five-, and six-dimensional configurations were:
0.26, 0.20, 0.18, and 0.16, respectively. We stopped at six di-
mensions since further increase did not result in a noticeable
decrease of the stress value. The 2–D CMDS configuration is
shown in Fig. 4. Dimensions derived from this configuration are:
1) presence/absence of a dominant color, or as we are going to
call it “the dimension of overall color,” and 2) color purity. It
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Fig. 4. Multidimensional scaling results. Two-dimensional CMDS
configuration is shown. Horizontal axis represents the dimension of color
pruity whereas the vertical axis is the dimension of dominant color.

is interesting that both dimensions are purely color based, indi-
cating that, at the coarsest level of judgment, people primarily
use color to judge similarity. As will be seen later, these dimen-
sions remained in all solutions. Moreover, the 2-D configuration
strongly resembles one of the perpendicular projections in the
three-, four-, andfive-dimensional solutions. The same holds for
all three dimensions from the 3-D solution, indicating that these
features could be the most general in human perception. Both for
CMDS and WMDS, the same three dimensions emerged from
3-D configurations. They are

1) overall color,;
2) color purity;
3) regularity and placement.

The four-dimensional (4-D) WMDS solution revealed fol-
lowing dimensions:

1) overall color;
2) color purity,;
3) regularity and placement;
4) directionality.

The five-dimensional (5–D) WMDS solution came with the
same four dominant characteristics with the addition of a
dimension that we called “pattern heaviness.” Hence, as a
result of the experiment, the followingfive important similarity
criteria emerged.

Dimension 1—Overall Color:Overall color can be de-
scribed in terms of the presence/absence of a dominant color.
At the negative end of this axis are patterns with an overall
impression of a single dominant color (patterns 4, 5, 8, 15).
This impression is created mostly because the percentage of
one color is truly dominant. However, a multicolored image
can also create an impression of dominant color. This happens
when all the colors within this image are similar, having similar
hues but different intensities or saturation (pattern 7). At the
positive end of this dimension are patterns where no single

color is perceived as dominant (such as in true multicolored
patterns 16–20).

Dimension 2—Directionality and Orientation:This axis
represents a dominant orientation in the edge distribution,
or a dominant direction in the repetition of the structural
element. The lowest values along this dimension have patterns
with a single dominant orientation, such as stripes and then
checkers (2, 4, 11–13). Midvalues are assigned to patterns with
a noticeable but not dominant orientation (5, 10), followed
by the patterns where a repetition of the structural element is
performed along two directions (3, 8, 9, 15). Finally, completely
nonoriented patterns and patterns with uniform distribution of
edges or nondirectional placement of the structural element are
at the positive end of this dimension.

Dimension 3—Regularity and Placement Rules:This
dimension describes the regularity in the placement of the
structural element, its repetition and uniformity. At the negative
end of this axis are regular, uniform, and repetitive patterns
(with repetition completely determined by a certain set of
placement rules), whereas at the opposite end are nonrepetitive
or nonuniform patterns.

Dimension 4—Color Purity:This dimension arose somehow
unexpectedly, but it remained stable in all MDS configurations,
clustering results, even in the subjects’ explanations of their
rankings. This dimension divides patterns according to the de-
gree of their colorfulness. At the negative end are pale patterns
(1, 10), patterns with unsaturated overtones (7), patterns with
dominant “sandy” or “earthy” colors (5, 6, 11). At the positive
end are patterns with very saturated and very pure colors (9, 13,
19, etc.). Hence, this dimension can also be named the dimen-
sion of overall chroma or overall saturation within an image.

Dimension 5—Pattern Complexity and Heaviness:This di-
mension showed only in the last, 5–D configuration, hence it
can be seen as optional. Also, as we will show in the next sec-
tion, it is not used in judging similarity until the very last level
of comparison. For that reason we have also named it “a dimen-
sion of general impression.” At one end of this dimension are
patterns that are perceived as “light” and “soft” (1, 7, 10) while
at the other end are patterns described by subjects as “heavy,”
“busy,” and “sharp” (2, 3, 5, 17, 18, 19).

E. Grammar: Rules for Judging Similarity

Having determined the dimensions of color patterns, we need
to establish a set of rules governing their use. HCA achieves
that by ordering groups of patterns according to the degree of
similarity, as perceived by subjects. Fig. 5 shows the ordering
of clusters obtained as a result of the HCA, arising from the
complete similarity matrix for 20 patterns used in the study. As
a result of the HCA, we derived a list of similarity rules and
the sequence of their application based on the analysis given
below. For example, we observed that the very first clusters were
composed of pairs of equal patterns (clusters 21–23). These
were followed by the clusters of patterns with similar color and
dominant orientation. Thus, from the early stages of clustering
we were able to determine the initial rules used by humans in
judging similarity (Rules 1 and 2). These were followed by rules
emerging from the middle stages (Rules 3 and 4). Finally, at the
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Fig. 5. Result of the HCA applied to the complete set of stimuli. Clusters 1 to 20 are original patterns, clusters 21 to 37 represent successive nodes of the tree. In
the last step, clusters 36 and 38 are joined to form the top cluster. The ordering of clusters was used to determine the rules and the sequence of their application
in pattern matching.

coarsest level of comparison we use Rule 5 (clusters 36–38 in
Fig. 5).

In addition, to confirm the stability of rules, we have split
the original data in several ways and performed separate HCA’s
for each part. As suggested in [12], we eliminated some of the
stimuli from the data matrix and determined the HCA trees for
the remaining stimuli. The rules remained stable through var-
ious solutions; thus we conclude that the 5–D configuration can
be used for modeling the similarity metrics of the human visual
system, together with the following rules:

Rule 1: The strongest similarity rule is that of equal pattern.
Regardless of color, two textures with exactly the same pattern
such as pairs (17, 18), (2, 11), and (3, 15) are always judged to
be the most similar. Hence, this rule uses Dimensions 3 and 2
(pattern regularity and directionality).

Rule 2: The second rule in the hierarchy is that of overall
appearance. It uses the combination of Dimension 1 (dominant
color)andDimension 2 (directionality). Two patterns that have
similar values in both dimensions, such as pairs (10, 11), (1, 7),
and the triplet (2, 4, 5) are also perceived as similar.

Rule 3: The third rule is that of similar pattern. It concerns
either dimension 2 (directionality)or dimension 3 (pattern regu-
larity and placement rules). Hence, two patterns which are dom-
inant along the same direction (or directions) are seen as sim-
ilar, regardless of their color. One such example is the cluster
(12–14). In the same manner, seen as similar are patterns with
the same placement or repetition of the structural element, even
if the structural element is not exactly the same (see patterns 8
and 9, or 17, 18 and 19).

Rule 4: In the middle of the hierarchy comes the rule of dom-
inant color. Two multicolored patterns are perceived as similar
if they possess the same color distributions regardless of their
content, directionality, placement, or repetition of a structural
element (patterns 16–20). This also holds for patterns that have
the same dominant or overall color (patterns 2–6). Hence, this
rule involves only the Dimension 1 (dominant color).

Rule 5: Finally, at the very end of the hierarchy, comes the
rule of general impression (Dimensions 4 and 5). This rule
divides patterns into “dim,” “smooth,” “earthy,” “romantic,” or
“pale” (at one end of the corresponding dimension) as opposed
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to “bold,” “bright,” “strong,” “pure,” “sharp,” “abstract,” or
“heavy” patterns (at the opposite end). This rule represents the
complex combination of color, contrast, saturation, and spatial
frequency, and therefore applies to patterns at the highest,
abstract level of understanding.

This set of rules represents the basic grammar of pattern
matching. For actual implementation of the grammar it is
important to observe the way these rules are applied: Each
rule can be expressed as a logical combination (logical OR,
AND, XOR, NOT) of the pattern values along the dimensions
involved in it. For example, consider cluster 24 composed of
patterns 4 and 5 in Fig. 5. These patterns have similar overall
color and dominant orientation, thus their values both along
the dimensions 1 and 2 are very close. Consequently, they are
perceived as similar according to the Rule 2, which is expressed
in the following way:

(DIM1(pattern 4) similar toDIM1(pattern 5))

AND(DIM2(pattern 4) similar toDIM2(pattern5)): (5)

III. OVERVIEW OF THE SYSTEM

We will summarize our findings thus far. To model the human
perception of similarity:

1) we determined the basic vocabularyV of color
patterns consisting of dimensions 1–5:V =
fDIM1; � � � ; DIM5g;

2) we determined the grammarG, that is, the rules gov-
erning the use of the dimensions from the vocabulary
V . Five rules (R1–R5) were discovered so thatG =
fR1; R2; R3; R4; R5g.

Having found the vocabulary and grammar, we need to design
a system that will, given an input imageA and a queryQ:

1) measure the dimensionsDIMi(A) from the vocabulary,
i = 1; � � � ; 5;

2) for each imageB from the database, apply rulesR1–R5

from G and obtain corresponding distance measures
dist1(A; B); � � �, dist5(A; B), where disti(A; B) is
the distance between the imagesA andB according to
the rulei;

Therefore, the system has two main parts: 1) the feature
extraction part, measuring the dimensions fromV and 2) the
search part, where similar patterns are found according to the
rules fromG. The feature extraction part is designed to extract
dimensions 1 to 4 of pattern similarity. Dimension 5 (pattern
complexity and heaviness) is not implemented, since our
experiments have shown that people use this criterion only at a
higher level of judgment, while comparing groups of textures
[14]. Feature extraction is followed by judgment of similarity
according to Rules 1–4 fromG. Rule 5 is not supported in the
current implementation, since it is only used in combination
with dimension 5 at a higher level of pattern matching (such
as subdividing a group of patterns into romantic, abstract,
geometric, bold, etc.).

Let us now examine the system in more detail. It is important
to note that the feature extraction part is developed according to
the following assumptions derived from psychophysical proper-

ties of the human visual system and conclusions extracted from
our experiment.

1) The overall perception of color patterns is formed
through the interaction of luminance componentL,
chrominance componentC and achromatic pattern
componentAP . The luminance and chrominance com-
ponents approximate signal representation in the early
visual cortical areas while the achromatic pattern com-
ponent approximates signal representation formed at
higher processing levels [15]. Our experimental results
confirm this fact: we found that at the coarsest level
of judgment only color features are used (2-D MDS)
whereas texture information is added later and used in the
detailed comparison. Therefore, our feature extraction
simulates the same mechanism; it decomposes the image
map into luminance and chrominance components in the
initial stages, and models pattern information later in the
system.

2) As in the human visual system the first approximation is
that each of these components is processed through sep-
arate pathways [16], [29]. While luminance and chromi-
nance components are used for the extraction of color-
based information, the achromatic pattern component is
used for the extraction of purely texture-based informa-
tion. However, if we want to be more precise, we need to
account for residual interactions along the pathways [17].
As will be shown in Section V, we accomplish this by ex-
tracting the achromatic pattern component from the color
distribution, instead of using the luminance signal as in
previous models. Moreover, the discrete color distribution
is estimated through the use of a specially designed per-
ceptual codebook allowing the interaction between the lu-
minance and chrominance components (see Section IV).

3) Features are extracted by combining three major do-
mains: a) nonoriented luminance domain represented
by the luminance component of an image, b) oriented
luminance domain represented by the achromatic pattern
map, and c) nonoriented color domain represented by
the chrominance component. The first two domains are
essentially color blind, whereas the third domain carries
only the chromatic information. These three domains
are well documented in the literature [18] and experi-
mentally verified in perceptual computational models
for segregation of color textures [19]. Purely color-based
dimensions (1 and 4) are extracted in the nonoriented
domains and are measured using the color feature vector.
Texture-based dimensions (2 and 3) are extracted in the
oriented luminance domain, through the scale-orientation
processing of the achromatic pattern map.

In summary, our computational model is implemented as in
Fig. 1 and contains the following parts.

1) Feature extraction blockwith the following components.
• Image Decomposition: Input image is transformed into

theLab color space and decomposed into luminance
L and chrominanceC = (a; b) components.

• Estimation of Color Distribution: BothL andC maps
are used for the color distribution estimation and
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extraction of color features. We are thus performing
feature extraction along the color-based dimensions
1 and 4.

• Pattern Map Generation: Color features extracted in
the second stage are used to build the achromatic pat-
tern map.

• Texture Primitive Extraction and Estimation: The
achromatic pattern map is used to estimate the spatial
distribution of texture primitives. We are thus per-
forming feature extraction along the texture-based
dimensions 2 and 3.

2) Similarity Measurement: Here similar patterns are found
according to the rules fromG. Given an input imageA,
for every imageB in the database, rulesR1–R4 are ap-
plied and corresponding distance measures are computed.
Then, depending on a queryQ, a set of best matches is
found.

IV. FEATURE EXTRACTION BASED ON COLOR INFORMATION

The color information is used both for the extraction of color-
related dimensions (color features), and for the construction of
the achromatic pattern map (used later in texture processing),
therefore we aim for compact, perceptually-based color repre-
sentation. As illustrated in Fig. 2(a), this representation is ob-
tained through the following steps.

1) The input image is transformed into theLab color space.
2) Its color distribution is determined using a vector quanti-

zation-based histogram technique,.
3) Significant color features are determined from the his-

togram.
4) These color features are used in conjunction with a new

distance measure to determine the perceptual similarity
between two color distributions.

A. Color Representation

Our goal is to produce a system that performs in accordance
with human perception, hence we need a representation (color
space) based on human color matching. CIELab is such a
color space, since it was designed so that intercolor distances
computed using thek k2 norm correspond to subjective color
matching data [20]. After transforming an input image into
the Lab color space, the next step is to estimate the color
distribution by computing a histogram of the input color data.
Since linear color spaces (such as RGB) can be approximated
by 3-D cubes, histogram bin centers can be computed by
performing separable, equidistant discretizations along each of
the coordinate axes. Unfortunately, by going to the nonlinear
Lab color space, the volume of all possible colors distorts from
cube to an irregular cone and consequently, there is no simple
discretization that can be applied to this volume.

To estimate color distributions in theLab space, we have to
determine the set of bin centers and decision boundaries that
minimize some error criterion. In theLab color system,k k2
norm corresponds to perceptual similarity, thus representing the
optimal distance metric for that space [20]. Therefore, to ob-
tain an optimal set of bin centers and decision boundaries, we

have to findLab coordinates ofN bin centers so that the overall
mean-square classification error is minimized. This is exactly
the underlying problem in vector quantization (VQ). Hence,
we used the LBG vector quantization algorithm [21] to obtain
a set of codebooks which optimally represent the valid colors
in theLab space. In any VQ design, the training data have a
large effect on the final result. A commonly used approach is to
select training images that are either representative of a given
problem so the codebook is optimally designed for that partic-
ular application, or span enough of the input space so the re-
sulting codebook can be used in different applications. The fol-
lowing problem occurs with both approaches: In order to obtain
an accurate estimation for the color distribution, a large number
of training images is required, resulting in a computationally
expensive and possibly intractable design task. To overcome
this problem, we have taken a different approach. Since we are
dealing with an arbitrary input, we can assume that every color
is equiprobable. Hence, a synthetic set of training data was gen-
erated by uniformly quantizing theXY Z space. The data was
transformed into theLab space and used as input to the stan-
dard VQ design algorithm. This resulted in a set of codebooks
ranging in size from 16 to 512 colors. When used in the standard
image retrieval task, these codebooks performed quite well. For
our task, however, these codebooks have one drawback; They
are designed as a global representation of the entire color space
and consequently, there is no structure to the bin centers. Our
purpose is to design a system which allows a user to interact
with the retrieval process. Therefore, the color representation
must provide manipulation with colors in a “human-friendly
manner.” To simulate human performance in color perception,
a certain amount of structure on the relationships between the
L, a, andb components must be introduced. One possible way
to accomplish this is by separating the luminanceL, from the
chrominance (a; b) components. Starting from this assumption,
we first applied one-dimensional (1–D) quantization on lumi-
nance values of the training data (using a Lloyd–Max quantizer).
Then, after partitioning the training data into slices of similar
luminance, a separate chrominance codebook was designed for
each slice by applying the LBG algorithm to the appropriate
(a; b) components.

This color representation better mimics human perception
and allows the formulation of functional queries such as looking
for “same but lighter color,” “paler,” “contrasting,” etc. For ex-
ample, the formulation of a query vector to search for a “lighter”
color can be accomplished through the following steps:

1) extract the luminanceLQ and the (aQ, bQ) pair for the
query color;

2) find the codebook for a higher luminance levelL > LQ;
3) in this codebook, find the cell which corresponds to (a; b)

entry which is the closest to (aQ; bQ) in thek k2 sense;
4) retrieve all images having (L; a; b) as a dominant color.

Moreover, starting from the relationship betweenL; a, andb
values for a particular color, and its hueH and saturationS

H = arctan
b

a
; S =

p
a2 + b2: (6)

Similar procedures can be applied to satisfy queries such as
“paler color,” “bolder color,” “contrasting color,” etc. Finally,
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in applications where the search is performed between different
databases or when the query image is supplied by the user, sep-
aration of luminance and chrominance allows for elimination of
the unequal luminance condition. Since the chrominance com-
ponents contain the information about the type of color regard-
less of the intensity value, color features can be extracted only
in the chrominance domainC(i; j) = fa(i; j); b(i; j)g, for
the corresponding luminance level, thus allowing for compar-
ison between images of different quality.

B. Color Feature Extraction

Color histogram representations based on color codebooks
have been widely used as a feature vector in image segmenta-
tion and retrieval [22], [23]. Although good results have been
reported, a feature set based solely on the image histogram may
not provide a reliable representation for pattern matching and re-
trieval. This is due to the fact that most patterns are perceived as
combinations of a few dominant colors. For example, subjects
who participated in our previously reported subjective experi-
ments [14], were not able to perceive nor distinguish more than
six or seven colors, even when presented with very busy or mul-
ticolored patterns. For that reason, we are proposing color fea-
tures and associated distance measures consisting of the subset
of colors (which best represent an image), augmented by the
area percentage in which each of these colors occur.

In our system we have used a codebook withN = 71
colors denoted byC71 = fC1; C2; � � � ; C71g where each
colorCi = fLi; ai; big is a three-dimensionalLab vector. As
the first step in the feature extraction procedure (before his-
togram calculation) input image is convolved with aB-spline
smoothing kernel. This is done to refine contours of texture
primitives and foreground regions, while eliminating most of
the background noise. TheB-spline kernel is used since it
provides an optimal representation of a signal in thek k2 sense,
hence minimizing the perceptual error [24]. The second step
(after the histogram of an image was built) involves extraction
of dominant colors to find colors from the codebook that
adequately describe a given texture pattern. This was done by
sequentially increasing the number of colors until all colors
covering more than 3% of the image area have been extracted.
The remaining pixels were represented with their closest
matches (ink k2 sense) from the extracted dominant colors.
Finally, the percentage of each dominant color was calculated
and the color feature vectors were obtained as

fc = f(ij ; pj)jj 2 [1; N ]; pj 2 [0; 1]g (7)

whereij is the index in the codebook,pj is the corresponding
percentage andN is the number of dominant colors in the
image. Another similar representation has been successfully
used in image retrieval [25].

The proposed feature extraction scheme has several advan-
tages: It provides an optimal representation of the original color
content by minimizing the MSE introduced when using a small
number of colors. Then, by exploiting the fact that the human
eye cannot perceive a large number of colors at the same time,
nor is it able to distinguish close colors well, we provide a
very compact feature representation. This greatly reduces the

size of the features needed for storage and indexing. Further-
more, because of the codebook used, this representation facil-
itates queries containing an overall impression of patterns ex-
pressed in a natural way, such as “find me all blue-yellow fab-
rics,” “find me the same color, but a bit lighter,” etc. Finally, in
addition to storing the values of the dominant colors and their
percentages, we are also storing the actual number of domi-
nant colors. This information is useful in addressing the more
complex dimensions of pattern similarities as suggested in [14].
Namely, by using this feature we can search for simple and
single colored patterns, versus heavy, multicolored ones.

C. Color Metric

The color features described above, represented as color and
area pairs, allow the definition of a color metric that closely
matches human perception. The idea is that the similarity be-
tween two images in terms of color composition should be mea-
sured by a combination of color and area differences.

Given two images, a query imageA and a target
image B, with NA and NB dominant colors, and fea-
ture vectors fc(A) = f(ia; pa)j8a 2 [1; NA]g, and
fc(B) = f(ib; pb)j8b 2 [1; NB ]g, respectively, we first
define the similarity between these two images in terms of a
single dominant color. Suppose thati is the dominant color in
imageA. Then, we measure the similarity betweenA andB
in terms of that color using the minimum of distance measures
between the color element(i; p) and the set of color elements
f(ib; pb)j8 b 2 [1; NB ]g:

d(i; B) = min
b2[1;NB]

D((i; p); (ib; pb)) (8)

where

D((i; p); (ib; pb))

= jp� pbj+
p

(L� Lb)2 + (a � ab)2 + (b� bb)2:

(9)

Once the distanced(i; B) has been calculated, besides its value
we also use its argument to store the color value fromB that,
for a particular colori from A, minimizes (8). We denote this
color value byk(i; B) as

k(i; B) = arg d(i; B): (10)

Note that the distance between two color/area pairs is defined
as the sum of the distance in terms of the area percentage and
the distance in theLab color space, both within the range [0, 1].
In [25], Ma et al. used a different definition where the overall
distance is the product of these two components. That defini-
tion, while being more intuitive, has the drawback that when
either component distance is very small the remaining compo-
nent becomes irrelevant. Consider the extreme case, when the
color distance between two color/area pairs is zero. This is not
unusual, since the color space has been heavily quantized. Then,
even if the difference between the two area percentages is very
large, the overall distance is zero yielding a measure that does
not match human perception. Our definition is a simple and ef-
fective remedy to that problem—it guarantees that both color
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and area components contribute to the perception of color sim-
ilarity.

Given the distance between two images in terms of one domi-
nant color as defined above, the distance in terms of overall color
composition is defined as the sum over all dominant colors from
both images, in the following way.

1) For imageA, for 8 a 2 [1; NA] find kA(ia; B) and the
corresponding distanced(ia; B).

2) Repeat this procedure for all dominant colors inB, that
is, for 8 b 2 [1; NB ] find kB(ib; B) andd(ib; A).

3) calculate the overall distance as

dist(A; B) =
X

a2[1; NA]

d(ia; B) +
X

b2[1;NB]

d(ib; A): (11)

V. FEATURE EXTRACTION BASED ON TEXTURE INFORMATION

Having obtained the color feature vector, the extraction of
texture features involves the following steps [see Fig. 2(b)]:

1) spatial smoothing, to refine texture primitives and remove
background noise;

2) building the achromatic pattern map;
3) building the edge map from the achromatic pattern map;
4) application of a nonlinear mechanism to suppress nontex-

tured edges;
5) orientation processing to extract the distribution of pattern

contours along different spatial directions;
6) computation of a scale-spatial texture edge distribution.

Spatial smoothing of the input image is performed during the
extraction of color features. Then, the color feature represen-
tation is used for construction of the achromatic pattern map.
The achromatic map is obtained in the following manner: For
a given texture, by using the number of its dominant colorsN ,
a gray level range of 0–255 is discretized intoN levels. Then,
dominant colors are mapped into gray levels according to the
following rule: Level 0 is assigned to the dominant color with
the highest percentage of pixels, the next level is assigned to
the second dominant color, etc., until the level 255 has been as-
signed to a dominant color with the lowest area percentage. In
other words, the achromatic pattern map models the fact that
human perception and understanding of form, shape, and ori-
entation is completely unrelated to color. Furthermore, it re-
solves the problem of secondary interactions between the lu-
minance and chrominance pathways. As an example, consider
a pair of textures in Fig. 6(a). The values in the luminance map
are much higher for the texture on top, hence the edge ampli-
tudes, and edge distributions are different for these two images
[see Fig. 6(b)]. Moreover, the dominant colors are not close,
which makes the classification of these two patterns as sim-
ilar (either using luminance, chrominance, or color features) ex-
tremely difficult. However, in our model, the way that luminance
and chrominance are coupled into a single pattern map guar-
antees that both textures will have identical achromatic pattern
maps [see Fig. 6(c)], leading to almost identical texture feature
vectors.

The objective of edge and orientation processing is to extract
information about the pattern contours from the achromatic pat-
tern map. Instead of applying a bank of oriented filters, as in

Fig. 6. Human perception and understanding of form, shape, and orientation
is unrelated to color. The system models this through the use of the achromatic
pattern map. (a) Two identical textures with different color distributions
are perceived as identical. (b) However, modeling of these patterns by their
luminance components results in different feature vectors. (c) The solution is
to map dominant colors from both patterns into the same gray-scale values,
resulting in an achromatic pattern map. This representation corresponds
to human perception. Consequently, the feature vectors extracted from the
achromatic pattern maps are almost identical.

previous models, we decided to compute polar edge maps and
use them to extract distribution of edges along different direc-
tions. This approach allowed us to obtain the edge distribution
for an arbitrary orientation with low computational cost. It also
introduced certain flexibility in the extraction of texture fea-
tures since, if necessary, the orientation selectivity can be en-
hanced by choosing an arbitrary number of orientations. In our
system, we used edge-amplitude and edge-angle maps, calcu-
lated at each image point. Edge maps were obtained by con-
volving an input achromatic pattern map with the horizontal and
vertical derivatives of a Gaussian and converting the result into
polar coordinates. The derivatives of a Gaussian alongx andy
axes were computed as

gx(i; j) = ie�(i2+j2); gy(i; j) = je�(i2+j2) (12)

while the derivatives of the achromatic pattern map alongx and
y axes were computed as

Ax(i; j) = (gx �AP )(i; j);

Ay(i; j) = (gy �AP )(i; j) (13)

where� stands for 2-D convolution. These derivatives were then
transformed into their polar representation as

A(i; j) =
q
Ax(i; j)2 + Ay(i; j)2;

�(i; j) = tan�1 Ay(i; j)

Ax(i; j)
; �(i; j) 2

�
�
�

2
;
�

2

i
: (14)

Texture phenomenon is created through the perception of
image “edgeness” along different directions, over different
scales. Hence, to estimate the placement and organization of
texture primitives, we do not need information about the edge
strength at a certain point; rather, we only need to know whether
an edge exists at this point and the direction of the edge. There-
fore, after the transformation into the polar representation, the
amplitude map is nonlinearly processed as

AQ(i; j) =

�
1; med(A(i; j)) � T

0; med(A(i; j)) < T
(15)
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where med(�) represents the median value calculated over a 5
× 5 neighborhood. Nonlinear median operation was introduced
to suppress false edges in the presence of stronger ones, and
eliminate weak edges introduced by noise. The quantization
thresholdT is determined as

T = �A � 2
q
�2A (16)

where�A and�2A are the mean and variance of the edge ampli-
tude, estimated on a set of 300 images. This selection allowed
all the major edges to be preserved. After quantizing the am-
plitude map, we perform the discretization of the angle space,
dividing it into the six bins corresponding to directions 0�, 30�,
60�, 90�, 120�, and 150�, respectively. For each direction an am-
plitude mapA�i(i; j) is built as

A�i(i; j)

=

�
1; AQ(i; j) = 1 ^ �(i; j)) 2 �i
0; AQ(i; j) = 0 _ �(i; j)) =2 �i

; i = 1; � � � ; 6:

(17)

To address the textural behavior at different scales, we es-
timate mean and variance of edge density distribution, by ap-
plying overlapping windows of different sizes to the set of di-
rectional amplitude maps. For a given scale, along a given direc-
tion, edge density is calculated simply by summing the values
of the corresponding amplitude map within the window, and di-
viding that value by the total number of pixels in the window. We
used four scales, with the following parameters for the sliding
window:

Scale 1: WS1 = 3
4 W � 3

4 H; N1 = 30;

Scale 2: WS2 = 2
5 W � 2

5 H; N2 = 56;

Scale 3: WS3 = 1
5 W � 1

5 H; N3 = 80;

Scale 4: WS4 = 1
10 W � 1

10 H; N4 = 224

whereWSi andNi are window size and number of windows
for scalei, andW andH are the width and height of the input
texture. Note that the above approach is scale (zoom) invariant.
In other words, the same pattern at different scales will have
similar feature vectors.

Hence, at the output of the texture processing block, we have
a texture feature vector of length 48:

ft = [��11 �
�1
1 ��21 �

�2
1 � � � ��61 �

�6
1 ��12 �

�1

2 � � � ��64 �
�6
4 ] (18)

where��ji and��ji stand for mean and standard deviation of tex-
ture edges at scalei along the direction�j . Each feature com-
ponent is normalized so that it assumes the mean value of zero
and standard deviation of one over the whole database. In that
way this feature vector essentially models both texture-related
dimensions (directionality and regularity): The distribution es-
timates along the different directions address the dimension of
directionality. At any particular scale, the mean value can be un-
derstood as an estimation of the overall pattern quality, whereas

Fig. 7. Discrimination of textures based on the mean and variance of texture
edge distribution. (a) If two textures have different degrees of regularity,
characterized by different variances, they are immediately perceived as
different. (b) However, if two textures have similar degrees of regularity,
characterized by similar variances, perception of similarity depends on pattern
quality, which is modeled by the mean values of edge distribution.

the standard deviation estimates the uniformity, regularity and
repetitiveness at this scale, thus addressing the dimension of pat-
tern regularity.

A. Texture Metric

As previously mentioned, at any particular scale, the mean
values measure the overall edge pattern and the standard devi-
ations measure the uniformity, regularity and repetitiveness at
this scale. Our experiments [14] demonstrate that the percep-
tual texture similarity between two images is a combination of
these two factors in the following way: If two textures have very
different degrees of uniformity [as in Fig. 7(a)] they are imme-
diately perceived as different. On the other hand, if their de-
grees of uniformity, regularity and repetitiveness are close [as in
Fig. 7(b)], their overall patterns should be further examined to
judge similarity. The smooth transition between these two fac-
tors can be implemented using the logistic function, commonly
used as an excitation function in artificial neural networks [26].
Thus, the distance between the query imageA and the target
imageB, with texture feature vectors

ft(A) = [��11A � � � ��64A] and ft(B) = [��11B � � � ��64B]

(19)

respectively, is defined as

M
�j
i = j�

�j
iA � �

�j
iB j;

D
�j
i = j�

�j
iA � �

�j
iBj (20)

d
�j
i =wM(i; �j)M

�j
i +wD(i; �j)D

�j
i

=
e��(D

�j

i
�Do)

1 + e��(D
�j

i
�Do)

M
�j
i

+
1

1+ e��(D
�j

i
�Do)

D
�j
i ; (21)

dist(A; B) =
X
i

X
j

d
�j
i : (22)
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Fig. 8. Examples of the search mechanism using Rule 1 (the rule of equal pattern). This is the strongest rule people use when judging similarity. The leftmost
image is the query pattern following by four best matches. (a) Example from the Interior Design database. (b) Example from the Corel database: bark textures.

At each scalei and direction�j , the distance functiond�ji is the
weighted sum of two terms: the firstM �j

i , measuring the differ-
ence in mean edge density and the secondD

�j
i , measuring the

difference in standard deviation, or regularity. The weighting
factors,wM(i; �j) andwD(i; �j), are designed such that when
the difference in standard deviation is small, the first term is
more dominant; as it increases, the second term becomes domi-
nant, thus matching human perception as stated above. The pa-
rameters� andDo control the behavior of the weighting fac-
tors, where� controls the sharpness of the transition, andDo

defines the transition point. These two parameters are currently
trained using 40 images taken from an interior design database,
in the following way: First, ten images were selected as repre-
sentatives of the database. Then, for each representative, three
comparison images were chosen as the most similar, close, and
least similar to the representative. For each representative image
Ii, i = 1; � � � ; 10, the comparison imagesCi; j; j = 1; � � � ; 3
are ordered in decreasing similarity. Thus, setsfIig andfCi; jg
represent the ground truth. For any given set of parameters (�,
Do), the rankings of the comparison images as given by the
distance function can be computed. Let rankij(�; Do) repre-
sents the ranking of the comparison imageCi; j for representa-
tive imageIi. Ideally, we would like to achieve

rankij(�; Do) = j; 8 i; jji 2 [1; 10]; j 2 [1; 3]: (23)

The deviation from ground truth is computed as

D(�; Do) =
10X

i=1

di(�; Do) (24)

where

di(�; Do)

=
3X

j=1

�� dist(Ii; Ci; j) � dist(Ii; Ci; rankij(�;Do))
�� : (25)

The goal of parameter training is to minimize function
D(�; Do). Many standard optimization algorithms can be

used to achieve this. We used Powell’s algorithm [27] and the
optimal parameters derived were:� = 10 andDo = 0:95.

VI. SIMILARITY MEASUREMENT

In this part of the system, we perform similarity measurement
based on the rules from our grammarG. The system was tested
on the following databases: Corel (more than 2000 images), in-
terior design (350 images), architectural surfaces (600 images),
stones (350 images), historic ornaments (110 images), and ori-
ental carpets (100 images).

The current implementation of our system supports four
strongest rules for judging the similarity between patterns.
Here we briefly summarize the rules and their implementation
in the system. For more details on rules, see Section II or [14].

Applying Rule 1: The first similarity rule is that ofequal pat-
tern.Regardless of color, two textures with exactly the same pat-
tern are always judged to be similar. Hence, this rule concerns
the similarity only in the domain of texture features, without
actual involvement of any color-based information. Therefore,
this rule is implemented by comparing texture features only,
using the texture metric (20)–(22). The same search mechanism
supports Rule 3 (equal directionality, regularity or placement)
as well. According to that rule, two patterns that are dominant
along the same directions are seen as similar, regardless of their
color. In the same manner, seen as similar are textures with the
same placement or repetition of the structural element, even if
the structural element is not exactly the same. Hence, the value
of the distance function in the texture domain reflects either pat-
tern identity or pattern similarity. For example, very small dis-
tances mean that two patterns are exactly the same (implying
that the rule of identity was used), whereas somewhat larger dis-
tances imply that the similarity was judged by the less rigorous
rules of equal directionality or regularity. Examples of the equal
pattern search mechanism are given in Fig. 8, while the exam-
ples of similar pattern search mechanism are given in Fig. 10.

Applying Rule 2: The second in the hierarchy of similarities
is the combination of dominant colors and texture directionality,
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Fig. 9. Examples of the search mechanism using Rule 2 (the rule of similar overall appearance). This is the second strongest rule people use when judging
similarity. This rule comes into play when there are no identical patterns. The leftmost image is the query pattern followed by four best matches. (a) Example from
the Historic Ornaments database. (b) Example from the Stones database: various types of green marble.

Fig. 10. Examples of the search mechanism using Rule 3 (the rule of similar pattern). The leftmost image is the query pattern following by four best matches.
(a) Example from the Oriental Carpets database. (b) Example from the Architectural Surfaces database.

yielding images with similar overall appearance. The actual im-
plementation of this rule involves comparison of both color and
texture features. Therefore the search is first performed in the
texture domain, using texture features and metrics (20)–(22).
A set of selected patterns is then subjected to another search,
this time in the color domain, using color features (7) and color
metric (8)–(11). Examples of this search mechanism are given
in Fig. 9.

Applying Rule 3: The same mechanism as in Applying Rule
1 is used here, and the search examples are given in Fig. 10.

Applying Rule 4: According to therule of dominant color,
two patterns are perceived as similar if they possess the same
color distributions regardless of texture quality, texture content,
directionality, placement, or repetition of a structural element.
This also holds for patterns that have the same dominant or
overall color. Hence, this rule concerns only similarity in the

color domain and is applied by comparing color features only.
An example of the search is given in Fig. 11.

VII. QUERY TYPES AND OTHER SEARCH EXAMPLES

As explained in the introduction, one of the assumptions
about the model is that chromatic and achromatic components
are processed through mostly separate pathways. Hence, by
separating color representation and color metric from texture
representation and texture metric, we add a significant amount
of flexibility into the system in terms of manipulation of image
features. This is an extremely important issue in many practical
applications, since it allows for different types of queries.
As input into the system the user is expected to supply: a) a
query and b) patterns to begin the search. The rules explained
in the previous section model typical human queries, such
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Fig. 11. Example of the search mechanism using Rule 4 (the rule of dominant color). The leftmost image is the query pattern followed by four best matches.
Example is from the Historic Ornaments database: Islamic designs with lettering from an illuminated Koran, 14th or 15th century.

Fig. 12. Different types of queries supported by the system. (a) Query by sketch. The user supplies a sketch (bitmap image) of a desired pattern (the leftmost
image). Four best matches are given from the interior Design database. (b) Combination query. The desired pattern (stripes) is taken from one input image (first
from left) and the desired color (blue) from another (second from left). Four best matches are given on the right.

as: “find the same pattern” (Rule 1), “find all patterns with
similar overall appearance” (Rule 2), “find similar patterns”
(Rule 3), “find all patterns of similar color,” “find all patterns
of a given color,” “find patterns that match a given pattern”
(Rule 4). Moreover, due to the way the color codebook is
designed, the system supports additional queries such as “find
darker patterns,” “find more saturated patterns,” “find simple
patterns,” “find multicolored patterns,” and “find contrasting
patterns.” The input pattern the user provides can be supplied
by the user, selected from a database, or given in the form of a
sketch. If the user has color preferences, they can be specified
either from the color codebook, or from another pattern.

As an example, let us discuss query by sketch. There are
certain situations when the user is unable to supply an image
of the pattern he is trying to find. Hence, instead of browsing
through the database manually, our system provides tools for
sketching the pattern and formulating a query based on the ob-
tained bitmap image. In that case, without any lowpass pre-
filtering, only texture feature vector is computed for the bitmap
image and used in the search. One such query and four best
matches are given in Fig. 12(a). Furthermore, this search mech-
anism allows the user to specify a desired color, by selecting a
color i = fLi; ai; big from the codebook. Then, the search is
performed in two iterations. First a subset of patterns is selected
based on color similarity. Color similarity between the color
i and target imageB, with the color feature vectorfc(B) =
f(ib; pb)j 8 b 2 [1; NB ]g is calculated as

d(i; B) = min
b2[1; NB ]

Dc(i; ib);

Dc(i; ib) =
p
(Li � Lb)2 + (ai � ab)2 + (bi � bb)2: (26)

Next, within the selected set, a search based on texture features
is performed to select the best match. A similar search mecha-
nism is applied for combination query, where the desired pattern
is taken from one input image and the desired color from another

image [see Fig. 12(b)], or in a search where the desired pattern
is specified by an input image and the desired color is selected
from the color map.

To conclude this section, we present retrieval results on
general class of images from the Corel database. Although our
system was designed specifically for color patterns, the search
results demonstrate robustness of the algorithm to other types of
images (such as natural scenes and images with homogeneous
regions as in Fig. 13).

VIII. D ISCUSSION ANDCONCLUSIONS

It is our belief that a good working system for image retrieval
must accomplish visual similarity along perceptual dimensions.
With this as the central thrust of our research, we performed sub-
jective experiments and analyzed them using multidimensional
scaling techniques to extract the relevant dimensions. We then
interpreted these dimensions along perceptual categories, and
used hierarchical clustering to determine how these categories
are combined in measuring similarity of color patterns. Having
discovered the psychophysical basis of pattern matching, we de-
veloped algorithms for feature extraction and image retrieval in
the domain of color patterns. As part of this research we realized
a need for distance metrics that are better matched to human per-
ception. Distance metrics that we developed for color matching
(8)–(11) and texture matching (20)–(22) satisfy this criterion.

While most of our research has been directed at color pat-
terns, we believe that the underlying methodology has greater
significance beyond color and texture. We believe that such a
methodology, if applied to other retrieval tasks (such as shape
and object understanding), will result in a system that is better
matched to human expectations. A major advantage of such an
approach is that it eliminates the need for selecting the visual
primitives for image retrieval and expecting the user to assign
weights to them, as in most current systems. Furthermore, as can
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Fig. 13. Examples of the serch algorithms applied to the general class of images. The leftmost image is the query pattern followed by four best matches.(a)
Application of Rule 2 (the rule of overall appearance). Example from the Corel database: Tulips. (b) Application of Rule 3 (the rule of similar pattern). Example
from the Corel database: Alaska. (c) Application of Rule 4 (the rule of dominant color). Example from the Corel database: Vegetables.

be seen from the results, our rules of pattern matching are robust
enough to work in various domains, including digital museums
[Figs. 9(a) and 11], architecture [Figs. 8(b) and 10(b)], interior
design [Fig. 9(b)], and fashion and design industry [Figs. 8(a)
and 12]. In general, as long as there is no meaning attached to
the patterns (or even images) our approach should work well.
However, when building any system dealing with image simi-
larity, one should be aware of the importance of image content or
domain specific information, and additional studies addressing
this issue need to be conducted.

The important reason for the success of our system is that it
implements the following experimental, biological, and physi-
ological observations.

1) The perception of color patterns can be modeled by a set
of visual attributes and rules governing their use.

2) This same perception is formed through the interaction
of luminance and chrominance components (in the early
stages of the human visual system), and achromatic pat-
tern component (in the later stages of the human visual
system).

3) Each of these components is processed through separate
pathways.

4) Perception and understanding of patterns is unrelated to
color and relative luminance.

5) Patterns are perceived through the interaction of image
edges of different orientations and at different scales.

Each of these assumptions has its equivalent in the system, and
is accomplished by

1) determining the basic vocabulary and grammar of color
patterns through a subjective experiment;

2) decomposing an image into luminance, chrominance, and
pattern maps;

3) processing the color information first, and then texture;

4) modeling an image pattern with its achromatic pattern
map;

5) extracting texture features from edge representation of the
achromatic pattern map at different scales, along different
directions.

This has been the approach we have taken toward building
an image retrieval system that has human like performance and
behavior. Besides image retrieval, the proposed model can be
utilized in other areas such as perceptually based segmentation
and coding, pattern recognition and machine vision as well as
for effectively employing perceptual characteristics in scientific
visualization of large data sets.
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