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Abstract—\We determine the basic categories and the hierarchy of color patterns, their relative importance and relationships, as
of rules used by humans in judging similarity and matching of well as the hierarchy of rulesgrammar The attributes we ex-
color patterns. The categories are tract are applicable to a broad range of textures, starting from

1) overall color; ; ik ; _
2) directionality and orientation: simple patterns, all the way up to complex, high-level visual tex
ture phenomena.

3) regularity and placement; . . . .
4) color purity: The paper is organized as follows. The first two sections

5) complexity and heaviness. present the basic concepts of multidimensional scaling and
These categories form the pattern vocabulary which is governed hierarchical clustering techniques used in the study for the
\?V)érg‘gb%;ﬁ:gg‘:‘; ;urlgsdltBooftQ ;Ste),evcciﬁlaébg)'(agﬂ;ldmthEexgéf;r:qrgﬁ‘t;l analysis of subjective data. The third section describes the
data were interpreted using muItJidimensioFr)laI scaliﬁg tgchniques methodology o.f the .data collection and .anaIySIS' Results
yielding the vocabulary and the hierarchical clustering analysis, are presented in Sections IV and V. A review of the feature
yielding the grammar rules. Finally, we give a short overview of €xtraction techniques for measuring the determined dimensions
the existing techniques that can be used to extract and measureis given in Section VI. Discussion, conclusions and plans for
the elements of the vocabulary. further research are found in Section VII.

Index Terms—Color patterns, image databases, retrieval.

Il. MULTIDIMENSIONAL SCALING

| INTRODUCTION Multidimensional scalingMDS) is a set of mathematical

OGETHER with color and shape, texture is the most intechniques that enable researchers to uncover the hidden struc-
portant visual category in human perception, and has thtuges in data [13]. MDS is designed to analyze distance-like
been extensively studied in computer vision, image processidata calledsimilarity or proximity data, that is, data indicating
and psychophysics [1]-[12]. By texture, we denote a visual phite degree of similarity between two items. Traditionally,
nomenon (such as grass, marble, brick) caused by the repsitinilarity data is obtained via subjective measurement. It
tion of a structural element according to a certain rule. Texturessacquired by asking people to judge similarity of pairs of
generated by humans (such as textiles, ornaments or tiles) @bgects—stimuli—on some scale. The obtained similarity
usually calledpatterns To specify that a pattern contains coloryalue connecting stimulus to stimulusy is denoted byo;;.
we will call it a color pattern Unfortunately, our understandingSimilarity values are arranged irs@milarity matrix A, usually
of color textures and color patterns is very modest comparbyl averagingé;; obtained from all measurements. The aim
to our understanding of other visual phenomena such as colfr MDS is to place each stimulus from the input set into an
contrast, or even gray-level textures or gray-level patterns. THatdimensionaktimulus spacéhe dimensionality of the space,
is mainly due to the fact that the basic dimensions of color pat; is also determined as the result of the experiment). The
terns have not yet been identified, a standardized vocabularypaints x; = [z;12:2 ---2;1] (note that this is a row vector)
addressing their important characteristics does not exist, norépresenting each stimulus are arranged so that the Euclidean
there a grammar defining how these dimensions are to be cafistances!;; between each pair of points in the stimulus space
bined. Previous investigations in this field concentrated maintgatch as closely as possible the subjective similaritigs
on gray-level natural textures [9]-[11]. Particularly interestingetween corresponding pairs of stimuli.
is work of Rao and Lohse [11]: their research focused on howHere, we give a brief overview of two particular types of
people classify textures in meaningful, hierarchically-structur@édDS used in this workclassical MDS(CMDS) andweighted
categories, identifying relevant features used in the perceptigibS (WMDS, also called INDSCAL). CMDS analyzes only
of gray-level textures. Similarly, here we determine the basime similarity matrix obtained by averaging values from all the
categories—vocabulary—used by humans in judging similarity subjects. An important characteristic of CMDS is that once a
configuration of points is obtained, it can be rotated, implying
Manuscript received October 30, 1998; revised August 19, 1999. The asgaat the dimensions are not meaningful. Thus, when interpreting
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for individual differences in human responses. As opposed fitus errorE. CMDS solves foiD and transformatiorf so that
CMDS, once the configuration is obtained, it cannot be rotatéite norm ofE is minimized.

[31]. However, the stability of configuration depends heavily on Most often, f is chosen to be linear

the accuracy of the model; if the model fits that data well, the

dimensions are meaningful which makes our job of interpreting f(A)=aA +0, 3)

them much easier.
In the rest of this paper, we will use the following notation.

where, for a given configuration, valuesndb must be discov-
ered using numerical optimization.

n=1--- N index denoting stimulus; . . N

k=1,---,K index denoting subjedt; _ CMDS requiresf to be defme_d before_: going into a computa-

I=1,-- L index denoting dimensioh tlona[ propedure. Therefqre, given an initial co.nﬂguratmim,

8 similarity value attached to the pair ofone first flnd.s_t.he besf, y|eI<_j|ng_ Dy (the que;tlon of how to
stimuli (7, j) obtained from all the sub- choose the initial configuration is addressed in [12]). Once the
jects: - best f is found, we then search for the best configuration of

A N x N similarity matrix havings;; as its point_s inthe stimulgs space gnd iterat_e. We repeat this pr_ocedure
elements (diagonal elements are ignoredg’r differentL's ur_ml further increase in the numbe_r of dn_nen-

X; row vector in L-dimensional space con- ions does n_ot bring a redl_Jct|on |n.the error fun_ct|ons. F_mally,
taining coordinates of the stimula that we are left with the task of interpreting and labeling the dimen-
space: sions we h_ave. Note 'ghat th_e computati(_)nal procedure works on

Tal projection of theth point (stimulus) along the points in the_conflg_uratlon, not on distanaks -
dimension’: We now explain this in more detail. CMDS starts by defining

X N x L matrix containingz;; as its elements an error functiqn (also calledgoodness-of—fit_, objectiv_e fun_c-
(group configuration mafri)g tion). For any given set of d.ata and for any given configuration,

di: Euclidean distance betwean andx.: the error function yields a single number which shows how well

DJ N x N matrix containingd? as ité ele- the data fit into the configuration. One commonly used error
ments; " function is referred to asstress formula lor “ Kruskal's stress

8iin similarity value attached to the pair Offo.rmula" As_explqined earlier, we first try to fir_wd. th_e_ begt

’ stimuli (, ) obtained from subjed; given a conflguratlo@((. CMDS does that by minimizing the

A Nx N sirhilarity matrix havings,x as its error function. In pr'|nC|pI.e, we could flnd.the bgﬁtfor any
elements (diagonal elements are ignored?,_'ven X; however, since is linear, _the choice of is not cru-

Tit projection of theith point (stimulus) along cial and we start from anX; to obtainf [13]. The error (stress)
dimension! for subjectk; formula used here is

X N x L matrix containingz;;. as its ele- ) o
ments {ndividual configugrztion matrix stress(A, Xr) = S Jatress(A, X1, f) “)

Wik weight subjeck gives to dimension;

Wi L x L diagonal matrix containingug, where
along the diagonal; ST UF(8i5) — dig 2

diji. Euclidean distance between andx; for fstress(A, X7, f) = Ezgj[zf:( fj()& E L (5)
subjectk; PLay ST

Dy, N x N matrix containingd?;, as its ele-  once the objective functiofi is obtained, we find the “best”
ments. configuration, that is, the configuratioK which yields the

lowest possible value of the error function
A. Classical MDS
The central concept of CMDS is that the distarigebetween stress(A, X) = min f stress(A, Xr, f). (6)

points in anL-dimensional space will have the strongest pos- _ o _ _
sible relation to the similaritie&;; from a single matrixA. The ~ One widely used procedure for finding the best configuration
similarities are averaged original ratings obtained as the resuli®the method of steepest descent [13]. Once the configuration

the experiment_ The CMDS data ana|ysi5 pr0b|em can be Suiﬁ]Obtained, itis important how itis interpreted. A pOSSibIe way
marized as follows: to interpret each dimension in the resulting configuration is to

examine peripheral objects, that is, objects that lay at the out-
f(A)=D+E (1) ermost edges of configuration. Then, it has to be established
what is common to these objects and their nearest neighbors

whereD containsd% as its elements and and how they differ from the stimuli at the opposite edges of the

configuration. Since the configuration is based on the distances

&7 = (% —x;)(x; — x;)". (2) between the points (which do not change with the rotation of

the space), rotation in CMDS is permissible leading to drastic

In other words A—the original similarity data—are equal,changes in the projections. Consequently, it is possible that the
by transformationf, to the transformed similarity data, whichcoordinate axes which we could not interpret directly can be ro-
in turn are equal to the obtained squared Euclidean distddcesated revealing their true meaning. Usually, we aim to interpret
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each dimension of the space. However, the number of dimen-two other clusters are merged. At every step, either indi-
sions does not necessarily reflect all the relevant characteristidglual stimulus is added to the existing clusters, or two ex-
Also, although a particular feature exists in the stimulus set,igting clusters are merged. Splitting of clusters is forbidden. The
may not contribute strongly enough to become visible as a sgpeuping continues until all stimuli are members of a single
arate dimension. This can be because the selected stimuli doaioster. Fig. 3 gives an example: there are 20 stimuli, each one
vary enough on that feature, because this characteristic is dmeing one cluster. The procedure ends with all the stimuli being
related with other dimensions, or because it was relevant omhembers of a single cluster—cluster 39.

to a subset of subjects. The characteristics found by the algoHow the similarity matrix is updated at each stage of the tree
rithm are usually only a part of a much longer list of featuress determined by the joining algorithm. There are many possible
Therefore, one useful role of MDS is to indicate which particeriteria for deciding how to merge clusters. Some of the sim-

ular features are important. plest methods useearest neighbor techniguehere the first
_ two objects combined are those that have the smallest distance
B. Weighted MDS between them. At every step, the distance between two clusters

WMDS analyzes several similarity matrices, one for each ¥tobtained as the distance between their closest two points. An-
K subjects. In the WMDS mode#; ;. indicates the similarity Other commonly used technique is thethest neighbor tech-
between stimuli and j, as judged by the subjeét The no- hiquewhere the distance between two clusters is obtained as
tion of “individual taste” is incorporated into the model througfhe distance between their furthest points. €hatroidmethod
weightswy, for each subjedt = 1, - - -, K and each dimension calculates the distances between two clusters as the distance be-
[=1,---, L. Justas in CMDS, WMDS determines the configiween their means. Note that, since the merging of clusters at
uration of pointsX, called thegroup stimulus spacé{owever, each step depends on the distance measure, different distance
in order to find the best possible configuration, WMDS does nfteasures can resultin different clustering solutions for the same
use distances among the points in the group space. InsteadCfgptering method [14].
each subject it creates a new configuratiak, and the dis- Clustering techniques are often used in combination with
tances in this configuration are used for finding an optimal sdDS, to clarify the dimensions and interpret the neighbor-
lution. A configuration for each subject is made by altering thaoods in an MDS configuration. However, in the same way
group Configuration space according to the We|ghj[;@ A|ge_ as with the Iabeling of the dimensions in the MDS algorithm,
braically, givenz;; (projection of theith point along dimension interpretation of the clusters is usually done subjectively and
1) from the group space, the points for subjeetre obtained as Strongly depends on the quality of the data.

Titk = / Wik - T4l )] IV. EXPERIMENTAL SETUP AND DATA ANALYSIS

Asin the CMDS, the WMDS data analysis problem can be surft: Seléction of Stimuli
marized as follows: We used 25 patterns from an interior design catalog. Twenty
patterns were used in the actual study. Five patterns were used as

f(Ar) =Di + Ey @ a “warm-up” before each trial. This allowed the subjects to get

comfortable with the testing procedure and to sharpen their own

understanding of similarity. The digitized version of the 20 pat-

)7 ) terns selected are displayed in Fig. 1. We selected patterns that
capture a variety of different image features and their combina-

In WMDS, the formula for stress is based on the squared dians. As previously mentioned, the selection of stimuli is cru-

tances calculated from eachKfindividual similarity matrices Cial for MDS. Since we postulated that visual similarity needs to
be modeled by a higher number of dimensions, it was vital for

§:) — diin ]2 this experiment to select the stimuli so that there is sufficient
[f( Uk) Uk] L . . .
variation of potential dimensions.

whereDy, containsd?jk as its elements and

T,

dink = (xi —x;)Wi(xi — x;

1 i Zj
fStress(A, Xy, ) = K zk: >0 Fléign)?

(10) B. Subjects and Ranking Procedure

Twenty-eight subjects (15 male and 13 female) participated
in the study. They were selected from the staff members at Bell

Given a similarity matrix, hierarchical cluster analysis (HCA)abs with no background in image processing. The subjects had
organizes a set of stimuli into similar units [14]. Therefore, HCA mixture of technical and nontechnical background. Their ages
helps us discover the rules and the hierarchy we use in judgirggged from 20 to 70. All the subjects had full color perception,
similarity and pattern matching. This method starts from theat is, there were no instances of partial or full color-blindness.
stimulus set to build a tree. Before the procedure begins, allThe subjects were not familiar with the input data. They were
stimuli are considered as separate clusters, hence there arprasented with all 190 possible pairs of stimuli. For each pair,
many clusters as there are stimuli. The tree is formed by sube subjects were asked to rate the degree of overall similarity
cessively joining the most similar pairs of stimuli into new clusen a scale ranging from 0 for “very different” to 100 for “very
ters. As the first step, two stimuli are combined into a singksmilar.” There were no instructions concerning the characteris-
cluster. Then, either a third stimulus is added to that clust¢ics on which these similarity judgments were to be made since

IIl. HIERARCHICAL CLUSTER ANALYSIS
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1 2 3 4 5

6 7 8 9 10
11 12 13 14 15
16 17 18 19 20

Fig. 1. Pattern set used in the experiment. They are obtained from an interior design catalog. Twenty were selected capturing a variety ohtlifiesent fe
Another five were used as a “warm-up” in the study.

this was the very information we were trying to discover. The CMDS was performed in two and three dimensions, and
order of presentation was different for each subject and was §¢MDS was performed in two, three, four, five and six dimen-

termined through the use of a random number generator. Thisns. We used the built-in MDS functions from the S+ and

was done to minimize the effect on the subsequent ratings$¥pss packages [31], [32].

both the same presentation order for all the subjects (group efThere are important reasons why WMDS is used with higher
fect) as well as the presentation order for one subject (individygimper of dimensions. For WMDS, in most cases coordinate

effect). axes are meaningful. CMDS, since it cannot be rotated, yields

Atthe end of experiment, half of the subjects were presentggfiq rations where axes of the space are not necessarily mean-

with pairs they thought the most similar, and asked to explai'rrl]gful. Therefore, to label and interpret the dimensions, we first

Have to discover their orientation. As we go to higher-dimen-
sional space. this becomes almostimpossible due to our inability
C. Data Analysis to visualize the configuration. Furthermore, due to the weighted

The first step in the data analysis was to compute the me%HC“dean model, WMDS accommodates very large differences

similarity rating for each of 190 pairs. These mean ratings wefgong t_he 'nd'V'dl_Ja_l ratings, and even very different data from
arranged into a similarity matri (given in Table 1) to be an WO Subjects can fit into the same space. o
input to CMDS. Also, WMDS procedure was applied to the set YWhen using MDS in psychophysical experiments, certain is-
of 28 individual similarity matrices. Note that in our experimergt€S néed to be addressed. First, for each individual, the scale
subjects’ rankings represent similarities. However, since M Nitially nonlinear. For example, if a subject ranks the first
methods are based on the idea that the scores are proportiBﬁéﬂ of patterns as 90, but the second pair looks twice as sim-

to distances, it was necessary to preprocess the collected 4&fa©N OUr scale it must be given a rating between 90 and 100.
according to the following relation: Typically, this problem is dealt with by normalizing the data.

However, we observed that the nonlinearity disappeared after
dissimilarity = 100 — similarity. (11) the subject's inner scale stabilized. This is why we performed a

pretation of the MDS configurations.
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TABLE |
SIMILARITY MATRIX A OBTAINED BY AVERAGING THE ORIGINAL INDIVIDUAL RATINGS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 - 82.187.8 83.3 77.4 71.4 50.4 86.5 94.4 67.9 86.0 84.9 98.4 93.5 98.9 98.1 94.8 96.4 94.2 97.5
2 82.1 - 65.4 55.5 59.2 70.6 85.0 94.4 97.0 85.1 39.9 79.8 91.4 88.6 95.1 85.5 92.1 91.5 95.0 65.9
3 87.8 654 - 559 727 71.2 89.4 82.0 86.7 92.2 92.5 91.1 95.2 96.9 32.0 88.4 92.4 87.3 90.6 90.9
4 83.3 55.5 559 - 48.8 60.7 84.0 934 94.5 723 60.2 69.5 78.9 80.7 92.9 83.4 92.6 90.5 95.2 67.8
5 774 592 727 48.8 - 57.2 73.9 91.7 97.2 74.8 59.8 80.4 87.8 79.6 93.1 93.8 94.8 95.7 96.0 73.8
6 71.4 70.6 71.2 60.7 57.2 - 69.2 83.8 95.5 76.6 88.0 86.0 95.9 90.8 95.1 92.0 90.0 94.5 90.3 91.8
7 50.4 85.0 89.4 84.0 739 69.2 - 87.4 97.5 80.9 88.5 852 98.8 859 98.1 97.7 94.1 96.6 93.4 97.9
8 86.5 94.4 82.0 93.4 91.7 83.8 874 - 67.1 86.4 90.2 90.2 69.0 65.8 63.9 89.3 87.6 80.0 87.3 89.4
9 94.4 97.0 86.7 94.5 97.2 95.5 97.5 67.1 - 83.0 86.4 93.2 64.0 90.1 57.9 91.8 89.8 85.9 84.0 85.6
10 67.9 85.1 92.2 72.3 74.8 76.6 80.9 86.4 83.0 - 53.0 69.6 93.4 79.0 95.2 83.6 86.2 92.4 93.7 774
11 86.0 39.9 92.5 60.2 59.8 88.0 88.5 90.2 86.4 53.0 - 56.2 84.8 72.6 88.1 77.9 86.8 92.3 96.1 66.4
12 84.9 79.8 91.1 69.5 80.4 86.0 85.2 90.2 93.2 69.6 56.2 - 68.9 659 93.1 78.6 89.1 91.9 94.2 90.3
13 98.4 91.4 95.2 78.9 87.8 95.9 98.8 69.0 64.0 93.4 84.8 68.9 - 56.1 56.2 82.6 93.3 76.5 79.1 76.3
14 93.5 88.6 96.9 80.7 79.6 90.8 85.9 65.8 90.1 79.0 72.6 65.9 56.1 - 80.6 76.9 86.0 86.8 87.8 80.7
15 98.9 95.1 32.0 92.9 93.1 95.1 98.1 63.9 57.9 95.2 88.1 93.1 56.2 80.6 - 84.9 88.8 77.1 75.5 885
16 98.1 85.5 88.4 83.4 93.8 92.0 97.7 89.3 91.8 83.6 77.9 78.6 82.6 76.9 849 - 60.6 67.7 72.2 65.0
17 94.8 92.1 92.4 92.6 94.8 90.0 94.1 87.6 89.8 86.2 86.8 89.1 93.3 86.0 83.8 60.6 - 30.6 70.8 73.8
18 96.4 91.5 87.3 90.5 95.7 94.5 96.6 80.0 85.9 92.4 92.3 91.9 76.5 86.8 77.1 67.7 30.6 - 51.7 58.3
19 94.2 95.0 90.6 95.2 96.0 90.3 93.4 87.3 84.0 93.7 96.1 94.2 79.1 87.8 75.5 72.2 70.8 51.7 - 66.8
20 97.5 65.9 90.9 67.8 73.8 91.8 97.9 89.4 85.6 77.4 66.4 90.3 76.3 80.7 88.5 65.0 73.8 58.3 66.8 -

TABLE I
Two-DIMENSIONAL CONFIGURATION OBTAINED AS A RESULT OFCMDS. EACH COLUMN CONTAINS THE COORDINATES OF AGIVEN STIMULUS. NOTE THAT THE
OUTPUT OF THECMDS IS ON A DIFFERENT SCALE THAN THE OUTPUTS OFWMDS GIVEN IN TABLES III-V

| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
11337 332 85 334 407 343 326 -21.0 -297 226 243 148 -309 7.9 -367 -247 -306 -432 -39.1 -141
2 |-162 152 -30.1 82 1.6 -124 -164 -365 -33.1 82 229 106 -150 -1.0 -405 331 308 224 115 367

warm-up experiment for each subject. Moreover, we performads still substantial. The stress values for the three-, four-, five-,

several normalization of the individual ratings: and six-dimensional configurations were 0.26, 0.20, 0.18, and
1) normalization with respect to zero mean and unit var{-16, respectively. We stopped at six dimensions since further
ance; increase did not result in a noticeable decrease of the stress

2) normalization to [0, 1] range; value. Also, although we postulated that a fair number of di-
3) normalization to a maximum magnitude of 1. mensions is needed to model the human notion of pattern sim-

The fact that the results stayed the same for all the normalizatiHity, we used only a few. This is because some of these di-
confirms our hypothesis. Secondly, the algorithms we use fgensions are individual, as well as because many of them are
minimization in CMDS or WMDS do not guarantee a globa'llsed only at a higher level of judgment. In other words, some
minimum [13]. However, the fact the extracted attributes remafmensions are subject dependent and some are domain depen-
stable (see Section V) over all solutions indicates that a loc#nt. Therefore, our aim was to extract only the very basic per-
minimum we found is in fact the global minimum. ceptual attributes, allowing us to construct a general model for
Finally, hierarchical cluster analysis aided us in verifying th€olor pattern matching. Tables II-V give the two-, three-, four-,
results obtained with the MDS. Moreover, the HCA techniqu%nd five-dimensional configurations. Since the output of the
expresses the structure and groupings in the similarity math0S gives us only the configuration of pointsi+dimensional
hierarchically; therefore, it allowed us to establish the rules agface, without the associated dimensions, the interpretation of

the hierarchy in which the MDS dimensions are combined the dimensions is left to us. We used the subjects’ explanations
judging similarity. as an aid in accomplishing this.

V. MULTIDIMENSIONAL SCALING RESULTS THE MOST A. Interpretation of the 2-D Solution

IMPORTANT DIMENSIONS OFCOLOR PATTERNS The 2-D CMDS configuration is shown in Fig. 2. Dimen-

The stress index (4) for the 2-D solution was 0.31, indicatingjons derived from this configuration are 1) presence/absence of
that a higher-dimensional solution is necessary, that is, the eraaominant color (or, as we are going to call it, “the dimension of
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TABLE Il
THREE-DIMENSIONAL CONFIGURATION OBTAINED AS A RESULT OFWMDS. EACH CoLUMN CONTAINS THE COORDINATES OF AGIVEN STIMULUS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1118 063 028 046 085 137 191 -013 -099 080 030 023 -1.54 -053 -131 -088 -043 -1.02 -080 -1.02
2 |08 142 005 147 140 -025 -080 -06 -0.15 -011 121 078 077 048 007 -056 -1.78 -147 -1.79 061
3 1012 029 -1.74 -007 -029 -080 023 -155 -1.63 126 082 134 -026 123 -1.39 136 080 030 -089 091

TABLE IV
FOUR-DIMENSIONAL CONFIGURATION OBTAINED AS A RESULT OFWMDS. EACH COLUMN CONTAINS THE COORDINATES OF AGIVEN STIMULUS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
-1.84 -0.54 -0.06 -0.45 -0.90 -1.15 -190 -0.05 063 -0.88 -0.41 -0.44 135 024 124 108 061 121 106 112
1.05 -1.03 -0.05 -1.49 -141 040 107 064 031 0.11 -1.35 090 -090 -043 -0.15 014 162 1.35 177 -0.75
022 -064 126 -0.10 028 031 032 1.64 188 -1.18 -0.88 -0.60 065 -0.16 1.61 -1.64 -1.30 -0.61 0.01 -1.07
0.18 145 174 084 073 143 -0.11 -1.07 -094 -1.07 -0.50 -1.55 -1.02 -1.92 038 0.19 003 037 048 071

W N -

TABLE V
FIVE-DIMENSIONAL CONFIGURATION OBTAINED AS A RESULT OFWMDS. EACH COLUMN CONTAINS THE COORDINATES OF AGIVEN STIMULUS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
148 080 023 077 118 150 183 -030 -1.37 041 025 028 -145 -020 -1.26 -0.71 -0.6% -1.02 -0.79 -0.93
170 -077 049 -1.47 -129 004 121 095 081 035 -0.89 -095 -1.04 -0.84 0.19 .0.82 134 106 101 -1.08
-0.47 -0.68 -1.03 -048 -0.75 059 068 -049 -1.72 -0.81 -1.12 0.6 -033 098 -090 178 122 134 176 028
0.14 143 -035 002 -046 -0.72 -0.36 -1.96 -022 120 118 -0.16 -1.20 -1.26 -1.23 091 142 068 -052 144
-0.65 093 200 079 045 096 -0.51 -0.56 -0.46 -1.58 -096 -1.96 -039 -1.32 118 014 -0.17 051 094 068

wn B W N e

overall color”) and 2) color purity. It is interesting that both di- 3) Neighborhood 3:(Patterns 16, 17, 18, 19, and 20) con-

mensions are purely color based, indicating that, at the coardests patterns with similar color distributions. This cluster con-

level of judgment, people primarily use color to judge similaritgists of different multicolored patterns. Still, all the patterns have

and matching. As will be seen later, these dimensions remairathost identical color histograms. It is interesting that although

in all solutions. Moreover, the 2-D configuration strongly reeompletely different, these patterns were judged as very sim-

sembles one of the perpendicular projections in the three-, foudlar by almost all subjects. Another common feature for patterns

and five-dimensional solutions. The same holds for all three dii+ this group is the existence and repetition of a primitive ele-

mensions from the 3-D solution, indicating that these featuregent. However, due to a complex interaction of many colors,

could be the most general in human perception. the placement rule or a dominant orientation can hardly be de-
Although insufficient, the 2-D solution was very helpful. Fotected. Hence, these patterns are perceived as “busy,” “heavy,”

example, neighborhoods in the 2-D space have meanings assw “complex,” rather than “repetitive,” “uniform,” or “direc-

ciated with common similarity features and can be used to bettemal.”

interpret high-dimensional configurations. This is mainly be- 4) Neighborhood 4:(Patterns 1, 6, and 7) As opposed to the

cause the neighborhood information is obtained primarily fropatterns from Neighborhood 3, patterns from this group are truly

small distances, thus revealing other patterns in the data. Foamdom; they possess no obvious structuring element. Hence,

major similarity categories emerged from the neighborhood ithiey can also be seen as complex, not due to the complex color

formation. distribution, but rather due to the complexity of the spatial pat-
1) Neighborhood 1:(Patterns 2, 4, 5, 10, 11, and 12) are ditern generation.

rectional patterns characterized by a single dominant local ori-Patterns 3 and 14 were left isolated and could be annexed to

entation within each portion of that pattern. more than one neighborhood (Neighborhood 2 would be a good
2) Neighborhood 2:(Patterns 8, 9, 13, and 15) are stronglghoice).

uniform, repetitive patterns, obtained by replicating the primi-

tive element according to strongly determined geometric plagg- |nterpretation of the Higher-Dimensional Solutions

ment rules. The quality that separates this group from Neigh-

borhood 1 (which can also be seen as uniform and repetitive) i&0th for CMDS and WMDS, the same three dimensions

directionality. Namely, no pattern from Neighborhood 2 has@merged from 3-D configurations. They are

single preferred direction and all are equally repetitive in both 1) overall color;

horizontal and vertical directions. 2) color purity;
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Fig. 2. Two-dimensional CMDS configuration. Horizontal axis represents the dimension of color purity whereas the vertical axis is the dimensioardf d
color. Four major similarity categories emerged from the neighborhoods in this configuration: 1) directional patterns characterized by ansiagtel@zal
orientation (Neighborhood 1); 2) strongly uniform, repetitive patterns (Neighborhood 2); 3) patterns with similar color distributions (NeahBgrand 4)
random patterns (Neighborhood 4). These neighborhoods were useful in determining the rules people use in judging similarity.

3) regularity and placement. an extra dimension from the six-dimensional (6-D) space con-
The four-dimensional (4-D) WMDS solution revealed foldribute to the simplification of these concepts and a cleaner inter-
lowing dimensions: pretation of the whole configuration? Although by going from
1) overall color; five to six dimensions stress value is still decreasing, dimen-
2) color purity; sions derived from the 6-D solution were not consistent with
3) regularity and placement; the interpretations above. In fact, the 6-D solution appears to be
4) directionality. unstable and without a reasonable interpretation. This is in ac-

The five-dimensional (5-D) WMDS solution came with th(gordancg with a ruk_e of thumb conne(_:ting the numper of stimuli
same four dominant characteristics with the addition of a oY a@nd dimensionality. [13]. Namely, ifN' > 4L, the interpre-
mension which we called “pattern heaviness.” The addition tgtion of stress is not sensitive A and . On the other hand, as
this dimension did not improve the overall goodness-of-fit sig¢ 98tS Closer tav, great changes can occur and the stress value
nificantly, since it changed from 0.20 (for four dimensions) & NOt @ reliable indicator of the actual number of dimensions.
0.18 (for five dimensions). It appeared that this dimension wagi€refore, the inability to interpret the 6-D configuration can be
used with high weights by a few subjects (mostly women), whifé€ t0 the following factors.
it was irrelevant to most of the others. 1) Stimulus set is too small to allow the higher dimension-

From the grouping of patterns along the five dimensions, we  ality. It could also be that the stimulus set did not vary
conclude that almost each of them represents a complex in- enough on certain characteristics so these characteristics
terplay between the pattern, color, tones, and contrast. Would could not show up as a new dimension.
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2) Actual number of dimensions is smaller than six. In thahent rules (2, 3, 8, 9, 11, and 15), whereas at the opposite end
case, since the 6-D solution used too many input argare nonrepetitive (5 and 7) or nonuniform patterns (19). How-
ments, the configuration adapted itself to the random errever, this dimension does not affect only regularity, uniformity
in the data, preventing us for finding the actual dimerer repetitiveness in terms of the placement of the structural ele-
sions. ment, it also applies to the spatial distribution of color. Hence,

3) Some of the perceptual criteria, although understood a®ng this axis between the patterns 13 and 14 (which have ex-
a single characteristic, may correspond to two or moetly the same geometry but different color scheme and layout)
dimensions, making the whole configuration almost impattern 13 is perceived as more uniform and regular than pattern

possible to interpret. 14. This dimension also reflects the human sensitivity to small
perturbations in placement. For example, although patterns 3
C. Dimensions of Pattern Similarity and 17 follow a similar placement rule, pattern 17 is perceived as
As aresult of the experiment, five important similarity criteridess regular, since the structural elements are slightly displaced
emerged. from the position they would have had in a completely regular

1) Dimension 1—Overall Colorcan also be described inpattern.
terms of the presence/absence of a dominant color. At the neg4) Dimension 4—Color Purity:This dimension arose
ative end of this axis are patterns with an overall impressi@@mehow unexpectedly, but it remained stable in all MDS con-
of a single dominant color (such as 4, 5, 7, 8, 15 in Fig. 1figurations, clustering results, even in the subjects' explanations
This impression is created mostly because the percentage of ohtheir rankings. This dimension divides patterns according to
color is truly dominant. However, a multicolored image can algte degree of their colorfulness. At the negative end are found
create an impression of dominant color. This happens whenpdlle patterns (1 and 10), patterns with unsaturated overtones
the colors within this image are similar, having similar hues b(t), patterns with dominant “sandy” or “earthy” colors (5, 6,
different intensities or saturation. At the positive end of this dand 11). At the positive end are patterns with very saturated
mension are patterns where no single color is perceived as d@nd very pure colors (9, 13, 19, etc.). Hence, this dimension
inant (such as in true multicolored patterns 16, 17, 18, 19, ag@n also be named the dimension of overall chroma or overall
20). Besides the color distribution or color histogram, impresaturation within an image.
sion of overall color is correlated with the spatial properties of 5) Dimension 5—Pattern Complexity and Heavine$sis
color contrast and spatial rules in the primitive element repgimension was the one most difficult to interpret. It showed only
tition. For example, pattern 4 is judged as red by most of tlithe last, 5-D configuration, hence it can be seen as optional.
subjects, although there is the same amount of beige in it. @l$0, as we will show in the next section, it is not used in sim-
the contrary, pattern 3, which has identical amounts of theigsity judging until the very last level of comparison. For that
colors and the same primitive element (stripe) was perceiveghson, we have also named it “a dimension of general impres-
as “without dominant color” mostly because of the high spatiglon”. At the one end of this dimension are patterns that are per-
frequency in the repetition of the structural element. ceived as “light” and “soft” (1, 7, and 10) while at the other

2) Dimension 2—Directionality and OrientatioriThis axis end are patterns described by subjects as “heavy,” “busy,” and
represents the dominant orientation in the edge distribution,“sharp” (2, 3, 5, 17, 18, and 19). According to the grouping of
the dominant direction in the repetition of the structural elemeratterns along this axis and the results of HCA, texture heavi-
The lowest values along this dimension have patterns withnass is determined by one of the following factors: type of the
single dominant orientation, such as stripes and then checkaysrall color (light versus dark), overall chroma (unsaturated
(2, 4, 11, 12, and 13). Midvalues are assigned to patterns wirsus saturated), spatial frequency in the repetition of the struc-
a noticeable but not dominant orientation (5, 10), followed biyral element, and finally color contrast. Hence, this attribute
those patterns where a repetition of the structural elementrédlects pattern values along other four dimensions. Still, it is
performed along two directions (3, 8, 9, and 15). Finally, conpbtained as their Boolean combination, rather than as a linear
pletely nonoriented patterns (1 and 7) and patterns with unifogambination or a simple projection onto a new plane.
distribution of edges or nondirectional placement of the struc-
tural element (17, 18, and 19) are at the positive end of this di-
mension. This dimension highlights the sensitivity of the human
visual system to horizontal and vertical directions [15]. For ex-
ample, although it obviously has a single preferred direction of Fig. 3 shows the ordering of clusters obtained as a result of
45, pattern 16 is not perceived to be as directional as pattethe HCA, whereas Fig. 4 shows the HCA tree, obtained from
2, 4,5, and 11. This dimension also highlights the sensitivithe complete similarity matrix for 20 patterns used in the study.
of the human visual system to small perturbations in directioBy comparing this result to the result of the 2-D MDS shown in
Hence, although one single direction is prominent in both pdfig. 2, there is an excellent correspondence between neighbor-
terns 4 and 20, pattern 20 is perceived as less directional. hoods in the MDS configuration and clusters determined by the

3) Dimension 3—Regularity and Placement Ruld@stis di- HCA. One simple way to confirm the stability of the dimensions
mension describes the regularity in the placement of the struee obtained and their combining rules is to split the original data
tural element, its repetition and uniformity. At the negative enid several ways and to perform separate HCA's for each part. As
of this axis are regular, uniform, and repetitive patterns, whesaggested in [13], we eliminated some of the stimuli from the
the repetition is completely determined by a certain set of plac#gata matrix and determined the HCA trees for the remaining

VI. HIERARCHICAL CLUSTERING RESULTS RULES FOR
JUDGING SIMILARITY
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stimuli. One such solution obtained by eliminating patterns and 3 as being more important, other individuals had just the
11, and 17 is given in Fig. 5. The dimensions we enumeratedposite perception. Hence, individual weights for each user
in the previous section remained stable for various solutions;WMDS were different. Therefore, pattern similarity can not
we thus conclude that the 5-D configuration can be used foe uniquely formulated as a linear combination of attributes.
modeling the similarity metrics of the human visual system. Adowever, each rule can be expressed as a logical combination
a result of the HCA, we derived a list of similarity rules and thflogical OR, AND, XOR, NOT) of the pattern values along
sequence of their application based on the analysis given beltive dimensions involved in it. For example, consider cluster
From the early stages of clustering, we were able to determi2é composed of patterns 4 and 5 in Fig. 3. These patterns
the initial rules used by humans in judging similarity (Rules lhave similar overall color and dominant orientation, thus their
and 2). These were followed by rules emerging from the middialues both along the Dimensions 1 and 2 are very close and
stages (Rules 3 and 4). Finally, at the coarsest level of comptire comparison using Rule 2 is expressed as follows.
ison, we use Rule 5 (top nodes of the HCA tree in Figs. 4 and 5,[Dimensiord(pattern 4)similar to Dimensior(pattern 5)]
or clusters 36-38 in Fig. 3). AND [Dimensio2(pattern 4)similar to Dimensior2(pattern
1) Rule 1: The strongest similarity rule is that efiual pat- 5)].
tern. Regardless of color, two textures with exactly the same pat-Furthermore, the rule of the equal pattern (being the strongest
tern such as pairs (17, 18), (2, 11), and (3, 15) are always judgete in the hierarchy of rules) suggests that human perception of
to be the most similar. Hence, this rule concerns the identity pattern is unrelated to the color content of an image. Namely,
Dimensions 3 and 2 (pattern regularity and directionality). Hovequal patterns are seen as the most similar, regardless of their
ever, once two patterns are perceived as similar along these titor attributes, indicating the pattern-color separability. This
dimensions, color comes into play. The ordering of clusters abservation is consistent with the data reported in [33] on the
given in Fig. 3 illustrates this rule: the first three clusters olappearance of colored patterns. Moreover, previously reported
tained are 21, 22, and 23, but their internal ranking is determinedurophysiological studies [34] and perceptual models [28],
by color (Dimensions 1, 4, and 5). demonstrate that the image signal is composed of luminance
2) Rule 2: The second in the hierarchy of rules is the comand a chrominance components, each being processed by
bination of Dimension 1 (dominant color) and Dimension 2 (diseparate pathways.
rectionality). Two patterns that have similar values in both di-
mensions, such as pairs (10, 11), (1, 7), and the triplet (2, 4, @”
are also perceived as similar. ’
3) Rule 3: The third rule concerns either Dimension 2 (di- Having obtained the relevant dimensions of color patterns, we
rectionality) or Dimension 3 (pattern regularity and placemeneed image processing tools to extract and measure them.
rules). Hence, two patterns which are dominant along the samé.) Dimension 1—Overall Color:Since the importance of
direction (or directions) are seen as similar, regardless of theolor is established in many pscychophysical studies there exist
color. One such example is the cluster (12, 13, 14). In the sam&ast number of techniques for extraction of color based in-
manner, seen as similar are patterns with the same placemeribomation. One commonly used approach is based on a color
repetition of the of the structural element, even if the structurhistogram, representing the joint probability distribution of in-
element is not exactly the same (see patterns 8 and 9, or 17,te8sities in the three color channels. The features based on the
and 19). color histogram can be used with various metrics to simulate
4) Rule 4: In the middle of the hierarchy comes the rule ohuman performance in judging image similarity [16], [17]. Be-
dominant color Two multicolored patterns are perceived as sinsides the color histogram, moments of color distribution (such
ilar if they posses the same color distributions regardless of thag mean, variances or higher-order statistics) can also be used as
content, directionality, placement or repetition of a structural etolor features in image matching [18]. Finally, one can use fea-
ement (patterns 16—20). This also holds for patterns that havetines from color codebooks and color sets as quantized versions
same dominant or overall color (patterns 2—6). Hence, this rudéthe three-dimensional (3—D) color space [19], [20]. Note that
concerns only identity along the Dimension 1 (dominant colorthe extraction of color features should be performed in any of the
5) Rule 5: Finally, at the very end of the hierarchy, comegerceptually uniform systems (such@ke Lab) so that metrics
the rule ofgeneral impressiofDimensions 4 and 5). This rule based onl.2 norms adequately describe perceptual differences
divides patterns into “dim,” “smooth,” “earthy,” “romantic,” or among the colors compared.
“pale” (laying at the one end of the corresponding dimension) 2) Dimensions 2 and 3—Directionality, Orientation, Regu-
as opposed to “bold,” “bright,” “strong,” “pure,” “sharp,” “ab- larity, and Placement RulesBesides color information, texture
stract,” or “heavy” patterns laying on the opposite end. This rutirectionality and repetitiveness appear to be among the most
represents the complex combination of color, contrast, satuniaportant features used by humans in distinguishing color pat-
tion and spatial frequency, and therefore applies to patterngerns. This is consistent with the conclusions from the experi-
the highest, abstract level of understanding. mental studies conducted by Rao and Lohse for gray-level tex-
This set of rules represents the basic grammar of pattéumes [11], as well as with the set of features corresponding to
matching. How are we going to apply these rules? Our expdine perceptional criteria detected by Tametal. [10]. Repeti-
iments demonstrated that individuals vary in the importantigeness can be modeled by a primitive element and placement
they attach to each dimension of the stimulus space. Whildes that specify how this element is to be replicated [1]. The
some of the subjects perceived texture-related dimensiongedture of repetitiveness is correlated with regularity, uniformity

How TO MEASURE DIMENSIONS OFCOLOR PATTERNS?
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and nonrandomness; it can thus be assessed by statisticaltlpat- patterns with high values along the Dimensions 1 and 3
rameters calculated at the optimal scale where the repetitivenessild be perceived as “heavy.”
is maximum. The optimal resolution is determined as the oneColor contrast is another important indicator of texture heavi-
with the minimal variance of texture features. In that case, tiness. The simplest way to measure itis througlttimdrast ratio
resolution used contains the information about the size of thenction which is defined as the ratio of luminance between the
primitive element. Moreover, a statistical approach is adequdightestandthe darkestelementsinascene [27]. The contrastratio
for describing nonrepetitive patterns, since the mean value &dAction can be calculated on the entire pattern, or withinthe area
dresses the roughness while the variance represents the dededieing a texture primitive. However, due to the importance of
of nonuniformity. color in image similarity perception, this concept of achromatic
Directionality in patterns can be described in various ways. Foontrast has to be extended to color contrastas well [28]. One con-
example, edge maps at different resolutions contain the inforntiest measure suited to the image similarity problem can be found
tion about both global directionality and dominant local orierin [29]. It starts from multiscale representation of oriented local
tation. Global directionality can be assessed by calculating tbentrast as proposed by Peli [30], and calculates the power-law
statistical parameters (means, variances, and higher-order antrast as a nonlinear difference between the lowpass channels
ments) of angular distribution. Dominant orientation within eacht different levels of the multiresolution pyramid.
portion of texture requires averaging operations within eachlocal
textured region, as suggested by Rao in [21]. A similar concept
can be explored within any orientation sensitive multiresolution Based on a subjective study, we identified the five most rele-
decompositions, such as wavelet and Gabor transforms [22], [28]t dimensions of color patterns:
or decomposition with steereable filters [24]. Texture direction- 1) overall color;
ality and regularity are also among features extracted in Tamura'?) directionality and orientation;
representation [10] motivated by pscychophysiological studiesin3) regularity and placement;
human perception oftexture. This makes Tamura'srepresentatiod) color purity;
very attractive for practical applications involving human inter- 5) complexity and heaviness.
action or human understanding of texture. This representatioMisese categories constitute the basic vocabulary of color patterns.
furtherimproved and implemented in the QBIC [25] and MARSVe also determined the hierarchy of rules governing the use of the
image retrieval systems [26]. dimensionsinthe vocabulary. These rules can be seen asthe basic
3) Dimension 4—Color Purity:To quantify this dimension, grammarofthe color patternlanguage. Ourwork canbe seenasan
we convert the image into thelE HSV color spacéhue, satu- extensionoftheworkbyRaoand Lohtse, whoconductedasimilar
ration, value) where th# coordinate represents the saturatioexperiment in the domain of gray-level textures [11]. They iden-
(purity) of the color. In that case, a histogram of tfiehannel tified three most significant dimensions of gray-level textures:
or its first-, second-, and higher-order moments can be usedépetitive versus nonrepetitive, high-contrast and nondirectional
describe the overall color purity for the particular image. versus low-contrast and directional; granular, coarse and low-
4) Dimension 5—Pattern Complexity and Heavine$is complexity versus nongranular, fine and high-complexity. Al-
dimension is probably the most difficult to capture. At théhoughourresultsapplytothe domainofcolorpatterns,theyseem
simplest level, pattern complexity is perceived as a combinatitmprove findings in [11]. For example, both attributes of regu-
of color contrast, spatial complexity, and spatial frequency larity and directionality within the domain of gray-level textures,
the repetition and placement of the structural element. Hend&ectly translate into our model, as purely pattern—-based Dimen-
patterns with high values of at least one (usually two) of thes@®ns 2 and 3 (directionality, orientation, regularity, and place-
attributes are considered as “heavy”. Unfortunately, each mient rules). Also, the attributes of coarseness and complexity
these attributes is difficult to assess. Spatial complexity affideing parts of the third dimension in the gray-level model) are
spatial frequency in the repetition of the structural elememtcluded in the perception of texture complexity and heaviness
are connected to the structural description of texture. Thias the Dimension 5 in our model). However, it is extremely im-
approach requires an identification of a texture primitiveaasportant to note that although the perception and understanding
group of pixels having certain invariant properties that repeatf these attributes remain the same in both domains, the mecha-
in the given imageTexture primitives may be defined by thenism that creates the perception is very different—hence the def-
color distribution, shape, homogeneity of any local properfgpition of the dimensions is the major distinctions between the
(orientation, second- or higher-order histogram parameters, anddels. For example, in the gray-level world regularity is per-
even micro texture). Once the primitives have been identifiegived through the repetition of the primitive element on the reg-
their placement determines the spatial relationship. The spatidr grid, whereas in the color domain, color features and color
relationship may be expressed in terms of adjacency, closappearance of a pattern are responsible for the regularity as well.
distance, periodicity, etc. However, without prior determination This work was the first partin building the system for matching
of texture primitives, pattern heaviness may be expressed dyd retrieval of color patterns. In the follow-up to this study we
measuring the edge density, runlenghts of maximally connecteale actually implemented a system based on our vocabulary and
pixels or relative extrema density [1]. Another approach towagtammar. The details of the implementation are given in [35].
capturing texture complexity is to consider complexity in termfo measure the dimensions from the vocabulary and implement
of the length of a suitable description or to consider the valud® rules from the grammar, we followed the basic guidelines
along the other four dimensions. For example, it is very likelgutlined in the previous sections. We tested our system on the

VIII. D1scussiON ANDCONCLUSIONS
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following databases: Corel database (2000 images); stones (6QQ]
images); ornaments (110 images); oriental carpets (100 images);
interior design (9000 images); architectural surfaces (500 imrl2
ages); and paintings (600 images). The vocabulary and grammar
proved stable through all of our experiments. (13]

Note that we obtained our experimental set from the databasgy,
of fabrics, hence, there was no meaning attached to any of them.
Inthat way, the hidden dimension of content within animage wa
eliminated (for example, two distinct patterns could be judged a
similar if their meanings are related such as leaves and flowers,
or pebbles and sand, whereas resembling textures such as marble
and lace are perceived as dissimilar since they represent two dh"[]]
ferent things). However, even when we tested our algorithms of8g]
the paintings database in which image content was apparent, t 1%]
vocabularyand grammarremained stable, andtheresults were ex-
cellent. Still, when building any system dealing with image sim-[20]
ilarity, one should be aware of the importance of image ContenLZ
and additional studies addressing thisissue need to be conduct c}]

We expect that the color pattern understanding model pre-
sented in this paper will help researchers in image processiné?l
computer vision, and computer graphics to build effective
and elegant algorithms for texture analysis, manipulation, ang3]
display. Moreover, we expect that this model can be used in the
development of more natural, human-like interfaces betweepy,
users and machine.

15]
6]
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