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Aleksandra Mojsilovic´, Member, IEEE, Jelena Kovăcević, Senior Member, IEEE, Darren Kall,
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Abstract—We determine the basic categories and the hierarchy
of rules used by humans in judging similarity and matching of
color patterns. The categories are

1) overall color;
2) directionality and orientation;
3) regularity and placement;
4) color purity;
5) complexity and heaviness.

These categories form the pattern vocabulary which is governed
by the grammar rules. Both the vocabulary and the grammar
were obtained as a result of a subjective experiment. Experimental
data were interpreted using multidimensional scaling techniques
yielding the vocabulary and the hierarchical clustering analysis,
yielding the grammar rules. Finally, we give a short overview of
the existing techniques that can be used to extract and measure
the elements of the vocabulary.

Index Terms—Color patterns, image databases, retrieval.

I. INTRODUCTION

T OGETHER with color and shape, texture is the most im-
portant visual category in human perception, and has thus

been extensively studied in computer vision, image processing
and psychophysics [1]–[12]. By texture, we denote a visual phe-
nomenon (such as grass, marble, brick) caused by the repeti-
tion of a structural element according to a certain rule. Textures
generated by humans (such as textiles, ornaments or tiles) are
usually calledpatterns. To specify that a pattern contains color,
we will call it a color pattern. Unfortunately, our understanding
of color textures and color patterns is very modest compared
to our understanding of other visual phenomena such as color,
contrast, or even gray-level textures or gray-level patterns. That
is mainly due to the fact that the basic dimensions of color pat-
terns have not yet been identified, a standardized vocabulary for
addressing their important characteristics does not exist, nor is
there a grammar defining how these dimensions are to be com-
bined. Previous investigations in this field concentrated mainly
on gray-level natural textures [9]–[11]. Particularly interesting
is work of Rao and Lohse [11]: their research focused on how
people classify textures in meaningful, hierarchically-structured
categories, identifying relevant features used in the perception
of gray-level textures. Similarly, here we determine the basic
categories—vocabulary—used by humans in judging similarity
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of color patterns, their relative importance and relationships, as
well as the hierarchy of rules—grammar. The attributes we ex-
tract are applicable to a broad range of textures, starting from
simple patterns, all the way up to complex, high-level visual tex-
ture phenomena.

The paper is organized as follows. The first two sections
present the basic concepts of multidimensional scaling and
hierarchical clustering techniques used in the study for the
analysis of subjective data. The third section describes the
methodology of the data collection and analysis. Results
are presented in Sections IV and V. A review of the feature
extraction techniques for measuring the determined dimensions
is given in Section VI. Discussion, conclusions and plans for
further research are found in Section VII.

II. M ULTIDIMENSIONAL SCALING

Multidimensional scaling(MDS) is a set of mathematical
techniques that enable researchers to uncover the hidden struc-
tures in data [13]. MDS is designed to analyze distance-like
data calledsimilarity or proximitydata, that is, data indicating
the degree of similarity between two items. Traditionally,
similarity data is obtained via subjective measurement. It
is acquired by asking people to judge similarity of pairs of
objects—stimuli—on some scale. The obtained similarity
value connecting stimulus to stimulus is denoted by .
Similarity values are arranged in asimilarity matrix , usually
by averaging obtained from all measurements. The aim
of MDS is to place each stimulus from the input set into an

-dimensionalstimulus space(the dimensionality of the space,
, is also determined as the result of the experiment). The

points (note that this is a row vector)
representing each stimulus are arranged so that the Euclidean
distances between each pair of points in the stimulus space
match as closely as possible the subjective similarities
between corresponding pairs of stimuli.

Here, we give a brief overview of two particular types of
MDS used in this work:classical MDS(CMDS) andweighted
MDS (WMDS, also called INDSCAL). CMDS analyzes only
one similarity matrix obtained by averaging values from all the
subjects. An important characteristic of CMDS is that once a
configuration of points is obtained, it can be rotated, implying
that the dimensions are not meaningful. Thus, when interpreting
the results, higher-dimensional CMDS soon becomes imprac-
tical. On the other hand, WMDS analyzes several similarity ma-
trices, one for each subject. This model assumes that individ-
uals vary in the importance they attach to each dimension of the
stimulus space. While one individual may perceive one dimen-
sion as being more important than another, another individual
may have the opposite perception. In that way WMDS accounts
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for individual differences in human responses. As opposed to
CMDS, once the configuration is obtained, it cannot be rotated
[31]. However, the stability of configuration depends heavily on
the accuracy of the model; if the model fits that data well, the
dimensions are meaningful which makes our job of interpreting
them much easier.

In the rest of this paper, we will use the following notation.
index denoting stimulus;
index denoting subject;
index denoting dimension;
similarity value attached to the pair of
stimuli obtained from all the sub-
jects;

similarity matrix having as its
elements (diagonal elements are ignored);
row vector in -dimensional space con-
taining coordinates of the stimulusin that
space;
projection of theth point (stimulus) along
dimension ;

matrix containing as its elements
(group configuration matrix);
Euclidean distance between and ;

matrix containing as its ele-
ments;
similarity value attached to the pair of
stimuli obtained from subject;

similarity matrix having as its
elements (diagonal elements are ignored);
projection of theth point (stimulus) along
dimension for subject ;

matrix containing as its ele-
ments (individual configuration matrix);
weight subject gives to dimension;

diagonal matrix containing
along the diagonal;
Euclidean distance between and for
subject ;

matrix containing as its ele-
ments.

A. Classical MDS

The central concept of CMDS is that the distancebetween
points in an -dimensional space will have the strongest pos-
sible relation to the similarities from a single matrix . The
similarities are averaged original ratings obtained as the result of
the experiment. The CMDS data analysis problem can be sum-
marized as follows:

(1)

where contains as its elements and

(2)

In other words, —the original similarity data—are equal,
by transformation , to the transformed similarity data, which
in turn are equal to the obtained squared Euclidean distances

plus error . CMDS solves for and transformation so that
the norm of is minimized.

Most often, is chosen to be linear

(3)

where, for a given configuration, valuesand must be discov-
ered using numerical optimization.

CMDS requires to be defined before going into a computa-
tional procedure. Therefore, given an initial configuration,
one first finds the best , yielding (the question of how to
choose the initial configuration is addressed in [12]). Once the
best is found, we then search for the best configuration of
points in the stimulus space and iterate. We repeat this procedure
for different 's until further increase in the number of dimen-
sions does not bring a reduction in the error functions. Finally,
we are left with the task of interpreting and labeling the dimen-
sions we have. Note that the computational procedure works on
the points in the configuration, not on distances.

We now explain this in more detail. CMDS starts by defining
an error function (also calledgoodness-of-fit, objective func-
tion). For any given set of data and for any given configuration,
the error function yields a single number which shows how well
the data fit into the configuration. One commonly used error
function is referred to as “stress formula 1” or “ Kruskal's stress
formula.” As explained earlier, we first try to find the best
given a configuration . CMDS does that by minimizing the
error function. In principle, we could find the bestfor any
given ; however, since is linear, the choice of is not cru-
cial and we start from any to obtain [13]. The error (stress)
formula used here is

stress stress (4)

where

stress (5)

Once the objective function is obtained, we find the “best”
configuration, that is, the configuration which yields the
lowest possible value of the error function

stress stress (6)

One widely used procedure for finding the best configuration
is the method of steepest descent [13]. Once the configuration
is obtained, it is important how it is interpreted. A possible way
to interpret each dimension in the resulting configuration is to
examine peripheral objects, that is, objects that lay at the out-
ermost edges of configuration. Then, it has to be established
what is common to these objects and their nearest neighbors
and how they differ from the stimuli at the opposite edges of the
configuration. Since the configuration is based on the distances
between the points (which do not change with the rotation of
the space), rotation in CMDS is permissible leading to drastic
changes in the projections. Consequently, it is possible that the
coordinate axes which we could not interpret directly can be ro-
tated revealing their true meaning. Usually, we aim to interpret
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each dimension of the space. However, the number of dimen-
sions does not necessarily reflect all the relevant characteristics.
Also, although a particular feature exists in the stimulus set, it
may not contribute strongly enough to become visible as a sep-
arate dimension. This can be because the selected stimuli do not
vary enough on that feature, because this characteristic is cor-
related with other dimensions, or because it was relevant only
to a subset of subjects. The characteristics found by the algo-
rithm are usually only a part of a much longer list of features.
Therefore, one useful role of MDS is to indicate which partic-
ular features are important.

B. Weighted MDS

WMDS analyzes several similarity matrices, one for each of
subjects. In the WMDS model, indicates the similarity

between stimuli and , as judged by the subject The no-
tion of “individual taste” is incorporated into the model through
weights , for each subject and each dimension

. Just as in CMDS, WMDS determines the config-
uration of points , called thegroup stimulus space. However,
in order to find the best possible configuration, WMDS does not
use distances among the points in the group space. Instead, for
each subject it creates a new configuration , and the dis-
tances in this configuration are used for finding an optimal so-
lution. A configuration for each subject is made by altering the
group configuration space according to the weights. Alge-
braically, given (projection of the th point along dimension
) from the group space, the points for subjectare obtained as

(7)

As in the CMDS, the WMDS data analysis problem can be sum-
marized as follows:

(8)

where contains as its elements and

(9)

In WMDS, the formula for stress is based on the squared dis-
tances calculated from each of individual similarity matrices

Stress

(10)

III. H IERARCHICAL CLUSTER ANALYSIS

Given a similarity matrix, hierarchical cluster analysis (HCA)
organizes a set of stimuli into similar units [14]. Therefore, HCA
helps us discover the rules and the hierarchy we use in judging
similarity and pattern matching. This method starts from the
stimulus set to build a tree. Before the procedure begins, all
stimuli are considered as separate clusters, hence there are as
many clusters as there are stimuli. The tree is formed by suc-
cessively joining the most similar pairs of stimuli into new clus-
ters. As the first step, two stimuli are combined into a single
cluster. Then, either a third stimulus is added to that cluster,

or two other clusters are merged. At every step, either indi-
vidual stimulus is added to the existing clusters, or two ex-
isting clusters are merged. Splitting of clusters is forbidden. The
grouping continues until all stimuli are members of a single
cluster. Fig. 3 gives an example: there are 20 stimuli, each one
being one cluster. The procedure ends with all the stimuli being
members of a single cluster—cluster 39.

How the similarity matrix is updated at each stage of the tree
is determined by the joining algorithm. There are many possible
criteria for deciding how to merge clusters. Some of the sim-
plest methods usenearest neighbor technique, where the first
two objects combined are those that have the smallest distance
between them. At every step, the distance between two clusters
is obtained as the distance between their closest two points. An-
other commonly used technique is thefurthest neighbor tech-
niquewhere the distance between two clusters is obtained as
the distance between their furthest points. Thecentroidmethod
calculates the distances between two clusters as the distance be-
tween their means. Note that, since the merging of clusters at
each step depends on the distance measure, different distance
measures can result in different clustering solutions for the same
clustering method [14].

Clustering techniques are often used in combination with
MDS, to clarify the dimensions and interpret the neighbor-
hoods in an MDS configuration. However, in the same way
as with the labeling of the dimensions in the MDS algorithm,
interpretation of the clusters is usually done subjectively and
strongly depends on the quality of the data.

IV. EXPERIMENTAL SETUP AND DATA ANALYSIS

A. Selection of Stimuli

We used 25 patterns from an interior design catalog. Twenty
patterns were used in the actual study. Five patterns were used as
a “warm-up” before each trial. This allowed the subjects to get
comfortable with the testing procedure and to sharpen their own
understanding of similarity. The digitized version of the 20 pat-
terns selected are displayed in Fig. 1. We selected patterns that
capture a variety of different image features and their combina-
tions. As previously mentioned, the selection of stimuli is cru-
cial for MDS. Since we postulated that visual similarity needs to
be modeled by a higher number of dimensions, it was vital for
this experiment to select the stimuli so that there is sufficient
variation of potential dimensions.

B. Subjects and Ranking Procedure

Twenty-eight subjects (15 male and 13 female) participated
in the study. They were selected from the staff members at Bell
Labs with no background in image processing. The subjects had
a mixture of technical and nontechnical background. Their ages
ranged from 20 to 70. All the subjects had full color perception,
that is, there were no instances of partial or full color-blindness.

The subjects were not familiar with the input data. They were
presented with all 190 possible pairs of stimuli. For each pair,
the subjects were asked to rate the degree of overall similarity
on a scale ranging from 0 for “very different” to 100 for “very
similar.” There were no instructions concerning the characteris-
tics on which these similarity judgments were to be made since
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Fig. 1. Pattern set used in the experiment. They are obtained from an interior design catalog. Twenty were selected capturing a variety of different features.
Another five were used as a “warm-up” in the study.

this was the very information we were trying to discover. The
order of presentation was different for each subject and was de-
termined through the use of a random number generator. This
was done to minimize the effect on the subsequent ratings of
both the same presentation order for all the subjects (group ef-
fect) as well as the presentation order for one subject (individual
effect).

At the end of experiment, half of the subjects were presented
with pairs they thought the most similar, and asked to explain
why. Their explanations were used later as an aid in the inter-
pretation of the MDS configurations.

C. Data Analysis

The first step in the data analysis was to compute the mean
similarity rating for each of 190 pairs. These mean ratings were
arranged into a similarity matrix (given in Table I) to be an
input to CMDS. Also, WMDS procedure was applied to the set
of 28 individual similarity matrices. Note that in our experiment
subjects' rankings represent similarities. However, since MDS
methods are based on the idea that the scores are proportional
to distances, it was necessary to preprocess the collected data
according to the following relation:

dissimilarity similarity (11)

CMDS was performed in two and three dimensions, and
WMDS was performed in two, three, four, five and six dimen-
sions. We used the built-in MDS functions from the S+ and
SPSS packages [31], [32].

There are important reasons why WMDS is used with higher
number of dimensions. For WMDS, in most cases coordinate
axes are meaningful. CMDS, since it cannot be rotated, yields
configurations where axes of the space are not necessarily mean-
ingful. Therefore, to label and interpret the dimensions, we first
have to discover their orientation. As we go to higher-dimen-
sional space. this becomes almost impossible due to our inability
to visualize the configuration. Furthermore, due to the weighted
Euclidean model, WMDS accommodates very large differences
among the individual ratings, and even very different data from
two subjects can fit into the same space.

When using MDS in psychophysical experiments, certain is-
sues need to be addressed. First, for each individual, the scale
is initially nonlinear. For example, if a subject ranks the first
pair of patterns as 90, but the second pair looks twice as sim-
ilar, on our scale it must be given a rating between 90 and 100.
Typically, this problem is dealt with by normalizing the data.
However, we observed that the nonlinearity disappeared after
the subject's inner scale stabilized. This is why we performed a
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TABLE I
SIMILARITY MATRIX � OBTAINED BY AVERAGING THE ORIGINAL INDIVIDUAL RATINGS

TABLE II
TWO-DIMENSIONAL CONFIGURATION OBTAINED AS A RESULT OFCMDS. EACH COLUMN CONTAINS THE COORDINATES OF AGIVEN STIMULUS. NOTE THAT THE

OUTPUT OF THECMDS IS ON A DIFFERENTSCALE THAN THE OUTPUTS OFWMDS GIVEN IN TABLES III–V

warm-up experiment for each subject. Moreover, we performed
several normalization of the individual ratings:

1) normalization with respect to zero mean and unit vari-
ance;

2) normalization to [0, 1] range;
3) normalization to a maximum magnitude of 1.

The fact that the results stayed the same for all the normalization
confirms our hypothesis. Secondly, the algorithms we use for
minimization in CMDS or WMDS do not guarantee a global
minimum [13]. However, the fact the extracted attributes remain
stable (see Section IV) over all solutions indicates that a local
minimum we found is in fact the global minimum.

Finally, hierarchical cluster analysis aided us in verifying the
results obtained with the MDS. Moreover, the HCA technique
expresses the structure and groupings in the similarity matrix
hierarchically; therefore, it allowed us to establish the rules and
the hierarchy in which the MDS dimensions are combined in
judging similarity.

V. MULTIDIMENSIONAL SCALING RESULTS: THE MOST

IMPORTANT DIMENSIONS OFCOLOR PATTERNS

The stress index (4) for the 2-D solution was 0.31, indicating
that a higher-dimensional solution is necessary, that is, the error

was still substantial. The stress values for the three-, four-, five-,
and six-dimensional configurations were 0.26, 0.20, 0.18, and
0.16, respectively. We stopped at six dimensions since further
increase did not result in a noticeable decrease of the stress
value. Also, although we postulated that a fair number of di-
mensions is needed to model the human notion of pattern sim-
ilarity, we used only a few. This is because some of these di-
mensions are individual, as well as because many of them are
used only at a higher level of judgment. In other words, some
dimensions are subject dependent and some are domain depen-
dent. Therefore, our aim was to extract only the very basic per-
ceptual attributes, allowing us to construct a general model for
color pattern matching. Tables II–V give the two-, three-, four-,
and five-dimensional configurations. Since the output of the
MDS gives us only the configuration of points in-dimensional
space, without the associated dimensions, the interpretation of
the dimensions is left to us. We used the subjects' explanations
as an aid in accomplishing this.

A. Interpretation of the 2-D Solution

The 2-D CMDS configuration is shown in Fig. 2. Dimen-
sions derived from this configuration are 1) presence/absence of
a dominant color (or, as we are going to call it, “the dimension of
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TABLE III
THREE-DIMENSIONAL CONFIGURATION OBTAINED AS A RESULT OFWMDS. EACH COLUMN CONTAINS THE COORDINATES OF AGIVEN STIMULUS

TABLE IV
FOUR-DIMENSIONAL CONFIGURATION OBTAINED AS A RESULT OFWMDS. EACH COLUMN CONTAINS THE COORDINATES OF AGIVEN STIMULUS

TABLE V
FIVE-DIMENSIONAL CONFIGURATION OBTAINED AS A RESULT OFWMDS. EACH COLUMN CONTAINS THE COORDINATES OF AGIVEN STIMULUS

overall color”) and 2) color purity. It is interesting that both di-
mensions are purely color based, indicating that, at the coarsest
level of judgment, people primarily use color to judge similarity
and matching. As will be seen later, these dimensions remained
in all solutions. Moreover, the 2-D configuration strongly re-
sembles one of the perpendicular projections in the three-, four-,
and five-dimensional solutions. The same holds for all three di-
mensions from the 3-D solution, indicating that these features
could be the most general in human perception.

Although insufficient, the 2-D solution was very helpful. For
example, neighborhoods in the 2-D space have meanings asso-
ciated with common similarity features and can be used to better
interpret high-dimensional configurations. This is mainly be-
cause the neighborhood information is obtained primarily from
small distances, thus revealing other patterns in the data. Four
major similarity categories emerged from the neighborhood in-
formation.

1) Neighborhood 1:(Patterns 2, 4, 5, 10, 11, and 12) are di-
rectional patterns characterized by a single dominant local ori-
entation within each portion of that pattern.

2) Neighborhood 2:(Patterns 8, 9, 13, and 15) are strongly
uniform, repetitive patterns, obtained by replicating the primi-
tive element according to strongly determined geometric place-
ment rules. The quality that separates this group from Neigh-
borhood 1 (which can also be seen as uniform and repetitive) is
directionality. Namely, no pattern from Neighborhood 2 has a
single preferred direction and all are equally repetitive in both
horizontal and vertical directions.

3) Neighborhood 3:(Patterns 16, 17, 18, 19, and 20) con-
tains patterns with similar color distributions. This cluster con-
sists of different multicolored patterns. Still, all the patterns have
almost identical color histograms. It is interesting that although
completely different, these patterns were judged as very sim-
ilar by almost all subjects. Another common feature for patterns
in this group is the existence and repetition of a primitive ele-
ment. However, due to a complex interaction of many colors,
the placement rule or a dominant orientation can hardly be de-
tected. Hence, these patterns are perceived as “busy,” “heavy,”
and “complex,” rather than “repetitive,” “uniform,” or “direc-
tional.”

4) Neighborhood 4:(Patterns 1, 6, and 7) As opposed to the
patterns from Neighborhood 3, patterns from this group are truly
random; they possess no obvious structuring element. Hence,
they can also be seen as complex, not due to the complex color
distribution, but rather due to the complexity of the spatial pat-
tern generation.

Patterns 3 and 14 were left isolated and could be annexed to
more than one neighborhood (Neighborhood 2 would be a good
choice).

B. Interpretation of the Higher-Dimensional Solutions

Both for CMDS and WMDS, the same three dimensions
emerged from 3-D configurations. They are

1) overall color;
2) color purity;
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Fig. 2. Two-dimensional CMDS configuration. Horizontal axis represents the dimension of color purity whereas the vertical axis is the dimension of dominant
color. Four major similarity categories emerged from the neighborhoods in this configuration: 1) directional patterns characterized by a single dominant local
orientation (Neighborhood 1); 2) strongly uniform, repetitive patterns (Neighborhood 2); 3) patterns with similar color distributions (Neighborhood 3); and 4)
random patterns (Neighborhood 4). These neighborhoods were useful in determining the rules people use in judging similarity.

3) regularity and placement.
The four-dimensional (4-D) WMDS solution revealed fol-

lowing dimensions:

1) overall color;
2) color purity;
3) regularity and placement;
4) directionality.
The five-dimensional (5-D) WMDS solution came with the

same four dominant characteristics with the addition of a di-
mension which we called “pattern heaviness.” The addition of
this dimension did not improve the overall goodness-of-fit sig-
nificantly, since it changed from 0.20 (for four dimensions) to
0.18 (for five dimensions). It appeared that this dimension was
used with high weights by a few subjects (mostly women), while
it was irrelevant to most of the others.

From the grouping of patterns along the five dimensions, we
conclude that almost each of them represents a complex in-
terplay between the pattern, color, tones, and contrast. Would

an extra dimension from the six-dimensional (6-D) space con-
tribute to the simplification of these concepts and a cleaner inter-
pretation of the whole configuration? Although by going from
five to six dimensions stress value is still decreasing, dimen-
sions derived from the 6-D solution were not consistent with
the interpretations above. In fact, the 6-D solution appears to be
unstable and without a reasonable interpretation. This is in ac-
cordance with a rule of thumb connecting the number of stimuli

and dimensionality [13]. Namely, if , the interpre-
tation of stress is not sensitive toand . On the other hand, as

gets closer to , great changes can occur and the stress value
is not a reliable indicator of the actual number of dimensions.
Therefore, the inability to interpret the 6-D configuration can be
due to the following factors.

1) Stimulus set is too small to allow the higher dimension-
ality. It could also be that the stimulus set did not vary
enough on certain characteristics so these characteristics
could not show up as a new dimension.
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2) Actual number of dimensions is smaller than six. In that
case, since the 6-D solution used too many input argu-
ments, the configuration adapted itself to the random error
in the data, preventing us for finding the actual dimen-
sions.

3) Some of the perceptual criteria, although understood as
a single characteristic, may correspond to two or more
dimensions, making the whole configuration almost im-
possible to interpret.

C. Dimensions of Pattern Similarity

As a result of the experiment, five important similarity criteria
emerged.

1) Dimension 1—Overall Color:can also be described in
terms of the presence/absence of a dominant color. At the neg-
ative end of this axis are patterns with an overall impression
of a single dominant color (such as 4, 5, 7, 8, 15 in Fig. 1).
This impression is created mostly because the percentage of one
color is truly dominant. However, a multicolored image can also
create an impression of dominant color. This happens when all
the colors within this image are similar, having similar hues but
different intensities or saturation. At the positive end of this di-
mension are patterns where no single color is perceived as dom-
inant (such as in true multicolored patterns 16, 17, 18, 19, and
20). Besides the color distribution or color histogram, impres-
sion of overall color is correlated with the spatial properties of
color contrast and spatial rules in the primitive element repe-
tition. For example, pattern 4 is judged as red by most of the
subjects, although there is the same amount of beige in it. On
the contrary, pattern 3, which has identical amounts of these
colors and the same primitive element (stripe) was perceived
as “without dominant color” mostly because of the high spatial
frequency in the repetition of the structural element.

2) Dimension 2—Directionality and Orientation:This axis
represents the dominant orientation in the edge distribution, or
the dominant direction in the repetition of the structural element.
The lowest values along this dimension have patterns with a
single dominant orientation, such as stripes and then checkers
(2, 4, 11, 12, and 13). Midvalues are assigned to patterns with
a noticeable but not dominant orientation (5, 10), followed by
those patterns where a repetition of the structural element is
performed along two directions (3, 8, 9, and 15). Finally, com-
pletely nonoriented patterns (1 and 7) and patterns with uniform
distribution of edges or nondirectional placement of the struc-
tural element (17, 18, and 19) are at the positive end of this di-
mension. This dimension highlights the sensitivity of the human
visual system to horizontal and vertical directions [15]. For ex-
ample, although it obviously has a single preferred direction of
45 , pattern 16 is not perceived to be as directional as patterns
2, 4, 5, and 11. This dimension also highlights the sensitivity
of the human visual system to small perturbations in direction.
Hence, although one single direction is prominent in both pat-
terns 4 and 20, pattern 20 is perceived as less directional.

3) Dimension 3—Regularity and Placement Rules:This di-
mension describes the regularity in the placement of the struc-
tural element, its repetition and uniformity. At the negative end
of this axis are regular, uniform, and repetitive patterns, where
the repetition is completely determined by a certain set of place-

ment rules (2, 3, 8, 9, 11, and 15), whereas at the opposite end
are nonrepetitive (5 and 7) or nonuniform patterns (19). How-
ever, this dimension does not affect only regularity, uniformity
or repetitiveness in terms of the placement of the structural ele-
ment, it also applies to the spatial distribution of color. Hence,
along this axis between the patterns 13 and 14 (which have ex-
actly the same geometry but different color scheme and layout)
pattern 13 is perceived as more uniform and regular than pattern
14. This dimension also reflects the human sensitivity to small
perturbations in placement. For example, although patterns 3
and 17 follow a similar placement rule, pattern 17 is perceived as
less regular, since the structural elements are slightly displaced
from the position they would have had in a completely regular
pattern.

4) Dimension 4—Color Purity:This dimension arose
somehow unexpectedly, but it remained stable in all MDS con-
figurations, clustering results, even in the subjects' explanations
of their rankings. This dimension divides patterns according to
the degree of their colorfulness. At the negative end are found
pale patterns (1 and 10), patterns with unsaturated overtones
(7), patterns with dominant “sandy” or “earthy” colors (5, 6,
and 11). At the positive end are patterns with very saturated
and very pure colors (9, 13, 19, etc.). Hence, this dimension
can also be named the dimension of overall chroma or overall
saturation within an image.

5) Dimension 5—Pattern Complexity and Heaviness:This
dimension was the one most difficult to interpret. It showed only
in the last, 5-D configuration, hence it can be seen as optional.
Also, as we will show in the next section, it is not used in sim-
ilarity judging until the very last level of comparison. For that
reason, we have also named it “a dimension of general impres-
sion”. At the one end of this dimension are patterns that are per-
ceived as “light” and “soft” (1, 7, and 10) while at the other
end are patterns described by subjects as “heavy,” “busy,” and
“sharp” (2, 3, 5, 17, 18, and 19). According to the grouping of
patterns along this axis and the results of HCA, texture heavi-
ness is determined by one of the following factors: type of the
overall color (light versus dark), overall chroma (unsaturated
versus saturated), spatial frequency in the repetition of the struc-
tural element, and finally color contrast. Hence, this attribute
reflects pattern values along other four dimensions. Still, it is
obtained as their Boolean combination, rather than as a linear
combination or a simple projection onto a new plane.

VI. HIERARCHICAL CLUSTERING RESULTS: RULES FOR

JUDGING SIMILARITY

Fig. 3 shows the ordering of clusters obtained as a result of
the HCA, whereas Fig. 4 shows the HCA tree, obtained from
the complete similarity matrix for 20 patterns used in the study.
By comparing this result to the result of the 2-D MDS shown in
Fig. 2, there is an excellent correspondence between neighbor-
hoods in the MDS configuration and clusters determined by the
HCA. One simple way to confirm the stability of the dimensions
we obtained and their combining rules is to split the original data
in several ways and to perform separate HCA’s for each part. As
suggested in [13], we eliminated some of the stimuli from the
data matrix and determined the HCA trees for the remaining
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stimuli. One such solution obtained by eliminating patterns 2,
11, and 17 is given in Fig. 5. The dimensions we enumerated
in the previous section remained stable for various solutions;
we thus conclude that the 5-D configuration can be used for
modeling the similarity metrics of the human visual system. As
a result of the HCA, we derived a list of similarity rules and the
sequence of their application based on the analysis given below.

From the early stages of clustering, we were able to determine
the initial rules used by humans in judging similarity (Rules 1
and 2). These were followed by rules emerging from the middle
stages (Rules 3 and 4). Finally, at the coarsest level of compar-
ison, we use Rule 5 (top nodes of the HCA tree in Figs. 4 and 5,
or clusters 36–38 in Fig. 3).

1) Rule 1: The strongest similarity rule is that ofequal pat-
tern. Regardless of color, two textures with exactly the same pat-
tern such as pairs (17, 18), (2, 11), and (3, 15) are always judged
to be the most similar. Hence, this rule concerns the identity of
Dimensions 3 and 2 (pattern regularity and directionality). How-
ever, once two patterns are perceived as similar along these two
dimensions, color comes into play. The ordering of clusters as
given in Fig. 3 illustrates this rule: the first three clusters ob-
tained are 21, 22, and 23, but their internal ranking is determined
by color (Dimensions 1, 4, and 5).

2) Rule 2: The second in the hierarchy of rules is the com-
bination of Dimension 1 (dominant color) and Dimension 2 (di-
rectionality). Two patterns that have similar values in both di-
mensions, such as pairs (10, 11), (1, 7), and the triplet (2, 4, 5)
are also perceived as similar.

3) Rule 3: The third rule concerns either Dimension 2 (di-
rectionality) or Dimension 3 (pattern regularity and placement
rules). Hence, two patterns which are dominant along the same
direction (or directions) are seen as similar, regardless of their
color. One such example is the cluster (12, 13, 14). In the same
manner, seen as similar are patterns with the same placement or
repetition of the of the structural element, even if the structural
element is not exactly the same (see patterns 8 and 9, or 17, 18,
and 19).

4) Rule 4: In the middle of the hierarchy comes the rule of
dominant color. Two multicolored patterns are perceived as sim-
ilar if they posses the same color distributions regardless of their
content, directionality, placement or repetition of a structural el-
ement (patterns 16–20). This also holds for patterns that have the
same dominant or overall color (patterns 2–6). Hence, this rule
concerns only identity along the Dimension 1 (dominant color).

5) Rule 5: Finally, at the very end of the hierarchy, comes
the rule ofgeneral impression(Dimensions 4 and 5). This rule
divides patterns into “dim,” “smooth,” “earthy,” “romantic,” or
“pale” (laying at the one end of the corresponding dimension)
as opposed to “bold,” “bright,” “strong,” “pure,” “sharp,” “ab-
stract,” or “heavy” patterns laying on the opposite end. This rule
represents the complex combination of color, contrast, satura-
tion and spatial frequency, and therefore applies to patterns at
the highest, abstract level of understanding.

This set of rules represents the basic grammar of pattern
matching. How are we going to apply these rules? Our exper-
iments demonstrated that individuals vary in the importance
they attach to each dimension of the stimulus space. While
some of the subjects perceived texture-related dimensions 2

and 3 as being more important, other individuals had just the
opposite perception. Hence, individual weights for each user
in WMDS were different. Therefore, pattern similarity can not
be uniquely formulated as a linear combination of attributes.
However, each rule can be expressed as a logical combination
(logical OR, AND, XOR, NOT) of the pattern values along
the dimensions involved in it. For example, consider cluster
24 composed of patterns 4 and 5 in Fig. 3. These patterns
have similar overall color and dominant orientation, thus their
values both along the Dimensions 1 and 2 are very close and
the comparison using Rule 2 is expressed as follows.

[Dimension1(pattern 4)similar to Dimension1(pattern 5)]
AND [Dimension2(pattern 4)similar to Dimension2(pattern
5)].

Furthermore, the rule of the equal pattern (being the strongest
one in the hierarchy of rules) suggests that human perception of
pattern is unrelated to the color content of an image. Namely,
equal patterns are seen as the most similar, regardless of their
color attributes, indicating the pattern-color separability. This
observation is consistent with the data reported in [33] on the
appearance of colored patterns. Moreover, previously reported
neurophysiological studies [34] and perceptual models [28],
demonstrate that the image signal is composed of luminance
and a chrominance components, each being processed by
separate pathways.

VII. H OW TO MEASUREDIMENSIONS OFCOLOR PATTERNS?

Having obtained the relevant dimensions of color patterns, we
need image processing tools to extract and measure them.

1) Dimension 1—Overall Color:Since the importance of
color is established in many pscychophysical studies there exist
a vast number of techniques for extraction of color based in-
formation. One commonly used approach is based on a color
histogram, representing the joint probability distribution of in-
tensities in the three color channels. The features based on the
color histogram can be used with various metrics to simulate
human performance in judging image similarity [16], [17]. Be-
sides the color histogram, moments of color distribution (such
as mean, variances or higher-order statistics) can also be used as
color features in image matching [18]. Finally, one can use fea-
tures from color codebooks and color sets as quantized versions
of the three-dimensional (3–D) color space [19], [20]. Note that
the extraction of color features should be performed in any of the
perceptually uniform systems (such asCIE Lab) so that metrics
based on norms adequately describe perceptual differences
among the colors compared.

2) Dimensions 2 and 3—Directionality, Orientation, Regu-
larity, and Placement Rules:Besides color information, texture
directionality and repetitiveness appear to be among the most
important features used by humans in distinguishing color pat-
terns. This is consistent with the conclusions from the experi-
mental studies conducted by Rao and Lohse for gray-level tex-
tures [11], as well as with the set of features corresponding to
the perceptional criteria detected by Tamuraet al. [10]. Repeti-
tiveness can be modeled by a primitive element and placement
rules that specify how this element is to be replicated [1]. The
feature of repetitiveness is correlated with regularity, uniformity
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and nonrandomness; it can thus be assessed by statistical pa-
rameters calculated at the optimal scale where the repetitiveness
is maximum. The optimal resolution is determined as the one
with the minimal variance of texture features. In that case, the
resolution used contains the information about the size of the
primitive element. Moreover, a statistical approach is adequate
for describing nonrepetitive patterns, since the mean value ad-
dresses the roughness while the variance represents the degree
of nonuniformity.

Directionality inpatternscanbedescribed invarious ways.For
example, edge maps at different resolutions contain the informa-
tion about both global directionality and dominant local orien-
tation. Global directionality can be assessed by calculating the
statistical parameters (means, variances, and higher-order mo-
ments) of angular distribution. Dominant orientation within each
portion of texture requires averaging operationswithineach local
textured region, as suggested by Rao in [21]. A similar concept
can be explored within any orientation sensitive multiresolution
decompositions, such as wavelet and Gabor transforms [22], [23]
or decomposition with steereable filters [24]. Texture direction-
ality and regularity are also among features extracted in Tamura's
representation [10]motivatedbypscychophysiologicalstudies in
humanperceptionof texture.ThismakesTamura's representation
very attractive for practical applications involving human inter-
action or human understanding of texture. This representation is
further improved and implemented in the QBIC [25] and MARS
image retrieval systems [26].

3) Dimension 4—Color Purity:To quantify this dimension,
we convert the image into theCIE HSV color space(hue, satu-
ration, value) where the coordinate represents the saturation
(purity) of the color. In that case, a histogram of thechannel
or its first-, second-, and higher-order moments can be used to
describe the overall color purity for the particular image.

4) Dimension 5—Pattern Complexity and Heaviness:This
dimension is probably the most difficult to capture. At the
simplest level, pattern complexity is perceived as a combination
of color contrast, spatial complexity, and spatial frequency in
the repetition and placement of the structural element. Hence,
patterns with high values of at least one (usually two) of these
attributes are considered as “heavy”. Unfortunately, each of
these attributes is difficult to assess. Spatial complexity and
spatial frequency in the repetition of the structural element
are connected to the structural description of texture. This
approach requires an identification of a texture primitive asa
group of pixels having certain invariant properties that repeat
in the given image. Texture primitives may be defined by the
color distribution, shape, homogeneity of any local property
(orientation, second- or higher-order histogram parameters, and
even micro texture). Once the primitives have been identified
their placement determines the spatial relationship. The spatial
relationship may be expressed in terms of adjacency, closest
distance, periodicity, etc. However, without prior determination
of texture primitives, pattern heaviness may be expressed by
measuring the edge density, runlenghts of maximally connected
pixels or relative extrema density [1]. Another approach toward
capturing texture complexity is to consider complexity in terms
of the length of a suitable description or to consider the values
along the other four dimensions. For example, it is very likely

that patterns with high values along the Dimensions 1 and 3
would be perceived as “heavy.”

Color contrast is another important indicator of texture heavi-
ness. The simplest way to measure it is through thecontrast ratio
function, which is defined as the ratio of luminance between the
lightestandthedarkestelements inascene[27].Thecontrast ratio
function can be calculated on the entire pattern, or within the area
defining a texture primitive. However, due to the importance of
color in image similarity perception, this concept of achromatic
contrasthas tobeextendedtocolorcontrastaswell [28].Onecon-
trast measure suited to the image similarity problem can be found
in [29]. It starts from multiscale representation of oriented local
contrast as proposed by Peli [30], and calculates the power-law
contrast as a nonlinear difference between the lowpass channels
at different levels of the multiresolution pyramid.

VIII. D ISCUSSION ANDCONCLUSIONS

Based on a subjective study, we identified the five most rele-
vant dimensions of color patterns:

1) overall color;
2) directionality and orientation;
3) regularity and placement;
4) color purity;
5) complexity and heaviness.

Thesecategoriesconstitute thebasicvocabularyofcolorpatterns.
Wealsodetermined thehierarchyof rulesgoverning theuseof the
dimensions in the vocabulary. These rules canbe seenas the basic
grammarof thecolorpattern language.Ourworkcanbeseenasan
extensionof theworkbyRaoandLohtse,whoconductedasimilar
experiment in the domain of gray-level textures [11]. They iden-
tified three most significant dimensions of gray-level textures:
repetitive versus nonrepetitive, high-contrast and nondirectional
versus low-contrast and directional; granular, coarse and low-
complexity versus nongranular, fine and high-complexity. Al-
thoughourresultsapply tothedomainofcolorpatterns, theyseem
to prove findings in [11]. For example, both attributes of regu-
larity and directionality within the domain of gray-level textures,
directly translate into ourmodel, as purelypattern–based Dimen-
sions 2 and 3 (directionality, orientation, regularity, and place-
ment rules). Also, the attributes of coarseness and complexity
(being parts of the third dimension in the gray-level model) are
included in the perception of texture complexity and heaviness
(as the Dimension 5 in our model). However, it is extremely im-
portant to note that although the perception and understanding
of these attributes remain the same in both domains, the mecha-
nism that creates the perception is very different—hence the def-
inition of the dimensions is the major distinctions between the
models. For example, in the gray-level world regularity is per-
ceived through the repetition of the primitive element on the reg-
ular grid, whereas in the color domain, color features and color
appearance of a pattern are responsible for the regularity as well.

Thisworkwas the firstpart inbuilding thesystemformatching
and retrieval of color patterns. In the follow-up to this study we
have actually implemented a system based on our vocabulary and
grammar. The details of the implementation are given in [35].
To measure the dimensions from the vocabulary and implement
the rules from the grammar, we followed the basic guidelines
outlined in the previous sections. We tested our system on the
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following databases: Corel database (2000 images); stones (600
images); ornaments (110 images); oriental carpets (100 images);
interior design (9000 images); architectural surfaces (500 im-
ages); and paintings (600 images). The vocabulary and grammar
proved stable through all of our experiments.

Note that we obtained our experimental set from the database
of fabrics, hence, there was no meaning attached to any of them.
In that way, the hidden dimension of content within an image was
eliminated (for example, two distinct patterns could be judged as
similar if their meanings are related such as leaves and flowers,
or pebbles and sand, whereas resembling textures such as marble
and lace are perceived as dissimilar since they represent two dif-
ferent things). However, even when we tested our algorithms on
the paintings database in which image content was apparent, the
vocabularyandgrammarremainedstable,andtheresultswereex-
cellent. Still, when building any system dealing with image sim-
ilarity, one should be aware of the importance of image content,
and additional studies addressing this issue need to be conducted.

We expect that the color pattern understanding model pre-
sented in this paper will help researchers in image processing,
computer vision, and computer graphics to build effective
and elegant algorithms for texture analysis, manipulation, and
display. Moreover, we expect that this model can be used in the
development of more natural, human-like interfaces between
users and machine.
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