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Generalized Multiple Description Coding With
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Abstract—Multiple description (MD) coding is source coding in To not compress is a rather extreme reaction to the possibility
which several descriptions of the source are produced such that of g bit error or erasure. A more temperate approach is to ac-
various reconstruction qualities are obtained from different sub- o\ for the possibility of (uncorrected) channel impairments
sets of the descriptions. Unlike multiresolution or layered source . th ding desi Thi dd th bl
coding, there is no hierarchy of descriptions; thus, MD coding is in the s_ource Co_ln_g esign. this paper a re_sses € problem
suitable for packet erasure channels or networks without priority ~ Of multiple description (MD) source coding, which can be cast
provisions. Generalizing work by Orchard, Wang, Vaishampayan, as a source coding method for a channel whose end-to-end per-
and Reibman, a transform-based approach is developed for pro- formance (with channel coding) includes uncorrected erasures.
ducing M descriptions of an N-tuple source, M < N.The de- s channel is encountered in a packet communication system
scriptions are sets of transform coefficients, and the transform co- that h ffecti detection but d th i .
efficients of different descriptions are correlated so that missing co- _a a§ efiective error detection but does not have retransmis-
efficients can be estimated. Several transform optimization results Sion of incorrect or lost packets. A transform-based method for
are presented for memoryless Gaussian sources, including a com-MD source coding is introduced. This is a generalization to more
plete solution of the/N = 2, M = 2 case with arbitrary weighting  arbitrary transforms of a technique for two channels (or packets,

of the descriptions. The technique is effective only when indepen- - qagcriptions) introduced by Orchard, Wang, Vaishampayan
dent components of the source have differing variances. Numerical and Reibman [1] ’ ’ '

studies show that this method performs well at low redundancies, oL . ) )
as compared to uniform MD scalar quantization. The organization of the paper is as follows. First, MD coding

and its connection to packet communication are described in the
remainder of this section. Then, in Section Il, a few theoretical
and practical results in MD coding are reviewed. Prior to the
general analysis and optimization of Section IV, the two-tuple
. INTRODUCTION case is thoroughly developed in Section Ill. Applications to

OURCE coding researchers are demanding consumerdrBfige and audio coding are summarized in Section V.
ommunication systems. They ask for every bit they pro- . o
duce to be reliably delivered. Depending on what is known abofst The Multiple Description Problem

the channel, this may be possible in Shannon’s sense, but gkt the September 1979 Shannon Theory Workshop, the fol-
what cost? At the very least, depending on the acceptable predwing question was posed by Gersho, Ozarow, Witsenhausen,
ability of failure and on how close the rate is to the channel cgyolf, Wyner, and Ziv [2]* If an information source is described
pacity, large block sizes and complex encoding and decodipgtwo separate descriptions, what are the concurrent limitations
may be needed. Furthermore, compression may greatly increggyualities of these descriptions taken separately and jointly?
the sensitivity to any remaining uncorrected errors. Known at that time in Bell Laboratories as the channel split-
Asimple example isan Engllsh Ianguage text file. |fahandflﬂ|hg pr0b|em’ this came to be known as ]mmgj|t|p|e descrip-
of characters are deleted at random, the reader may be gisn (MD) problemin the information theory community. The
tracted, but the meaning is likely to be fully conveyed. On thgrimary theoretical results in this area were provided in the
other hand, losing a few random bytes of a Lempel-Ziv com980s by the aforementioned researchers along with Ahlswede,
pressed version of the story could be catastrophic. If the CoBerger, Cover, El Gamal, and Zhang.
pression is by a factor of, say, ten, the effect is much more pro-MpD coding refers to the scenario depicted in Fig. 1. An en-
nounced than the loss of ten times as many bytes. This suggesiger is given a sequence of source symldis }¥_, to com-
that if channel coding cannot make the probability of error zergunicate to three receivers over two noiseless (or error-cor-
it may be beneficial to leave the data uncompressed. rected) channels. One decoder (trentral decoder receives
information sent over both channels while the remaining two

, . . defcoders (theide decodeijgeceive information only over their
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CHANNEL 1 X B. Applicability to Packet Networks

DECODER 1 ——

Recently, the problem of transmitting data over heteroge-
{Xx} (X} neous packet networks has received considerable attention.
SOURCE ENCODER DECODER 01===="" A typical scenario might require data to move from a fiber
o link to a wireless link, which necessitates dropping packets to
prcopER 2 X = @accommodate the lower capacity of the latter. If the network is
able to provide preferential treatment to some packets, then the
Fig. 1. Scenario for MD source coding with two channels and three receivelrjsge.Of a mum.reSOIUtlon or Igyered source cpdmg SySte.m .IS the
The general case had channels and™ — 1 receivers. obvious solution. But what if the network will not look inside
packets and discriminate? Then packets will be dropped at
random, and it is not clear how the source (or source-channel)
coding should be designed. If packet retransmission is not an
option (e.g., due to a delay constraint or lack of a feedback
1N ‘ channel), one has to devise a way of making the packets that
D, == Z E|:6i (Xk, XS))} ; fori=0,1,2 are received meaningful. The situation is similar if packets are
N b1 lost due to transmission errors or congestion.
Drawing an analogy between packets and channels, packet
‘communication with\{ packets is equivalent to generalized MD

CHANNEL 2

2NE: symbols. Denoting b){XS)}Q’:l the reconstruction se-
guence produced by decodethere are three distortions

where thes; (-, -)'s are potentially distinct, nonnegative, real

valued distortion measures. _ _ coding withM channels. Each of th#* — 1 nonempty subsets
The central theqreucal problem is to determine the ;et 6f the packets leads to a potentially distinct reconstruction with
achievable values (in the usual Shannon sense) for the quintulg,e gistortion. The case where no packet s received is ignored
(£1, Ra, Do, Dy, D). Decoder 1 receiveR, bits and hence y, maintain the analogy with the classical MD problem and be-
cannot have distortion less thdr(1, ), whereD(-) is the dis- 5,6 the source coding in that case is irrelevant. A recent surge
tortion-rate function of the source. Making §|m|lar argumentss interest in MD coding seems to be due primarily to this appli-
for 'Fhe other tvyo decoders gives the following bounds on theion (see [1], [9]-[12]) and yet the present work was among
achievable regiof: the first to effectively use more than two packets [13]-[17].
Retransmission of lost packets, when feasible, is an effective

> . e . X
Do 2 DB + Rs) (1) technique for maintaining constant quality despite losses. The
Dy > D(Ry) (2 use of a retransmission protocol, such as TCP [18], requires at a
Dy > D(R5). (3) minimum that a feedback channel is available to indicate which

packets have been successfully received. Even if feedback is

Achieving equality simultaneously in (1)—(3) would imply thakvailable, many factors may preclude the retransmission of lost
an optimal rateR?; + R, description can be partitioned intoor corrupted packets. Retransmission adds delay and necessi-
optimal rateR; and rateR, descriptions. Unfortunately, this tates additional buffering for streaming media. Retransmission
is usually not true because optimal individual descriptions gf generally not feasible in broadcast environments because of
ratesR; and R, are similar to each other and hence redundagie so-called feedback implosion problem whereby the loss of
when combined. Making descriptions individually good and y{ single packet may spark many retransmission requests.
Sufficiently differentis the fundamental tradeoff in this problem. From an information-theoretic perspective, an idealized

The MD problem can be generalized to more than two chagodel is to assume that packet losses are independent and
nels and more than three receivers. The natural extensiofds tqdentically distributed (i.i.d.) with a known probability and
channels an@" —1 receivers—one receiver for each nonemptihat the message sequence is arbitrarily long. Then, assuming
subset of channels. This generalization was considered by V“Hat the packets have fixed pay|oad of one unit, the Capacity of
senhausen [3] for the restricted case where the source has fifh€channel i — p per channel use. Furthermore, this capacity
entropy rate and lossless communication is required when aah be attained by choosing a sequence of deod:) block
k, k < M, of the channels are lost. Normalizing the source raggydes with ratek/n < 1 — p, with n, k& — oo. Attaining
to one and assuming equal usage of each channel, each chagtel-free transmission at a rate arbitrarily close to the channel
must accommodate a rate bf(M — k). (The rate cannot be capacity is intimately tied to having an arbitrarily long message
lowered because the sum of the rates of the received chanr@l§uence. For any finite code length, the probability of failure
must be at least one.) This bound is achieved by using truncai€@onzero.
Reed-Solomon codes. A similar result holds in the more gen-The emphasis in this paper is on situations in which long
eral setting of [7]. The situation with three channels and sevgibck codes cannot be used, which is often the case. For
decoders was studied by Zhang and Berger [8]. example, consider a network using Internet Protocol, Version

The MD codes constructed in this paper apply to the genergl{IPv6) [19]. An IPv6 node is required to handle 576-byte
ized MD problem. Unfortunately, no tight achievability boundgackets without fragmentation, and it is recommended that
are known for generalized MD coding. larger packets be accommodatektcounting for packet head-

2Since the distortion metrics may differ, the use of a single sy} for

the distortion-rate function of the source is a slight abuse of notation. In this3without the “Jumbo Payload” option, the maximum packet size is 65575
paper, squared-error per component is used exclusively, so there is no ambighities (65 535-byte payload).
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ers, a 576-byte packet may have a payload as large as HSKSE) distortion. This result, obtained by Ozarow [5] is sum-
bytes. With packets of this size, a typical image associated witlarized by the following theorei.
a WWW page may be communicated in a handful of packets;

say, eight. One cannot use the law of large numbers to analyze | 1c0/eM 1 Let.Xy, Xz, ... be a sequence of i.i.d. unit vari-
Yy, €Ignt. 9 yance Gaussian random variables. The achievable set of rates and

chann_el codes with only eight output symbols._ Anothe_r reaspiL - istortions is the union of points satisfying
for using short channel codes is to keep buffering requirements

and delay small. D; > 2728 i=1,2 (4)
Aside from these issues, we should note that traditional Do >2 2R+R) (D Dy Ry, Ry) )

channel coding approaches aim to completely counteract

all channel impairments; but, for communication subject t@here

a smooth distortion measure, we may impose a much less 1

stringent requirement with the hope of achieving satisfactory = 3

performance with less coding overhead. The philosophy of 1 — (\/(1 — D)(1 = D3) — /D1 Dy — 2_2(R1+R2))

replacing a traditional source code and channel code with an

MD source code is tanitigatethe effect of erasures even if notfor D1 + Dy < 1 +272(f1+2) andy = 1 otherwise.

a single erasure can lerrected

Since Theorem 1 is the key result in coding continuous-
valued sources, the region defined therein warrants a closer
Il. SURVEY OF MD CODING look. The bounds (4) are simply the side-channel rate-distortion

A. Historical Notes bounds, a repeat of (2) and (3). In the final inequality (5), the

At the previously mentioned September 1979 meetmcp:aecr;grarlydlstortlon must exceed the rate-distortion bound by the

Wyner presented preliminary results on MD coding obtaine

with Witsenhausen, Wolf, and Ziv for a binary source and A few examples will clarify the behavior of and the re-

. . . . sulting properties of the achievable region. First, suppose that
Hamming distortion. At that very meeting, Cover and El Gam Iue descriptions are individually good, yieldidg, = 2-2%

determined and reported the achievable rate region later pu 4D, = 2-2R:_ Then we may write
lished in [2]. Ozarow’s contribution was to show the tightness o 2 '

the El Gamal-Cover region for memoryless Gaussian sourc > DD 1 _ D1 Do

and squared-error distortion [5]. Subsequently, Ahlswede [21]° = “'"?1— (1 - Dy)(1 - D;) D;+ Dy — D1 D5’

showed that the EI Gamal-Cover region is tight in the nR urther chain of inequalities giveBp > min{ Dy, Ds}/2, 50

excess rate sum” case (where there is equality in (1)), and . . S i
Zhang and Berger [8] sho(wed that this regioqn is nyot tig(ht)z/vh ne joint description is only slightly better than the better of the
individual descriptions.

there is excess rate. The complementary situation, where g - L
and (3) hold with equality, is called the “no excess marginal n_the other hanijé(iuggo)se the joint description is as good as
rate” case and was also studied by Zhang and Berger [22]. possible, sy = 2 '), Theny = 1, and thus
MI? codipg includes asa spe_cial case the better kn:_wm Dy 4+ Dy > 142 2(BitRe) (6)
cessive refinemeot multiresolutioncoding. The successive re-
finement problem can also be described by Fig. 1, but the iRecall that a distortion value dfis obtained with no informa-
terest is only in characterizing achieval§lg;, R, Do, D;). tion, simply estimating the source by its mean. For anything but
In other words, no attempt is made to estimate the source fr@wery low rate, (6) implies a very poor reconstruction for at least
channel 2 alone; or channel 1 is always present. Successiveoree of the side decoders.
finement was first studied by Koshelev [23]-[25]. The condi- Intermediate to these two extremes, the region of Theorem 1
tions for perfect successive refinement—where (1) and (2) hagleasier to understand in tih@lancedcase, where?, = R
with equality—are described in [26]. The result follows fronandD; = D,. We will take two points of view to improve our
the tightness of the achievable region of [2] for the no excegyalitative understanding of the bounds. The first relates expo-
rate sum case [21] (see also [27]). nential decay exponents in the three distortions and the second
Finally, it should also be noted that there is a substantial litef@@unds the side distortion based on the gap betwegmand
ture on the error sensitivity of compressed data and more gerié‘r-Q(RlJ’RZ).
ally on tradeoffs between source and channel coding. The readdrirst, estimatey under the assumption®; = R, > 1 and
is referred to [28]-[32] for a sampling of the results. Dy =Dy <« 1. Then

2
. . 1
B. Theoretical Bounds for a Memoryless Gaussian Source —=1- <(1 —Dy) —/D? —2-%R )
Y

The achievable rate-distortion region is completely known
only foramemoryless Gaussian source with mean-squared error
50zarow [5] neglects the high side distortion regime where

~1—((1—Dy)— D)’ =4D; —4D? ~ 4D;.

4This is not an arbitrary figure. Based on statistics in [20], the average WWW Dy + Dy > 1427200t 02),
image is only 3.9 kbytes; an image of this size would not be fragmented into
more than eight packets. Of course, this depends on the sampling of the WWf¥he converse, the developments in [5, p. 1917] require (in Ozarow’s notation)
and may change. IT > A, but this is not specified.
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08 One interesting thing to glean from (8) is the slope of the
070 low-redundancy); versusp* characteristic
§06
& D,  1-27% 2% In2
Zos o T2 iz
".-0.4
E At p* = 0T, the slope is infinite. Consider starting with a system
809 designed only to minimize central distortion. Assuming that side
302. distortions are also of interest, the infinite slope means that a
o small additional rate will have much more impact if dedicated
01 to reducing the side distortion than if dedicated to reducing the
central distortion.

8 2 The rate-distortion region is not completely known for any
non-Gaussian source. Zamir [34] has found inner and outer
Fig. 2. Lower bound (8) on side distortiohi3, = D- when the base rate is hounds to the achievable rate region for MD coding of any
r, i.e., the central distortion i®, = 272", At high redundancies, the curves ; - ; .
merge because the bound is independent of cpntmgous va_lueq memoryle;s source Wlth’ squared-error
distortion. This is an extension of Shannon’s bounds on

rate-distortion functions (see [35], [60], [36]).

5 1
Redundancy p = Fl1 + Fi2 -r

Substitutingy = (4D;)~* in (5) givesDy > 274 (4D;) 71,
so the product of central and side distortions is approximately practical Codes
lower-bounded by—12=4%1 If D; = Dy & 2720-0) 1 yjith

0 < a < 1, the best decay of the central distortion is The bounds of the previous section can be approached when a

long sequence of source symbols is coded. In contrast, the focus
in this paper is on simple codes for finite-length source vectors.
Dy~ 47172+ Ry 1) MD Scalar Quantization (MDSQ)The first method for

MD coding of amemoryless, continuous-valued source was MD

alar quantization (MDSQ). MDSQ is the use of two sepa-

. . . S
EhIStﬁzogyf?et[hearfctgirgﬁ]ntahl(tayomtFrr;]eal(a()j(gggeTgtaél ra;g.s;zﬁyr Cfte scalar quantizers to give two descriptions of a scalar source
L ' Pl y » Indl y mple, with an additional central decoder that makes use of

being positive) is precisely the increase in the rate of decayé)zth descriptions. This approach was expounded and popular-

Dy. . . S
The second way to interpret the tradeoff between central aﬁ dil :rymveatlr? 2 3 gni;;ag e?rli]i e[r3 katl:]gllijsghhe 5 svtéc:ll(n[lé’g]]troduced very

sjde distortion_ begi.ns With rearranging (5),_under the assump-rq simplest example is to have scalar quantizers with nested
tion of equal side distortiod; = D), to obtain [33] thresholds, as shown in Fig. 3(a). Each quantizer outputs an
index that can be used by itself to estimate the source sample.
UsingQ;:R — {1, 2, ..., 6},¢ = 1, 2, to denote the encoding
map of quantizet, the reconstruction knowin@;(z) = k;
should be the centroid of the c&ll;* (k;). The central decoder
1- \/1 — 2720”1+ R2) [ Dy } - () nas both: (z) = k; andQo(x) = k2 and thus reconstructs to
the centroid of the intersection cely * (k1) N Q5 ' (k2). In the
. ) example, the intersection cells are half as big as the individual
Now separate the coding rate intcbase rater and aredun- o antizer cells, so the central distortion is about a quarter of the
dancyp®. The base rate corresponds to the quality of the joigfye gistortions. Asymptotically, ifthe side rates &le—= R —

description and the redundancy is the additional rate addedéothenp0 D1, andD, are allO(2-2R). This is optimal decay
make the side distortions low. Mathematicallyy = 272" and ¢, D, andDQ "but far from optimal forDy.

1
D > Inin{g |:1 + Dg — (1 — Do)\/l — 92—2(R +R2)/D0:| ,

p* = Ry + R, —r. Substituting in (7) gives Recalling the discussion following Theorem 1, it should be
possible to speed the decayof at the expense of slowing the
i+27 - (1-277)V1-272], decay ofD; and/orDs. Letn;, ¢ = 1, 2, denote the number

. ) o of cells in quantizer);. Letn, denote the number of intersec-
for p* <7 —1+1log, (1+27%) (8) tions between cells o2, andQ; that are nonempty. Notice
1—V1—2-2", that in Fig. 3(a);n0 = n1 + n2 — 1. Whenn; = ny = n,
the exponential rate of decay b, is changed only it grows
faster than linearly witl. Accomplishing this requires some-
thing never seen in single-description scalar or vector quanti-
The second expression comes into play when the redundancgation: disconnected partition cells. The maximum number of
so large that there is no conflict in achieving the central and sidentral decoder partition cellsig = nin2. This occurs when
distortions. This bound is plotted in Fig. 2 for several values @achQ (k1) N Q5 (k) is nonempty, as shown in Fig. 3(b).
the base rate. Quantizen}, is individually poor. The asymptotic performance

D,

v

for p* > 7 —1+1log, (1+2777).
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Q: L2 4 3 4 4 4 3 4 6 while the performance of optimal fixed-rate MDSQ is
2
Q@ ——F+——F+—+"— DoDy ~ % <@> 9—1R
11 } 12 ) 22 § 23 |33 | 34 | 44 | 45 | 55 4 56 ; 66
Qo e I I R R B R _ , _
(a) and the performance of optimal entropy-constrained MDSQ is
1 | 2 1 3
@ ! ! DoDy ~ + (E)sz‘m. (10)
4\6
1 1 2 | 3 1 1 2 1 31 1
@ o b b The factors in parentheses are familiar from high-resolution
” (121323212 323, 31 quantization theory (see, e.g., [41] and the references therein).
Qo —f T T T 1 1 These features of high-rate MDSQ, however, tell us very little
(b) about how MDSQ performs at low rates. Later, in Section IlI-E,
1 4291 2 4 3 4,3, 4 the performance of MD based on correlating transforms will be
@ L ! o compared to the performance of MDSQ at low and intermediate
1 L2 342, 3 4 rates. These numerical comparisons are based on a family of
Q2 I (L ! uniform MDSQs (UMDSQs) described in detail in [33]. The
encoder for a UMDSQ operates as follows. A source sample is
Qo o 22,5 #3494 4 first uniformly quantized by rounding off to the nearest mul-
(c) tiple of a step size\; then the index output by the scalar quan-

tizer is mapped to a pair of indexes using an index assignment
Fig. 3. Three MD scalar quantizers. (a) The simplest form of MDSQ, withased on [40]; finally, these indexes are entropy coded. In all
jnjest%i quaf&tigation tf(l)r(ezshgllg)s.(\t/)\;hfm I\7D§2Q :h'RH all three igm;tionsy of the numerical results presented here, rate is measured by en-
0, D1, and D, are O(272%), n which minimizesD, for a .
given rate. AsymptoticallyDo = O(2—R). but at least one oD, andD,  TOPY rgther than_ by the average code_lgngth ofa part|cu_lar cer.
mustbeD(1). (¢) An MDSQ based on Vaishampayan’s “modified nested” indeS€ven index assignments are used, giving seven operating points
assignment [37]. This construction systematically trades off central and sifgr each value ofA; in the notation of [40], the index assign-

distortions while maintaining optimal joint asymptotic decay of distortion witl _ 1
rate. fments could be labeled — 0, 5, ..., 3. At the decoder, we

allow either centroid reconstruction with respect to a uniform
of this scheme wittR, = R, = R s at the opposite extreme ofSource density (which_ is caIIe_d mi_dpoint reconst_ruction, since
the previous exampled, = O(2-4R), but at least one ab; itis thg natural extensmn_of midpoint reconstruction to MD) or
and D, is O(1). cintrmd reconstruction with respect to the actual Gaussian den-

sity.
The performance of UMDSQ is compared to the bounds of
Leorem 1in Fig. 4. The solid curve in Fig. 4(a) is the side dis-
fion bound (7) evaluated for central distortidh, = 2712,

Given a desired partitioning for the central encodtre crux
of MDSQ design is the assignment of indexes to the individua
quantizers. Vaishampayan’'s main results in [37] are this o-lb--

servation and an idealized index assignment scheme that gi dashed line is the high L f MDS
the optimal combined exponential decay rates for the cent e dashed line Is the high-rate approximation o Q per-

and side distortions. An MDSQ designed with Vaishampayan'a 1ance (10) and the dotted line is the high-rate bound (9). Op-
“modified nested” index assignment is shown in Fig. 3(c) |ﬁrating points obtained with midpoint and centroid reconstruc-
contrast to the MDSQ of Fig. 3(b), the side distortions are aBQn are marked with dots and circles, respectively.

proximately equal and the quantizers “refine each other” in aAt this '°V.V centr_al d|stort|9n (high ba;e rate= G bits), all
symmetric fashion. For a given number of side levelshe seven considered index assignments give reasonably useful op-

central distortion is smaller—at the cost of higher side disto?—rating points and centroid reconstruction does not greatly im-
tions—than for an MDSQ as in Fig. 3(a) prove the performance over midpoint reconstruction. Note also
The optimal design for fixed-rate MDSQ in [37] was eX_that the performance is well-approximated by high-rate anal-

tended to entropy-constrained MDSQ in [39]. One of the mo)é?is' quever, at low and_ very high redunda_mcies the perfor-
satisfying aspects of the theory of MDSQ is that at high ratdgance Is worse th"’?” predm_:ted by (1Q)._The highest redundancy
all the decay exponent tradeoffs discussed in Section [I-B cBRINt IS qbtqlned with identical descriptions over the two chan-
be obtained. Furthermore, the factor by which the distortid}?ls' which is not very clever.

product Dy D; exceeds the bounds of Theorem 1 is approxi- At lower base rates, the initial quantization is more coarse;
mately co%stant [40]. FoR = R, = R, andD, = D,, the ence, less of the index assignments are useful and it is more

bound for large rates is approximately important to have centroid reconsfrfcthn. F|g. 4(p) shows per-
formance and bounds fab, = 2~* With midpoint recon-
R struction, only the repetition of identical information over each
DoDy 2 12 (9)  channel and the simplest nested index assignment of Fig. 3(a)
o _ - give side distortion less than 1 (other operating points are not
There is no “central encoder,” b@t; and(@)- effectively implement a quan- h - with id . h v th ful
tizer with cells given by the intersections of the cells of the individual quantizer§. own_)’ wit _Centm! reconStrUCt'on t _ere are only t ) r?e useru
An MDSQ could be viewed as a single quantizer that outputs two-tuple indexeerating points. Fig. 4(b) clearly indicates the deficiency of
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~ midpoint reconstraction is achieved with a linear transform that introduces correlation
N _°_ Sentrokd reconstruction between a pair of random variables; quantization is treated as
- o et sgoon | secondary. _ .
] Let X; and X; be independent zero-mean Gaussian random
s . variables with variances; > o3. For conventional (single-de-
£ scription) source coding, there would be no advantage to using
§ alinear transform prior to quantization. Assuming high-rate en-
210° tropy-coded uniform quantization, the MSE distortion per com-
) ponent atR bits per sample would be given by
@
3:10_‘- DO = %6 0'10'22_2R.
. . . , . . . T This is the best single-description performance that can be ob-
o 1 Rocundandy " =R, +R, - AD) 6 7 tained with scalar quantization._ .
Now suppose that the quantized versionsXafand X are
@ sent on channels 1 and 2, respectively, in an MD system. Since
10° o reeosagion X, andX, are independent, side decoder 1 cannot estitkiate
_© centraid reconstruction aside from using its mean. Thus,
s N ety me o ogean Lo
Qj D1:EO'10'22 +§O'2
% and, similarly,
Sw"
é DQI%O’;LO'QZiQR—F%O'%.
g Assume for the moment that each channel is equally likely to
2 fail. Then, instead of concerning ourselves with and D, sep-
arately, we will use the average distortion when one channel is
' lost
107 . —

1 1.5 2 25 3
Redundancy p” = F!1 + R2 - R(DO)

| 1
D= (Di+Dy) =7 (o7 +03) + T o102 2R (11)
()

12
Fig. 4. Performance of entropy-constrained uniform MDSQ. At low central Dy COUI,d be, redl.'lced if side deCOd.dnad some '”form‘.’mon
distortion or high base rate (part (a)), the high-rate approximate bound @POUtX;, ¢ 7 j. This can be accomplished by transmitting not
approximates the true bound at low redundancies and the high-resoluti®p’s, but correlated transform coefficients. The simplest possi-

approximate performance (10) is accurate. At higher central distortion ili r in i ransmi ntized versions of
lower base rate (part (b)), the true bound is considerably more stringent t B by, as p OpOSEd [ O]’ S o transmit quant ed versions o

the high-rate approximation, and the gap between actual performance andXhedNdY?2 given by
high-resolution approximation is larger. Only useful operating points are given, 1
i.e., those with side distortion less tharnand no operating point with lower {Yl } {1 1} {Xl }

side distortion and lower redundancy. At low base rates, uniform MDSQ gives Y, - 1 -1 Xy

few useful operating points. (a) Central distortibh, = 2—'2. (b) Central \/5

distortionD, = 2%, Since[Y; Y-]? is obtained with an orthonormal transforma-
tion and we are using MSE distortion, the distortion in approxi-
mating theX;’s equals the distortion in approximating thgs.

UMDSQ in providing useful operating points for low base ratene variances of; andY are both(o2 +02) /2, so the central

and redundancies. . . decoder performance is
Applications of MDSQ are described in [9], [42], [12].

Joint optimization of an orthogonal transform and MDSQ is Do = me <0’% + ff%) 9—2R
discussed in [43]. For the purposes of this paper, it is sufficient 6 2

to note that an identity transform is optimal for a sourcghich is worse than the performance without the transform by
vector with independent components. Note that Batllo anfd.gnstant factor &f

Vaishampayan use the terMD transform coding(MDTC) 5 5

to refer to MDSQ applied to coefficients from an orthogonal = M_

transform. The same term could be used to describe the tech- 0102

niques developed here or in [14], [16], [17]; however, to avoid Now consider the situation at side decoder 1. The distortion is
confusion the ternMD correlating transform(MDCT) is used approximately equal to the quantization error plus the distortion

for the present technique. in estimatingYs from Y. SinceY; andY> are jointly Gaussian,
2) Pairwise Correlating TransformsA considerably dif-

. . “Standard high-rate operational rate-distortion estimates will be used
ferent approach to MD COdIng was introduced by Wanqqroughoutthe paper. The reader is referred to [41] for details.

Orchard' and Reibman_[lO]. Instead of USir?g MDSQ to produCesrhs factor is like a coding gain, but it is thHacreasein distortion from
two indexes that describe the same quantity, the MD characteding correlated quantities.
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Y5 | Y1 =y isGaussian anfl[Y> | Y] = 4 ]isalinear function T2

of . Specifically,Y> | Y1 = % has mean ¥2 Gr/a€2 Gr/s€1

(0f +03) 7 (0% — 03)us

and variance 1

2002 +03) ool &% ™

Thus,

— o303 we (o + 03 (a) (b)
Dy~ 2 — =2 )2*. (2

T +12< 2 (12) Goez z 2
;v—/

[

v

T
L1E[|Y2— Y212 LE[v1—¥112] Goey

Comparing (11) and (12), the constant term has been reduc Zy ///—: 1
by the factorl?, but the exponential term is increased by th &% &
factorI'. This method thus improves the side distortion whil¢
it degrades the central distortion by a related amount. E
using other orthogonal transforms, intermediate tradeoffs ¢
be obtained. As demonstrated in Section Ill, nonorthogon {c) (d)
transforms allow yet more operating points, including more _ _ _ _

t tradeoffs. The factd? approaches unity as; /o Fig. 5. Basis configurations for correlating transforms. (a) The standard
extreme S amt pp ; Y @81/02  pasis gives high side distortion when the component with high variance is
approaches unity; the pairwise correlation has no effect wheeg. (b) Basis for the original correlating transform of [10]. (c) Generalization
the joint density ofX; and.X, has spherical symmetry. Evento arbitrary orthogonal bases. (d) When descriptions are lost with equal
with nonorthogonal transforms, the potential reduction in Si(fﬁ[gbablllty, (tjhe bf:st bases are symmetric with respect to the principal axis of

i X : ' source density.
distortion vanishes as; /o2 — 1.
The high-rate asymptotic behavior of the pairwise correlatin . . L= .
9 ymp P the side distortion®; = (D; + D2)/2 can be decreased in

transform method is not interesting because, independent Ofex%han e for an increase in the central distoriianby usin
choice of the transforni)y = O(272%)andD; = D, = O(1). g y 9

However, in practice, high rates are not necessarily importa'{n{e representation

and constant factors can be very important. As a case in point, 1 - 1 -
this method was introduced in the context of loss-resilientimage <<X7 V2 [1.1] >v <X7 NG =11 >> :
coding, where it was shown to be successful [10]. Subsequently, _ _ _ _
this method was extended to nonorthogonal transforms [1]. TRE! this is only a single operating point, whereas one would like
contributions of this paper are to generalize this method to cof-Pe able to trade o), and.D; in a continuous manner.
municatingV' variables ovedM/ channelsM < N, where the  Recognizing (13) ag(X, G sc1), (X, Gr/sc2)), Where
channel failures may be dependent and may have unequal pigh-iS & Givens rotation of anglé (see Fig. 5(b)), a natural
abilities, and to provide new results for the two-channel case€Xtension is to consider all representations of the form

(X, Goer), (X, Gyes)), for0 <6 <n/4.

(13)

lll. CODING OF TWO-TUPLES
This section takes an in-depth look at the MD coding of twolhis indeed creates a continuous tradeoff betwgrand D: .

tuple source vectors using a discrete correlating transform. THEWeVer, it has an undesirable asymmetry. 6ot ¢ < 7 /4,
generalization to arbitrary-length vectors is considered in S&g€ Side distortions are not equal. Itis an easy exercise to calcu-

tion IV. lateD; andDs, butinstead let us look geometrically at why they
are unequalD; is the variation ofX which isnot captured by
A. Intuitive Development (X, Gger), or the variation perpendicular @ge; .2 Similarly,

o L _ D, is the variation perpendicular 84 c2. Now sinceGge; and
The I!m|tat|ons of the pairwise correlatmg_transform_metho@;ee2 are not symmetrically situated with respect to the pdf of
qf Section 1I-C2) led to the vgpork reported in [1]. As in Sec-y (except ford = «/4), D, andD. are unequal (see Fig. 5(c)).
tion II-C2), let X = [X;, Xo]" whereX, and.X, are inde-  thjgi itself does notimply that the scheme can be improved,
pgndengzero-mean Gaussian random variables with varianggs since we are trying to have two channels of equal impor-
of > o3. Let{e;, ep} denote the standard basisBF. Any {30040 we might expect equal side distortions. Based on the

level curve of the joint probability density function (pdf) & g0 5 metric observation above, it makes sense to reprasént
is an ellipse with principal axis aligned with and secondary

axis aligned withe,. Using the standard basis corresponds to  ((X, Ggey), (X, G _ger)), for0 <f<n/2. (14)
representing\ by ((X, e1), (X, e2)) (see Fig. 5(a)).
. . P - : SWe are neglecting quantization error at this point becddseand D, are
Now imagine that uniform scalar quantized versions %fqua”y affected by quantization. 2

(X, e1) _and <X7 c2) are used as de_scriptions. It was demon- 10:Equal importance” comes from the equal weighting@f andD, in D;.
strated in Section II-C2) that, for a given total rate, the averageter the weights will be arbitrary.
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Furthermore, in order to be capturing most of the principal cor CHANNEL 1 DECODER 1 | 2@

ponent of the source, the basis should be skewed towasb . ala I 2

6 should be betweet and some maximum valu, ... < 7/2 R )

(see Fig. 5(d)). This yield®; = D, but introduces a new tla T DECODER o=

problem. 2 [z2)a " .
The representation o€ by (14) is (foré # = /4) anonorthog- T DECODER 2|——=

onal basis expansion. The uniform scalar quantization of suci a

representation produces nonsquare partition éellhiese par- rig. 6. Correlating transform structure for MD coding of a two-tuple source.
tition cells have higher normalized second moments than square
cells, and are thus undesirable [44]. The insight attributed a4 then computing the transform with intermediate roundings
Vaishampayan is that a correlating transform can be applied
after quantization has been performed in an orthogonal basis 7

) . o x) = |11 |15 [T5x] A, . 15
representation. This ensures that the partition cells are square, (z) [ B2 [T ]A]A]A (15)
regardless of the transform, so the transform affects only the ) - q ibed | di hough
rate and side distortions. The advantage of this approach ol&f Properties off are described in Appendix I. Though not

itis assumed that andy; are entropy coded.

the original pairwise correlating method was shown in [1]. Th%hown expllicitly, X o
geometric view of Fig. 5 also helps us understand the signifi-The coding structure presented here is a generalization of

cance of the ratie: /o». When this ratio approaches unity, thé'® Method proposed by Orchard, Wang, Vaishampayan, and

level curves become circles. It then does not matter—as far&&Pman [1]. They considered coding of two-tuples with the

the side distortion is concerned—what the basis is: the variatibA"Som
perpendicular to either basis vector is invariant to the basis. This 1 Jé;
fact holds equally well for orthogonal and nonorthogonal bases. = [_(2/3)—1 1/2} (16)
If we do not want the two descriptions to be equally impor- )
tant, for example, if they are sent over links with different failur@PProximated by
probabilities, then we expect the optimal representation to be
different from (14). Recallingr; > o2, we would expect the T(x) — H 1 . 0} Hl /3} x} } ) (17)
description over the more reliable link to be closer todheli- —(28) 1 0 1 Ala
rection, as this captures most of the energy of the source. This
intuition is vindicated by the detailed analysis that follows. Th&he mysterious form of (16) provided the initial motivation for
detailed analysis does not use this parameterization of the baflis work. When both side distortions are equally weighted, (16)
it turns out to be more convenient to have determiniamans- 1S in the set of optimal transforms; otherwise, it is not. In either

forms than to have normalized basis vectors. case, (15) gives an additional degree of freedom that may be
exploited.
B. Detailed Analysis 1) Relationship Between Continuous Transfamand Dis-

crete Transformi”: The discrete transforr’ produces the de-

hNOW ::onsr:der in de_ta',l sehndlng a tyvo-tuple source over tV\é‘briptions, but the analysis and optimizations are based on the
channels. The scenario is shown in Fig. 6, whidrerepresents ., yiinous transforr, so it is important to understand the re-
quantizing to the nearest multiple ak.’2 Recall that the lationship between the twd is a one-to-one and onto map-
transform is after the quantization so that square partition ceﬂﬁ]g AZ2 — AZ2.T relabels the quantized source vedtdr

o . T . . ;
are maintained. The souree =[xy, 2»]" has independent, iy, another value in the lattic2 in a manner that gives

: . ) 5 €
zero-mean Gaussian components with varianegsnd 93 Tle]a ~ T(z]a). An error bound for the approximation is

respectively. Without loss of gene_ral_ity, we assunie> o3. given in Appendix I.

The transfoTrmTAproduces desE: r_|pt|on_§1 and y» Fhrough SinceZ? has only a handful of reflective and rotational sym-
y = [y, y2]” = 1([z]a), wherel'is a discrete version of the ayries  there are only a few one-to-one and onto linear map-
continuous transform pingsAZ? — AZ?. The transforms used here are not linear, but

a b they approximate linear transforms. As an example, consider
T:[c d}’ with det 77 =1.
A r=| o U (18)
The derivation off” from 7" is by first factoringZ” into a product —6/5 5/

of upper- and lower-triangular matrices, e.g., . . .
PP J g and the associated discrete transform (see Appendix I)

e i | B P I R R R

1Yn higher dimensions, nonhypercubic cells. (29)

12The use of equal quantization step sizes for each component is justified by
high-resolution analysis. As long as the rate allocated to the lower variance cam- behavi fT . h in Eig. 7. In thi lot h
ponent is at least about 1 bit/sample, an optimal rate allocation only negligig?"e ehavior oL 1S shown In Fig. /. In tnis plot eac

reduces the distortion [45]. ([z1]a/A, [x2]a/A) position is labeled withy; /A, y2/A),
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Fig. 7. Example of the index relabeling by the discrete transfbrrgiven by Fig. 8. Example of partitioning induced by a continuous, nonorthogonal
(19). The solid curves connect the grid points in the inverse images gf tied  transform followed by scalar quantization. The transfdnis given by (18).

y2 axes. Though the curves are somewhat erratic, they follow the correspondifagh cell is labeled byy: /A, y2/A), wherey = [Tz]a. The nonsquare
curves for the continuous transfofffy shown with dashed lines. partition cells increase the quantization error by a factor of ab@ii .

wherey = T(z). The solid curves connect tife:, z») pairs central distortion by a constant factor; but, for the sake of esti-

on the grid that map téy:, 0) or (0, y); they are like inverse mating rates and correlations, the difference betwE€n]A)

images of the axes. These curves are somewhat erratic, but t’f\'%?[Tx]_A is vanishingly small. o
approximate the straight lines he distortion when botly; andys are received is indepen-

dent of 7" because, in this case, the initial quantization is the

25 25 only source of distortion. Under the fine-quantization assump-
L= T2 and z, = g T2 (20)  tion used throughout
2
which are the points with at least one componentafequal Dy = A_ (21)
to zero. The lines (20) are shown in Fig. 7 as dashed lines. This 12
shows howl’ is a relabeling of the pointaZ?, but at the same et us first look at the rates associated withandy,. The
time approximates a linear transform. continuous transform gives
The reason to bother with the discrete transform is that it al-
lows the use of a nonorthogonal transform without enhancing z1 =(Tz)1 = axy + bzy (22)
the quantization error. Fig. 8 shows the partitioning induced by 29 =(Tx)y = cxy + drs. (23)

using the continuous transform directlyias- [Tz]». When the
source probability density is approximately uniform over eacthese are Gaussian random variables with varianée$ +
partition cell—as is the case when the density is smoothandb?s3 andc?s? + d*o3, respectively. Sincg; ~ 7z, i = 1, 2,

is small—the quantization error is proportional to the normalve may estimate the entropy gf as the entropy of a quantized
ized second moment of the lattice cell. Thus, nonsquare paftiaussian random variable. A Gaussian random variable with
tion cells are suboptimal. In this particular case, the enhans@riances? quantized with a bin width\ has entropy given
ment of quantization error due to nonsquare cells is by a factgproximately by [46, Ch. 9]
of 33744481/12960000 = 2.6. This means that the representa-

tion [T'z] » has abou®.6 times as much distortion &5([z] ); 1108‘0'2 + ka, whereka = 11og %. (24)
the latter representation is used in this work. 2 2 A

2) Computation of Side Rates and Distortion$:A issmall, Thus, we have rate estimates
the difference betweefi’(x) and Tz is also small. For this 1
reason, a valid high-rate analysis of the actual system, which Ry =H(y) =~ = log (a0} + b°03) + ka, (25)
uses?’, can be based on the propertiesiafThe choice ofl’ %
determines both the rate, through the entropieg;0énd y,, Ry =H(yp) = 5 log (c®oF + d*03) + ka. (26)

and the distortion when reconstructing froyn or y. alone.
To reiterate, using’([x]a) in place of[Tz]A is to reduce the All logarithms are base-two and all rates are in bits.
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Now we turn to a computation of the side distortions. We have TABLE |

assumed that the effect of a lost component makes the quanti%BAsluﬂEs OF SYSTEM STATES IN TRANSFORMOPTIMIZATION FOR MDCT
CODING OF TWO VARIABLES OVER TWO CHANNELS

tion error negligible; thereford); is approximately the distor- —

tion in estimatingz from z;. Description 1
Suppose only; is received. To minimize the MSE distortion, not received received

the reconstruction at the first side decode£i8 = E[z | ]. Description 2 0t received 0,0 P10

Sincex and z; are jointly Gaussian, the conditional variable received Po,1 P11

x|z is also Gaussian and computationsiéf and D; are
simple. Noting thafz;, z>]* is a linear function oft,
the reconstruction from one description. Thiss redundancy

W =71 [;fl } (27) relative to optimal transform coding with scalar quantization; it
2 differs from the absolute excess rate= R —» = R — R(Dy)
where of Section Il by the redundancy of uniform scalar quantization,
Elz1 2] aco? + bdo3 approximatelys log,(Z£) ~ 0.255 bits. Though is analogous

2 = Bl | 2] = = 1 to an increase in rate from channel coding, it is a fixed increase,

z
E[2?] ! ao? + b203
. JO. . not proportional to the base source-coding rate.
The error inz, 7 = 22 — %o, iS a zero-mean Gaussian random L L
. . . 1) General Solution:In the most general situation, channel
variable with variance e
outages may have unequal probabilities and may be dependent.

2 2,2
o2 = B[22 - Blmaml® _ oio; ) 28) Using the probabilities of the system states, the overall average
K E[2{] aoi + b?a3 distortion is
The error in the estimate af can now be written in terms of
—1 I

7-% andn as D= pi1Do +po,oi(of+02)

_ N———’ ~—
T — ;%(1) — T—l |:Zl:| _ T—1 |:;il:| — T—1 |:0:| — |: b:| 7. both received neither received

z2 z2 Ui a
(29)

o . + p1,0D1 + po,1D2 - (3D
By combining (28) and (29), we can complete the computation S~ S~
of Dy, the distortion per component in reconstructing frgm

Description 1 received  Description 2 received

The first pair of terms in (31) does not depend on the transform;

2
Dy = %E [Hx _ 55(1)“1 _ H [ —2} E[7] \t/ye can consider only the second bracketed term in the optimiza-
ion
_ (a* +1?) ofod o — (a® +b?) 0703 (¢ +d?) ofo3
2 (a%0f + b203) T PLO S 27 1 20Ty T PO 2 (B0 1 o)
A similar computation yields First note that if the source pdf is circularly symmetric, i.e.,

1 |2 (& + d?) o203 o1 = 02, thenl?l =D, = 0% /2, independenF of. In thi.s.
Dy=3E Hx -z H = 5723, o case, the side distortions cannot be reduced with the addition of

2 2(c?of + d?03)

redundancy, so the MDCT technique is useless. Henceforth we
assumer; > o3.

_ o _ _ For a given value op, the admissible transforms are simul-
Using the rate and distortion expressions from Section IHaneous solutions of

B2), we can now identify the best transforms for MDCT coding.

Define four system states by whether or not each description is (a®0f +%03) (Pof + d*03) =0i052" (32)
received and denote the probabilities of these states as in Table I. ad —bc =1. (33)
A transform is considered optimal if for fixed average r&te- Here (32) is a rearrangement of (30) and (33)ldés 7 = 1.

(B + Rp)/2 the average distortion is minimized. Hﬁere are several branches of solutiéhbirst suppose = 0.

F_rom_ (25) and (26)’.'t appears that the rates can be MaA%his case, the transforms are of thefoir_niJ b 3] and substi-
arbitrarily small by makingdal, |b], ||, and|d| small. However, tuting in (22) and (23) gives /

the constraintlet 7" = 1 prevents this; it is straightforward to
show that the minimum average rateiis = % log 6703 + ka. 21 =bxo

C. Transform Optimization

As in [1], we refer top = R — R* as theredundancyUsing = lx de
(25) and (26) 2Tyt *
1 (20 + 1202) (20?2 + d?03) Since channel 1 c_arries onty, the side distortion at deqoder_l
p=log o207 - (30) is D, = o#/2. This is equal to the larger of the two side dis-

tortions obtained without any transform; hence, it is poor per-
Our optimization will be to minimize the average distortion for
fixed, nonnegative redundan@y 13The multiplicity of solutions is not present in conventional transform coding
. L. . . with orthogonal linear transforms, where for minimum rgte= 0) the optimal
In a single-description situation, there would be no reason{Qnsform is unique up to reflections and permutations of coordinates. Uses for

have a rate higher thal*. Thus,p is the rate added to improvethe extra design freedom in using discrete transforms are discussed in [47], [48].
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formance. It can be shown that transforms of this form are in 0.3
the optimal set only whep; o = 0 ord = 0. Another special
case is where = 0. This gives transforms of the forf, 1‘/’a], 025}
which, by analogous reasoning, are not usé&ful. z
Now, assuming: # 0 andc # 0, we may substitutel = § 0.2

(1+ bc)/a into (32) and rearrange to get g

20.15

8
R )

a9 C (23]
2 2
+b (1 —1; be) _o 0.05
C
GO 0.5 1 1f5 2

Solving this quadratic im? and choosing signs appropriately Fedundancy p (Bl per component)
givess s (a)

&
o

D, (MSE in dB)
3
o~

&

5

b

=25 -20 -1

1 g2 I
=5 (V2w =1+ V2% = 1= bebe+1) ). (34) l
_6.
When this value of: is used,D’ depends only on the product St
b-c,noton tf)e individual values dfandc. The value ofic that L :
minimizesD’ is 5l
L1 ) ~1/2 ]
P10 P10 4 5t
=3 (20 2) o (20 2o

( ) Pt 2 2 < Po,1 Po,1 L

5 —1‘0 -5

DO(MSEindB)

: <M - 1) (35)
Do
. (b)
independent of /o».

To summarize, an optimal transform for a given redundan€ig. 9. OptimalR-D,-D, tradeoffs fore, = 1, o5 = 0.5. (a) Relationship
p can be found through the following steps. First, choose aﬁgween redundangyandD; . (b) Relationship betweel?, andD, for various
nonzerob. The corresponding value efis determined from retes.
(35). Then, substituting in (34) gives Finally, d is chosen to
makedet T = 1: d = (1 + bc)/a. The performance, measured—1/2, independent op. The optimal set of transforms is de-
by the tradeoff betweemandD, does not depend on the choicescribed by
of b. This degree of freedom can be used to control the split of
the total rateR* + p betweenR; andR; or to simplify 7" by a=+bo oy (22” + /2% — 1) , b#0
makinga = 1 or d = 1. Other uses are described in [47], [48]. -1 1

It is easy to check thatbc).,; ranges from—1 to 0 as c=—(20)7, d = (2a) (36)
P1,0/po,1 ranges fromo to oo. The limiting behavior can be
explained as follows. Suppoge o > po, 1, i.€., channel 1 is

1
©
&

and using a transform from this set gives

much more reliable than channel 2. Sirée).,; approaches 1 o2 — o2
h h imall h D) =Dy == o2 L2 ) 37
0, ad must approach, and hence one optimally sends (the 1 2=503 + 1 o (22,; n \/ﬁ) (37)

larger variance component) over channel 1 (the more reliable
channel), andiice versaThis is the intuitive, layered solution.
The MD approach is most useful when the channel fail
probabilities are comparable, but this demonstrates that the
framework subsumes layered coding.

2) Equal Channel Failure ProbabilitiesSuppose the chan-
nels are equally likely to fail, sp1 ¢ = po,1. Then(be)ops =

urThis relationship is plotted in Fig. 9(a). Notice that, as expected,
M% starts at a maximum value 657 + 03)/4 and asymptoti-
cally approaches a minimum value @ /2. By combining the
rate expressions (25) and (26) and g expression (21) with
(87), one can find the relationship betweBnD,, andD; . For
various values of?, the tradeoff betweelw, and D, is plotted

in Fig. 9(b).
14The only useful transforms in these two branches of solutions of (32) and The solution for the optimal set of transforms (36) has an
(33) are those that add no redundancy, &g 1. extra degree of freedom which does not affectghersusD;

15n the solution fora?, one of the two branches of the quadratic is valid. f Fixi — 1qi h ; dinm
Then, in the square root of this expression we arbitrarily cheoge 0 since Performance. Fixing = 1 gives the transforms suggested in [1]

the sign ofs does not affecp or D;. and allowsi(-) to be implemented with two lifting steps instead
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T2

When there are no erasures, the reconstruction uses

(20)7 —(204)_1} '

¢ ¢ /% a T‘;lz[ o @
~

Evaluating (27) shows that the optimal linear estimates fggm
andys, neglecting quantization noise, are

(=) (b) s 2 {Wﬂ "

2
o
Fig. 10. Geometric interpretations. (a) When > 0., the optimality 2

condition gd = 1/2,bc = —1/2)is equivalent to?; = 65 < Opax = and 5 o
arctan(o/o2). (b) If in addition to the optimality condition we require ~(2) _ 20 20”07
the output streams to have equal rate, the analysis vectors are symmetrically L= m 2 Y2,
situated to capture the dimension with greatest variation.pAt= 0, 1 2 92
01 = 62 = 6,ax; @Sp — 00, 1 andy, close on ther, -axis. .

respectively.

of three. This degree of freedom can also be used to control thd" the optimizations leading to (36), we have usethean
partitioning of the rate between channels. squared error measure for the side distortion; no distinction is

3) Geometric Interpretation:When the channels are equall;)“ade between transforms that yield the same MSE but different

likely to fail, minimizing the average distortion automaticall)piStrib“tiO”SO_f squared error. Additional robugtness is implied
makes the two side distortion&); and D,, equal. Since the by a low variance of squared error or, equivalently, low ex-
channel rates are additive in the constraint, this is an expecf§ft€d fourth power of the Euclidean norm of the error. The
result; with a Lagrangian approach, matching the slopes afi@lanced-rate _transforms (38) give this deswable_property [49].
matches the distortions. This has a clear geometric interpretatfdfPther benefit of the balanced-rate transforms is that the de-
also. scriptions are identically distributed; the same entropy code can

Neglecting quantization, the transmitted representatian of°€ @Pplied to each, reducing memory requirements [48].
is given byy; = (z, ¢1) andyz = (z, p2), wherep; = [a, b]¥
andy> = [c, d|*. For optimality with equal channel failure
probabilities,ad = 1/2 andbc = —1/2. One can then show The analyses in this paper are focused on the case in which
thaty; andy, form the same (absolute) angles with the positivéistortion due to quantization is small and linear estimation is
x1-axis. For convenience, suppase> 0 andb < 0; thenc > used in the decoder. However, because the quantization is in co-
0 andd > 0, as shown in Fig. 10(a). Let; and 6, be the ordinates in which the components are independent, itis not too
angles by whichp; and . are below and above the positivedifficult to compute true (nonlinear) minimum MSE reconstruc-
x1-axis, respectively. Thetan 6, = —b/a = d/c = tanf,. If tions.
we assumer; > o, then the maximum angle (for = 0) is Without loss of generality, consider the case that decoder
arctan(a; /o) and the minimum angle (fos — oc) is zero. 1 has received descriptiop . The initial quantization of the
This means that fop = 0 the analysis basis has vectors atource vector: followed by an invertible transform indicates
anglesarctan(oy /o2) from thez;-axis; asp is increased, the thatz lies in a particular union of square cells (see, e.g., Fig. 7)
analysis basis closes in on the-axis. Thus, as the redundancy
is increasedy; is emphasized ovet, because it has higher
variance (see Fig. 10(b)).

D. Modifications for Centroid Reconstruction

x € Cz(ﬁ) = U Cyr/a, ks

4) Optimal Transforms that Give Balanced Ratekhe fe=reo
transforms of [1] give descriptions with unequal rates. lyhere
practice, this can be remedied through time-multiplexing. An
alternative is to use the “extra” degree of freedom to make Chy ke = {x ‘ T([x]a) = (k1 kQ)A},

R; = R,. Doing this is equivalent to requirinig| = |¢| and

0] = |d], and yields (ReadCy, &, as the set that maps @, k) andC_” as the

T oy set that maps téth component equal th.) The estimate that
a= =+ \/5 o (22” + V24 — 1) minimizes MSE is the conditional expectation:ofjivenz €
' ¢ This is not too difficult because each, , in Ci* makes
1 1o independent contributions to the estimates of each coordinate.
b=+ % = i\/ — (2217 — /2% — 1). Written in a general form, the optimal estimate is given by

and

50’2

These balanced-rate transforms will be used frequently in the .

. : U:E[ ‘ C(l)}——
x x|x el
i'seetquel, so we introduce a notation for them. For any nonzero o fc§11> For 2o (@1, 2) dzy di2

fcm xf.m T (371, 372) dzy dxo
Y1

T - (20)7" (38) wheref is the joint pdf of the source vector. This computation
R P P is simplified first by decomposing(" and then by the fact that
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the integral off over eaclty, 1, is separable. Letx, ., be the The numerical results given in Fig. 11 consider two sources

probability ofz € Cy, x,. Then and two base coding rates, for a total of four comparisons. The
sources have independent components with= 1 ando, €
Dhy, ke = / Jo1 w0 (21, x2) dz1 dzo {1/2, 1/4}. The base rates are 2 and 3 bits/component. Robust-
Chy kg ness is measured by an equally weighted average of side distor-
- (erf ( 270 (jy + 1) A) tions (D + D»)/2, so the transforms (38) are among the op-
timal transforms; these are used in the computations. Operating
— erf ( 2 (5 - 1) A)) points for MDCT are obtained by a fine samplingcaf
2, The operating points for MDSQ are obtained by trying
: (erf ( 7 (2+3) A) each of seven possible UMDSQ index assignments (see
Z1/2 1. 1 Section II-C1)) on each of the two components, giving 49
— erf (2 PPoyt (2= 3) A)) operatings points. Only the “useful” ones are shown; those with

average side distortion per component more thein+ o3)/2

are discarded, as are those strictly worse than any other oper-

ating point. This strategy is essentially prescribed by the theory

VR since using no transform is optimal according to [43].

My, by = /Cklkalf’“””z (1, 22) dzy de, Theorem 1 does not directly give us performance bounds for

203(27()_1/2 (6_27105(],1_% 2 A2 _6_27105(].1%)“2) ;he Isources that we consider. However, it does give bounds to

pply separately to each component. The approximate bounds
“12, _1 shown in Fig. 11 are obtained by fixing the central distortion for

<erf < <12+ ) A) each component to match that of the other systems and then op-
1 timally allocating redundancy across the pair. This redundancy

et (o (-3) )

whereT((j1, j2)A) = (ki, k2)A. Similarly simple integrals
give the contribution of a cell to each first moment

2= 5 allocation is straightforward because of the monotonicity of the
bound (8).
Ej) ko —/ X2 fay w, (%1, x2) dz1 dzo An initial observation from the graphs is that the analytical
k1kg performance curves for MDCT follow the actual performance
=o2(2r)1/? (e— o5(j2—3)°A% _ —27 "0} (jz+%)2A2) v_vith .midpoint I’eCOI’]S.}tI’L.JC.tiOI’]. The gapisdueto n_egllecting guan-
tization error, and diminishes as the base rate is increased. We

. <erf < -1/2, ot <J1+ 1) A) may.also observe a general similarity in shape between the ap-
2 proximate bound and the performance curves.
—af (2200 1 A In the examples shown, the comparison between MDCT and
2 2 ' MDSQ is summarized as followshe correlating transform

method is better at low redundancies and MDSQ is better at
high redundanciesThe near-continuum of operating points is
another potential advantage of MDCT. A more nuanced view

The optimal estimate is then given elementwise by

Z mél)/A k2

(1) _ ka=ioo recognizes that the method of choice depends also on the base
& T rate and the ratio; /0.
. E Dyi /A ke First, the base rate. Increasing the base rate improves the per-
e 0o

formance of MDSQ, but has little effect on the performance of
Since the Gaussian pdf has light tails, the infinite sums can MDCT; thus, MDSQ becomes more suitable as the base rate is
truncated to a small number of terms. increased. Considering MDSQ, as the base rate is increased the
In an application in which” is fixed, a table of optimal re- number of useful index assignments increases (see Fig. 4). Also,
constructions could be precomputed for each side decoder.tt& central distortion decreases and, since the side distortion ap-
similar precomputation would be needed for MDSQ with cerproaches the central distortion, the side distortion drops more
troid reconstruction.) To allow’ to be varied easily, one could quickly as a function op. On the other hand, as shown in (37),
precompute each appreciable cell probability and cell momettie performance of MDCT is largely independent of the base
These can then be easily combined to form the optimal estimatate.
In this way, one can take advantage of the smoothly varyingSecond, the ratio; /o». It is clear from (37) and the perfor-
redundancy—distortion tradeoff provided by correlating tranmance plots that the usefulness of MDCT increases as the ratio
forms. o1/02 increases. However, at the same time the performance
of MDSQ improves and the approximate bound decreases. In
both cases, this is because redundancy can be allocated to the
To conclude this section on coding two-tuples, we create a semponent with larger variance. When/o2 = 1, MDCT is
of numerical calculations to compare systems with correlatimgrtainly useless, but large /o> does not imply that MDCT is
transforms against those with MDSQs. These computed perfbetter than MDSQ.
mances are also compared to estimated performance (37) andAnother observation from Fig. 11 is that there is a limit to
bound derived from Theorem 1.AWiLAB code to generate thesehow much redundancy can be added. Though obscured by the
results is available on-line in conjunction with [33]. analysis that neglects quantization, this is quite clear: There is an

E. Numerical Results and Comparisons
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Fig. 11. Comparison between MDCT and MDSQ with estimated performance (37) (dashed) and an approximate bound (bold) also shown. In each graph, the
upper and lower MDCT curves are for midpoint and centroid reconstruction, respectively. In all cases, the source has independent components. Witle

two rows haves, = 1/2 and1/4. The two columns have base rates 2 and 3 bits/sample. The vertical dotted lines indicate the redundancylabdiesl

simply to the use of scalar quantization. This portion of the redundancy is approximately 0.255 bit. The comparisons show that correlating &r@ngfamdnat

low redundancies.

initial representatioffic] » and the redundancy can be no greatédrchard, Wang, Vaishampayan, and Reibman [1] and of our
than to repeat this representation over each channel. Wien work of the previous section ty > 2.
large enough, each of the cells with appreciable probability islt is not difficult to extend the calculations in Section Il to
uniquely identified separately hy andys. The MDCT perfor- find optimization criteria for the general case; this is done in
mance, with centroid reconstruction, becomes the same as $setion 1V-B. It is considerably more difficult to find the op-
repetition code incarnation of MDSQ. timal transforms, so we are only able to do this in certain cases.

Finally, the reconstruction method—midpoint or centroid— _
makes a big difference for low-rate MDSQ. This suggests high Design
sensitivity to the source density; care should be taken with non-Let {x;,} be an i.i.d. sequence of zero-mean jointly Gaussian
Gaussian sources. vectors inR™ with a known distributiori¢ Because we could
use a Karhunen-Loéve transform (KLT) at the encoder, we may
assume without loss of generality that the componenis, @ire
independent with varianceg > 03 > --- > o3%..

We now turn to the communication of vectors with more In correlating transform-based MD coding, each source
than two components. This section describes a method f@ctorz is processed as follows.
MD coding based on using transform coefficients or sets of
transform coefficients as descriptions. The reconstruction from
a proper subset of the descriptions exploits a statistical correla-
tion between transform coefficients. Thus, this technique may _ )
be dubbed statistical channel coding for an erasure channel2) The vector? = 2, 2%, ..., 2} ]"is transformed with
A square transform is used, so for coding ARdimensional an invertible, discrete transforffi: AZY — A7V, y =
source at mostNV descriptions are produced. The method 18Note that it is the vectors, not the scalar components of the vectors, that are
is a generalization of the pairwise correlating transforms oifd.

IV. CODING LARGER VECTORS

1) z is quantized with an unbounded uniform scalar quan-
tizer with step sized; i.e., ! = [x;]a, where[-]a de-
notes rounding to the nearest multiplesf
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T(azq). T is within a certain quasilinear class describetheny,, | 7. is a Gaussian random variable with m@ﬁRflgjr
below. and correlation matrixfty — BTRl_lB. Thus

3) The components afare placed intd/ sets (in ara priori o T~
fixed manner). These sets form thé descriptions. Elgu |9:] = B7 R4

4) TheM sets of coefficients, i.e., the descriptions, are eRnd the reconstruction is
tropy coded independently from each other. This stage
may use block codingithin one descriptiorio improve s=7"1 [ I 1} e (40)
efficiency. BYR* |

The transforni” is a discrete transform derived from a linear
transform?’, with det 7" = 1. In extending (15) to more than B. General Optimization Criteria

two Components, first” is factored into matrices with unit di- AsS before’ the choice of the transfoffhdetermines the per-

agonals and nonzero off-diagonal elements only in one row @mance of the system. This section develops the relationships
column:T" = 1113 - - - Ty The discrete transform is then giverpetween the transform, rates, and distortions necessary to de-

by sign 7.
. . Estimating the rate is straightforward. Since the quantiza-
T(z") = [ T2 [Tia]a) A o - tion is fine, y; is approximately the same &I'z);]a, i.€., a

. . . . uniformly quantized Gaussian random variable. With =
This construction of the transform ensures tha invertible TR,T”, the variance of; is Uzi- = (R,)ii. Thus, using (24),

on AZN. See Appendix | for details. _ _ the rate per component is
The analysis and optimization are again based on high-rate
(or fine-quantization, smalh) approximations. These approxi- 1 X 1 X 1 N
mations facilitate the analytical treatment of the desigitofr R= N Z H(y)= IMJFW Z log ai = IMJFW log H ai .
at least the generation of an optimization criterion. i=1 i=1 i=1
When all the components gf are received, the reconstruc-r

. : ) . i he minimum rate occurs when
tion process is to (exactly) invert the transfdfno getz = z9.

If some components af are lost, they are estimated from the N ) N ,
received components using the correlation introduced by the Hay; = Hfff,
transform?’. i=1 i=1

Recall that the variances of the components afecs?, o3,

. ’ and at this rate the componentsyoére uncorrelated. As in the
..., o3, and denote the correlation matrix oy

two-tuple case]’ = I is not the only transform which achieves
] s o ) the minimum rate. In fact, an arbitrary split of the total rate
R, = diag(oy, 03, ..., oy ). among the different components fis possible [48]. This is

a justification for using a total rate constraint in our following

With f|;1e quantization, the correlation matrix gfis B, = naiyses. The excess over the minimum rate is the redundancy
TR, T*. By renumbering the variables if necessary, assume

thaty1, yo, ..., yn—¢ are received an@gn—_s41, ..., ynv are 1 N 2 9

e H “ H ” “ : ” H pI—lOgHO' [N
lost. Partitiony into “received” and “not received” portions as ON L Ty
Y = [0, O]’ Where =

(41)

When all the transform coefficients are received, the distor-
T A tion is due only to the initial quantization; as in the two-tuple
Ue =1, y2, - Yn—i] ' ' _
case, (21) holds. The distortion when reconstructing from a
. - proper subset of the descriptions is more complicated.
Yor = [YN—t4+15 -5 Yn—1, YN] - With more than two descriptions, our earlier notation be-
o _ . _ . comes inadequate. With/ descriptions, there arg — 1
The minimum MSE estimate of giveng; is Efz | %], which  hanirivial reconstructions, each with a potentially distinct
has a simple closed form becausis a jointly Gaussian vector. yistortion. Assign to each channel a state {0, 1} to denote
Usipg the linearity of the e>.<pectation operator gives the folyhether the channel is receivet]) (or not received @). For
lowing sequence of calculations: any system staté = s; X sy X - - - s/, the distortion will be
. B . B . B denotedD(,,  s,, ... s,
& =Ela|i]=E [T Ta|g] =T E[Tz| 3] The optimization cost function is a weighted average distor-

- % || ~ - Uy tion
=T IEHYL;J”%}:TI{E[YJZJIYJ]} (39) -
) ) ) D: Z a(Sl,Sz,...,S]\/[)D(Sl,sz,...,S]\/[) (42)

If the correlation matrix of; is partitioned compatibly with the 5:1C(0, 1}, 1<i<M
partitioning ofy as where

= R B Z sy, 82, .., 800) — 1.
Ry B [BT RJ 5;C{0, 1}, 1<i<M

and
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In the simplest casey, ., ..., s,,) could be the probability of asys; and to use an optimal x 2 transform to producg; and
state(s1, sz, ..., spr). In this case,D is the overall average .. This assertion is formalized by the following theorem.

MSE. Other meaningful choices are available. For example, if
certain minimum quality is required whénof M channels are on channel 1 ants, ys) is sent on channel 2. To minimize the

. ]\/[ . L . .
recelved,_then th?wk )_lstatgs Wit si - k can be ass!gned average side distortiof; with an upper bound on redundancy
equal weights of ;) *, with the remaining states having NOy, it is sufficient to optimize over transforms of the form

4Theorem 2: Consider MD transform coding wheig is sent

weight. In this case, the optimization will make the distortion ~

equal in each of the states wifhchannels received and this { T 02“} P (44)

distortion will be an upper bound for the distortion when more Ox2 1

thank channels are received. with T € R2*2, det T = 1, and P a permutation matrix.
We now compute a generic distortion facoy,, ,,. .. .- Proof: See Appendix II-A. O

This computation was almost completed in the development of h 2 red h ber of desi ters f
(40). Renumbering the variables if necessary, assume the las eorem < reduces the number of design parameters from

£ components of; are lost and partition the received vector a&'9 tto thre_e a_nd makes the design of an optimal transform a
before. Let; be the error in predicting,, from g, 7 = i — simple application of the results of Section Ill. A transform of
. nr Iy - nr

E[fe | 7], which is a Gaussian random variable with zero meaine form (44) shuffles the input variables and then correlates the
and correlation matrixd. — Ry— BT R~ B. Substitutingjn.—7 irst two. Since the order of the elements in a correlated pair
— 1 1 . nr

for Ejim: | ] in (39) gives does _not matter, the permutation can be limited to one of the
following three:

N _ e _ 0
xZTl{Q y—n}szrTl{—n} 100 01 0
o nr P1 :I7 P2: 0 0 1 , and P3: 0 0 1
0 1 0 1 0 0

2
=nTUTUn Let us consider a generic choice among the three permutations

by assuming that the outputs of the permutation have variances

¢Z, <2, and¢Z; i.e., applying the permutation representediby

) oo o to (02, 03, 03) gives(cZ, 3, ¢3). Recall the original ordering

Ellz — &|* = E [t(n" UTUn)] = E [tx(m" U V)] of the varianceso? > o032 > o32) and notice that the three
:tr(AUTU) . (43) permutations under consideration preserve the ordering of the

first two components:? > 3.

st )
U

whereU is comprised of the lagtcolumns off’~!. Finally,

The problgm Is t_o mi_nimi.zé_) su_bject o a constraint OR'. The component with variance; is sent over channel 2
The expressions given |nth|s'sect|qn can be used.to numeric I?(hout any channel protection. (It is uncorrelated with the
determln_e tra_msform_s to re‘f""ze this goal. Analytical SOIUt'ono h(?r components.) Since channel 2 is lost half of the time and
are p035|ble_|n certa_m special cases. Some of these are Oum{hee distortion is measured per component, this component con-
in the following sections. tribgtes<§/6 to Dy, independent of . Now the optimization
of 7" in (44) is precisely the problem of the previous section.

: o i , Thus,7” can be chosen in the form of (38) and
The simplest generalization of sending two variables over two .

channels is to keep the number of channels the same, butto in- p, — lgg + o3+ = )

crease the number of variabl®s The significance of having 6 3 6 - 2% (2% + /260 — 1)

two channels is that the transform coefficients must be placgfle second and third terms of (45) come from evaluating (37)

in two sets. The distortion expression (42) has 5t= 4 and rescaling the redundancy and distortion to account for the

terms—noR" terms—because each set is either received in fidhange from two to three components.

or lost in full. Now we can choose the best permutation; i.e., the permuta-
The general solution for sending two variables over two chafion yielding the lowest side distortion. The three permutations

nels can be used to derive methods for sending more variali@se the following average side distortions, respectively:

over two channels. These methods use at d&t2] trans- 2 2
. . . 1,1, o1 — 03
forms of size2 x 2 in parallel and thus have complexity that (Di)1==03+ 302 +

C. Techniques for Two Channels

(45)

is only linear in the number of variables. For simplicity, it is as- 6 623 (2% + /200 — 1)
sumed that the channels are equally likely to fail. Doy, L2 1 o o — o3

1) Three Variables: The natural first step is to consider the (Du)2 = 6721t 3% % o 5, (2% + /25 — 1)
transmission of three variables. Suppageis transmitted on 1 1 o2 — o2
channel 1 andys,, ys) is transmitted on channel 2. We could ~ (D1)s == 07 + = 03 + 2’3

.93 3 26 — 1Y)
start as before, designing3ax 3 transform with determinanit 6 3 6-2°¢ (2 72 1)
to minimize the distortion given by (42) and (43). The eight fre€he best permutation B, because
parameters make this a difficult optimization. A much easier (D)1 — (D1)s
way to determine the optimal performance is to first reduce the
) < - 23,;(

number of parameters without risking a loss in performance. It _ 1 (Ug _ O,g
6

turns out that it is sufficient to send one of the original variables

1
>0
23ﬂ+\/26ﬂ—1)> =
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and Since the canonical building blocks defined in (38) solve the
(D1)s — (D1)2 problem of designing7;, : = 1, 2, we may write the transform
as
1,, 9 1
=—(lo]—0 1-— > 0.
6( 1 2) < 23/7(23/7_’_1/26/7_1)) - T = |:T81 TO :|P
To summarize, transforms of the form *
a 0 (20)° We only have to select the pairing and two transform parameters.

The ordering of a pair does not affect the possible perfor-

-1
—a 0 (20) mance, so there are three permutations of interest
0 1 0 1000 1000
attain the optimal performance 0010 0001
L, o1, - P=l P=1g 19| a9 B=]g199¢
Dy =-oy+ 03+ 0001 0010

6 3 6-2% (2% + /260 1) . T .
This performance is matched by many other transforms, but E‘tt us c9n3|der a generic choice among the2three E’y a;lssumlng
that the inputs to transforffi,, have variances; and¢s, s7 >

surpassed. ) ) :
2) Four Variables: We now move on to communicating four§22’ and the inputs to transforrﬁa_z have vgrlance_sg and g‘%’.
2 > <. Denote the redundancies associated with the pairs

variables over two channels. The problem is similar to the o@%d respectivelv. The redundancy and distortion are both
we just solved if one channel carrigg and the other carries P2, P Y- Y

(42, y3, v4). In this case, a result analogous to Theorem 2 hola%‘,jd't've between the pairs, so the problem is to minimize

revealing that it is sufficient to consider transforms of the form D, = 1(d1 +dy) (47)
= 2
T 0 . .
T= 2| p subject to the constraitit
O2x2  Loxo )
whereT is a2 x 2 correlating transform ané is one of six Slptp2)<p (48)
permutations.

. _ .whered; andd, are the side distortions contributed by the first
The best choice of permutation causes the correlati 94 second pair, respectively. According to (37)
transform to be applied to the components with the largest and ’ '

. . 2 2
smallest variances. The result is a transform of the form dy = 1 g22 + 51T %
a 0 0 (2a)71 2 4.22m (22171 +4/2%1 — 1)
—a 0 0 (2a)7% 1, -
0 1 0 0 dy =56+ )
2 4 . 92p2 (22/72 +4/24r2 — 1)

0O o1 O

and optimal performance is given by Sinced; andd, are strictly decreasing functions pf and -,

respectively, (48) can be replaced by an equality. The optimal

Dy = 1 o2 4 102 + 102 + of — of split occurs when both pairs operate at the same distortion-re-
8§ 27873 474 g0 (2% + V2% — 1) dundancy slope. However, sindd; /Jp; is complicated, there

Let us now consider the case where each channel carries /82 Simple closed form for operating at the same slépe.

coefficients; for concreteness, one carries the odd-numbered cd-€t
efficients and the other carries the even-numbered coefficients. _ 1

The transmission over two channels and the allocation of the clp) = 22p (22/7 + \/ﬁ) ’
coefficients to channels does not place any limitation on the
transform. However, we can again place a simplifying limita=0r 1argep, thel in the denominator becomes negligible, so
tion on the transform without loss of optimality. It is sufficient c(p) ~ 1 1 (49)
to consider pairing the input coefficients, applying a 2 cor- P 92p (22p + \/27,7) 2. 240"
relating transform to each pair, and sending one output of each
2 x 2 subtransform over each channel. This is justified by thEhe error made in approximation (48) is shown in Fig. 12.
following theorem.

1"The factor of1 /2 is present as normalization because redundancy is mea-

Theorem 3: Consider MD transform coding Whe(@l Ug) sured per component. This applies also totfi@ in (47). Note also that;'s
. ¢ h 1 . t h |2 ‘T’ <=7 arepartial side distortions; hence, the use of a new symbol.
is sent on channel 1 ar{g-, v4) is sent on channel 2. To mini- 18\atching the slopes gives

mize the average side distortid?y, with an upper bound op, , .
o _ 7 (160 — o) + V72 (16aff —3)* 4 64afeicd

it is sufficient to optimize over transforms of the form al = i
~ 20763
|: Tl 02j<2:| P (46) where
] S =)
with T; € R?*2, det T; = 1,¢ = 1, 2, and P a permutation 263 (s7 —¢3)
matrix.

) This exact relationship is used in generating Fig. 13, but is too complicated to
Proof. See Appendix II-B. ] use in drawing general conclusions about best pairings.
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1 T T o, =1.29, o,= 1.03, 03=0.92, 0’4=0.64

— actuat 05
0.9 - — approximation y T T T N

D‘ (MSE per component)
o o
-~ &

8

0'30 0.2 0.4 0.6 0.8 1

p (bits per component)
Fig. 12. |lllustration of the accuracy of the approximationcp) given by
a
(49). o, = 1.31, O, = 1.23, g, =g41‘)i. o, = 0.96, 0‘5=0.G1, Cg = 0.44
05 T
Using (49) it becomes feasible to optimally allocate re- e
dundancies analytically. Operating at equal slopes means that oasl e T (:383;
ddy /0p1 = d2/3p2, yielding, together with (48), two linear o B o
equations with two unknowns: § oo e
s E‘OA- -~ (L4126 |
Lo 64— 8 -- (15.23)
PL= P2 =7 log - 2 B Bl -
_ oo W o.as| |- veea
p1+p2 = 2p s H - = {1.6){2.4}
o — {1.8)255)
Solving for the optimal split of redundancies gives °
0.3}
1, -6
p1=p+ log H—73% (50)
8 §3 - §4 0.25 L . L .
1 gg _ gg “o 0.1 g:tzs 0.3 . 0.4 05
po=p— g log % (51) p (bits per component)
3 T %%
- . : _— (b)
Substituting (50) and (51) into (47), using the approximation
(49), gives Fig.13. Numerical calculations using the exact redundancy allocation solution
(without approximation (49)) confirm that the nested pairing is optimal for all
D, = % (g22 + gi) + % ((gf _ g22) (§§ _ 2))1/2 9—4p rates. (a) A random instance with two pairs. (b) A random instance with three
pairs.
To minimize D, for largep, we can immediately conclude that
2 and ¢ should be the smallest of the's. This eliminates whereP is a permutation matrix. Again lef, <Z, ..., <3, de-
permutation P;. The following manipulation shows thatnote the variances of the components after the permutation, with
1 >¢3> su > ¢ is the ideal sorting, i.e., the largest variances, ; > ¢, fori =1, 2, ..., K. Denote the redundancy asso-
and smallest variance components should be paired,; ciated with7,, by p;. We then have a similar problem as before.
Minimize
2 2 2 2 2 2 2 2
(<1 _<4)(<2 _<3) - (<1 - <3)(<2 - <4) x
2 2 (.2 2 *
=—(¢ —¢5)(5 —55) 0. 1
| i ats o) Di= g > ©)
In other words,P; is the best permutation. We will see shortly i=1
that this “nested” pairing method generalizegd@airs as well.
3) 2K Paired Variables: Let us now consider transmission > _ 2
of 2K variables over the two channels with the odd and evep = = (2, + : %2_1 <21 ,
indexed coefficients sent over channels 1 and 2, respectively. 2 4.2%: (227 4 /2% — 1)
The extension of Theorem 3 #§ pairs of variables would seem fori=1,2,..., K
to naturally hold, but no proof of this has been found. Cons'dgﬁbject to the constraint
transforms of the following form, though we have not proven X
that this restriction is innocuous: 1
T p= K Z Pi- (53)
a1 t=1
T = e p Using the approximation (49) for large and imposing the

equal-slope conditions gives a systemflinear equations
Ty with K unknowns & — 1 equations coming from equal-slope
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conditions and an additional one from (53)). The solution of 02

this system is the optimal redundancy allocation of 0.31
0.3

K 2 2
pi = p+ 1 IOg $2i—1 — S 0297
/ A 5 ST o2

fori=1,2,..., K.

The resulting average distortion with half the coefficients lost is

Distortion with 2 of 3 descriptions lost

X 1/K
H(ggi—l_ggi)] 274, (54) o22f . pmoe

=1 0.06 0.07 0.08 0.09 0.1 0.1 0.12 0.13
Distortion with 1 of 3 descriptions lost

1 & 1
Dy = 2 1
1 2K;§22+8

This distortion is minimized by the “nested” pairing under thEig. 14. Numerical results for sending a three-dimensional source with

conditions of the following theorem. (01, 03, 03) = (1, 0.7, 0.4) over three channels. Transforms were optimized

. .. . . o at several redundancigs(in bits per component), yielding the solid curves.
Theorem 4 (Optimal Pairing):Consider the minimization The marked points are obtained with transforms given by (55), indicating
problem in (52) and (53), where in addition to choosing theearly minimum distortion with one lost description. The axes cross at

K i ‘o K (0.4% 4+ 0.7%)/3 and 0.4%/3, the minimum possible distortions (requiring
pi’S ONe Ca_n choose the pairing by permu-tuglg. Theg’s a_re high redundancies) with one and two losses, respectively.
a permutation oéy > o2 > --- > o2x. At high redundancies,

the minimum distortion is achieved with the nested pairing ] ) ] ) )
In attempting to prove this conjecture using the techniques

G2i—1 = 04,62 = O2k+1—i, ¢ = 1, 2, ..., K. _ : . )
Proof: See Appendix III-C. o of Appendices II-A and II-B, one is faced with the following
problem. Let
Applying the nested pairing of Theorem 4, (54) becomes
pplying p g (54) AL A, As K
| X , S ., /K ) R, = AT As As K
D= o z_; Tk+i T g 1:[1 (07 = o2k41-3) 2= AT AT A N -2K

K K N-2K
Whereas using (49) helped us derive the optimal pairing apd . - L . .
the optimal redundancy allocation, there are two problems wi a positive-definite m_a_trlx W'th block dwn_ensmns as marked
using this approximation. First, (49) is not a good approximatioef‘{1d ﬁ_l’dAé’ an%%3X£03|t3/$/dlagﬂg(r)\glgi\'[(rjlge;.) The Eroplhem
whenp is small (see Fig. 12). Second, the Lagrangian redu\géto Indvi € h th andvz € » each wit
dancy allocation solution (50) and (51) may ask for a negati terminant, such that
redundancy, which is impossible. However, numerical Ca|CU|i'V1 0 } R [VIT 0 }
Y

tions (see Fig. 13) verify that the nested pairing is best over allo0 V5 0 Vi

redundancies. Iy B Orxn—2K

4) Other Allocations of Coefficients to Channel$heorems _ BT r 0w i

2 and 3 are suggestive of the following more general result. B 2 RN =2k
Onv—orxr On—2rxK I's

Conjecture 5 (Generality of Pairing) Consider an MD trans-
form coding system withV variables sent over two channelsWith I'1, I'2, I's, and B all diagonal matrices.
Suppose the transform coefficients are assigned to channels witeh0osingVy and Vs, each with determinart, gives K* +
(y1, ys, - -, y2c—1), K < N/2, sent on channel 1 and the re{N — K)? — 2 degrees of freedom. The number of independent
maining coefficients sent on channel 2. Then, for any redugonstraintsisV(N —1)/2—K.** ForallN = 2andK > 1,the
dancyp, a transform that minimizes the average side distortigwmber of variables is greater than the number of constraints.

D, can be found in the form This suggests that a solution can be found, but does not guar-
antee it. The proofs of the earlier theorems use explicit deter-
T, minations of suitablé; andVs; unfortunately, these depend on
Ty, R, in a nonlinear fashion, so they cannot be generalized in any
T — . P obvious way.
Toy

/ D. Techniques for More than Two Channels
N2k The extension of MDCT coding to more than two channels

where eaclf,. is of the form (38) and® is a permutation ma- is hindered by design complexity. Applying the results of Sec-
trix. The permutation map:;, z, ..., 2] to tion 1V-B to the design of3 x 3 transforms is considerably

1%Independent” is used loosely here to indicate constraints that are not ob-
T . . . e ;T
[a:l, IN, X2y EN—1y ---» LKy TN41—K> LEK415 - -5 a:N,K] . viously identical due to the symmetry of the prodiicR, V7.
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more complicated than what has been presented thus far be-

cause there are eight degrees of freedom remaining after fixing 1 %
. . . T, T,

det T" = 1. Even in the case of equally weighted channel fail-

ures, a closed-form solution would be more complicated that

Y2

(36).

Assumes; > g2 > o3 and, furthermore, that the loss prob- T3 | s
abilities are small. Then one loss occurs much more frequently T T
than two losses. Motivated by maintaining symmetry with the | s i Ya

coordinate axes and skewing the analysis basis toward the two
components with largest variance, while keeping the rates and

importances of the descriptions equal, leads to transforms @é’-‘ 15. Cascade structure for MDCT coding of four variables to be
ransmitted over four channels. The cascade structure simplifies the design

scribed by procedure by reducing 15 free parameters to three. The use iofboth
_ \/3 - second-stage blocks is because each first-stage block produces streams of equal
_ o1r 72 rate and equal importance.
02 6\/30%@2
2a 07222 (55) ficult, but distortion can be reduced simultaneously for one and
6v/307a two erasures (three-erasure performance is also improved, but
V3o1a o9 not shown). Allowing a generdlx 4 transform makes optimiza-
a _ . . .
i o2 6v/302a2 | tion considerably more difficult, and does not further reduce the

) , distortion with one erasure.
for arbitrarya. Fig. 14 compares the performance of transforms

chosen from this set to arbitrary numerically optimized trans-
forms for a source witfloy, o2, o3) = (1, 0.7, 0.4) when each
description is equally likely to be lost. At any particular redun- In practice, it is unusual to see a Gaussian source with a
dancy, the distortion with one loss and the distortion with twisnown distribution. Nevertheless, transform coding techniques
losses can be traded off. At the computed redundancies, tra@rs prevalent in audio, image, and video coding. This section
forms given by (55) are nearly optimal when the distortion withriefly describes applications of correlating transform-based
one lost description is more heavily weighted than the distortiddDs to image and audio coding. Details appear elsewhere in
with two lost descriptions. the literature.

A simple heuristic for designing systems with more than two
channels is to cascade small transforms. Just as the parallelAsépplication to Image Coding

of two-by-two transforms gave a method for sendiiq vari- ~ On the Internet, images are usually communicated with pro-
ables over two channels, a cascade combination of these trajigssive source coding and retransmission of lost packets. When
forms gives a method for sendig variables ove2™ chan- there are no packet losses, the receiver can reconstruct the image
nels. The cascade structure simplifies the encoding, decodiggthe packets arrive; but when there is a packet loss, there is a
and design when compared to using a gengfalk 2™ trans- |arge period of latency while the transmitter determines that the
form. packet must be retransmitted and then retransmits the packet.
The simplest instance of the cascade structure is showntiRe |atency is due to the fact that the application at the re-
Fig. 15, where four variables are sent over four channels. T@éiving end uses the packets only after they have been put in
is equivalent to the use of a transform of the form the proper sequence. To combat this latency problem, it is de-
10 0 0 sirable to have a communication system that is robust to arbi-
T— [TA, 0 } 0 010 [T(y 0 } (56) trarily placed packet erasures and that can reconstruct an image
|0 T,]|{0 1 0 O 0 1p progressively from packets received in any order. The MDCT
0 0 01 method of this paper seems suitable for this task.
Thought in (56) has only three degrees of freedom—in place of It is precisely in the co.ntext of_ image communica}tion that
15 in a general determinanttransform of this size—empirical Wang, Orchard, and Reibman introduced correlating trans-
evidence suggests that this class of transforms is sufficiently rfgjms for MD coding; their image coding results appear in

to give optimal performance for one lost description and nearﬁ}o]' (No image coding results appear in their later papers [1],
optimal performance for two lost descriptions. [11].) Image coding results using the generalized framework

For a numerical example, consider redundapcy: 0.125 presented here appear in [15]. These experiments indicate the

bits/component added to a source is described by expegted behavior: at t.he expense of a slight increase in bit
rate, image representations can be made more robust to packet

(01, 02, 03, 04) = (1, 0.8, 0.6, 0.4) losses. Conventional channel codes adding such a small amount
edundancy are not as effective.

V. APPLICATIONS

to mitigate erasure effects. Assume each description is equé]f)f
likely to be lost. Limiting attention to two parall@l x 2 trans- L ) )
forms as in (46) gives a relatively simple optimization over tw- APPlication to Audio Coding

variables, but gives the worst performance (see Fig. 16). With aTo provide the MD feature for packetized compressed audio,
cascade transform (56), the optimization is somewhat more difrrelating transforms were introduced in a well-known existing
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03 code since all the received information will be useful, but the

loss of some of the transmitted information is not catastrophic.

Parallet 2 x 2 transforms {pairing}

| Cascade
of three

o
n
[

2x2
ranstorms APPENDIX |

PSEUDOLINEAR DISCRETE TRANSFORMS

14
N

General 4x 4 transform ; Invertible discrete-domain to discrete-domain transforms are
alternatively described as reversible, integer-to-integer, or in-
vertible in finite precision [53]-[55]. These transforms are based
on factorizations of matrices which make information flow in a

o
o
o

o
—~

Distortion with 2 of 4 descriptions lost

005k ] simple, regular way. Inversion can then be achieved by reversing
the information flow.
0 s s ‘ , . For example, one can factor aByx 2 matrix with determi-
0 0.05 0.1 0.15 0.2 0.25 03 . . . . .
Distortion with 1 of 4 descriptions lost nantl into three lower- and upper-triangular matrices with unit

diagonals as
Fig. 16. Comparison between the cascade transform (56), pairing, and a

generald x 4 transform for sending four variables over four channels. The (a b
source hagoy, 02, 03, 04) = (1,0.8,0.6, 0.4), and in all three cases T= c d
redundancy = 0.125 bit/component. With the zero-erasure performance held L o o _
equal, the cascade transform can simultaneously give better performance than 1 0 1 b 1 0
pairing with one or two components lost. Removing restrictions further by = (d _ 1)/b 1 0 1 (a _ 1)/b 1
allowing a generaft x 4 transform allows a further decrease in two-erasure L 4L 4L

i H —_—
distortion. T T T

or
, : . 1 —D/el[1 0][1 (d-1
coder: Bell LabsPerceptual Audio Coder (PAQ%0]. Experi- = (a—1)/c ( )e
) . . 0 1 c 110 1

ments confirm that the new MD audio coder is robust and grace- <L 4L 4L 4
fully degrades as the number of lost packets increases. The im- Ty Ty T;

plementation and results are described in [51]. Since the & ce the inverse of a block
sults cannot be adequately conveyed numerically or visually, the

reader is invited to hear them. Audio files are provided on-line in [ 1 0} or { 1 y}
aiff, wave,andnextformats at http: //cm.bell-labs.com/whol/je- z 1 01
lena/Interests/MD/AudioDemo/DemoList.html is simply
1 0 1 —y
VI. CONCLUSION 2 1! %" o 1

This paper has introduced a method for generalized Mr%spectively

coding using correlating transforms. The framework is the factors and chanaing the sians of the off-diagonal ele-
generalization of the method proposed by Orchard, Wal ents ging ¢ ¢

Vaishampayan, and Reibman [1]. In addition to extending theThe.more profound fact is that the simplicity of inversion

technique to more than two descriptions, we have provideq &, .ins if the off-diagonal elements represent nonlinear func-

complete analysis and optimization of the two-description Casfyns. Let[] represent rounding to the nearest multiplerof
allowing an arbitrary pdf on the system state. and let

This method is very effective in increasing robustness with
a small amount of redundancy. In contrast to transform coding T {1 a}
systems designed purely for compression, not robustness, it pro- lo 1]°
duces correlated transform coefficients. As “proofs of concept,”
applications of this method to image and audio coding welez € AZ?, then

the inverse @fcan be found by reversing the order

briefly described. 1 alla r1 + azy
The MD scenario provides a good analogy to communica-  [{1¢]a = HO 1} [M” = H o ”

tion over a lossy packet network. For this reason, “description,” A A

“channel,” and “packet” have been used interchangeably. How- _ |:-T1 + [axz]a}

ever, this is not the only communication environment in which T2 '

MD -codmg may be ugeful. Effros gnd Goldsm|th. [52] ha\,’?‘hus,[TJL -|a is an identity operator except for a nonlinear func-
studied the various notions of capacity for general time-varying - of 5 being added ta . Direct computation shows thah
channels. One of their results is that more information can Be, 4omainAz2 [T is the inverse operator. A cascade of

. . . . . y 1 / .
reliably received than can be reliably transmitted. With so ch operations is invertible in the same manner, so a factor-

thought, this is an intuitive result: it is less demanding to aSkf?{ationT — T\T>T; yields an invertible discrete transfori
every bit that gets across the channel to be correct than to askAoZg . AZ2 “derived from7” through

every bit that is transmitted to correctly get across the channel. R
For such a general channel it may be useful to use an MD source T(x) = [T1 [T2 [T32] A] 5] o - (57)
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The discrete transformy depends not onl{’, but the factor- VQAQVQ"{, respectively, wheré x andA¢ have decreasing di-
ization of I". Among the possible factorizations, one can minagonals. Then the optimization problem

mize a bound of{7(z) — T'z||. Let
W) = Tal] minimize J(7) = tr AUTTU  subjectto /T XU = Y

1 0 1 0 1 0
le[a 1}, Tzz[o 1}, and ng[c 1}- is solved by
Forz € AZ?, the computation (57) involves three rounding Uy = VX‘/X;(I/QVQTYV2 (59)
operations. Using;’s to denote the roundoff errors gives .
) yielding
o) =T, (T (Tw+ | O ) + %2 )+ |0
I N 81 0 83" J(Up) = tr AgAL:. (60)
Expanding and using; 7575 = T', one can compute This solution forl/ is unique up to the sign choices in defining
Vx and V.
" 0 82 0 Q
T -T = |11 T: T . .
H (@) xHoo ‘ 1z {61} i { 0 } + {63} ‘ - In the proof of Lemma 6, the following elementary fact is
- bs, . 5 . 0 used.
T (L4 ab)éy aby 63 ] || Lemma 7: Supposer BS = 0 for all skew-symmetric ma-

tricesS. ThenB is symmetric.

Proof (Lemma 7):For any: # 7, let.S be the matrix with
+1in the (¢, j) position,—1 in the (j, ¢) position, and the re-
This shows thai” approximateq” in a precise sense; in partic-maining elements equal to zero. Sirice- tr BS = B;; — Byj,
ular, 7(z) =~ Tz whenA is small. Bij = Bji. -

For N x N matrices, the process is similaf’. is factored Proof (Lemma 6): First convert the constraift? X1/ =
into a product of matrices with unit diagonals and nonzero off- {5 5 simpler form. Left and right multiplying by —/2 and
diagonal elements only in one row or colurih= 7175 - - - 7},. spliting X = X1/2 . X/ gives
The discrete version of the transform is then given by

| b

< (1+ max{[b], a +[1 + abl})

Y*l/QUTXl/Q 'Xl/Qnyl/Q = 1.

T(x) = [Ty [Ty [Thx] Al A ] « - 58 )
(e) = [LL [Tz [ ]A]A]A 8) With the definitionl/ = X1/2UY /2, we have the constraint

The lifting structure ensures that the inversd afan be imple- U7 = I o
mented by reversing the calculations in (58) The objective function is now

) = [t 1 ()] Uy =7 (X-H20vH2) (61)

° —tr AVV20T XL

The existence of such a factorization follows from the fact - -
=tr YY2AYV2UTX U (62)

that any nonsingular matrix can be reduced to an identity ma- 1
trix by multiplication with elementary matrices [56]. Since our =t QU XU (63)

original matrix has qetermlnam it can be represented as th(?/vhere (62) uses the fact that cyclic permutation of factors does
product of the following three types of elementary matrices:

not affect the trace. We are left with minimizing (63) over or-

« E{V, to subtract a multiple\ of row j from row; thogonal transformé/.

. P.. . A differential analysis will reveal a single critical point, up to
ij, to exchange rowsandy: sign choices. Sincd is positive definite, this critical point must

be a minimum. Consider a small changdtoU; = U + 6. To

i@bey the orthogonality constraint, we must h&ils = I. Ex-

pandingU% Us and neglecting thé? term gives the constraint

. ng), to multiply row+< by A and rowy by 1/A.

Efj‘) is already in the desired form. The remaining two can
factored as desired using the factorization2ok 2 matrices

above. Thus, any matrix with determinantan be factored as UTs +6TU = 0. (64)
required.
The perturbation has the following affect on the objective func-
APPENDIX I tion:
PrROOFs tr QU:;FX_I U5

A. Proof of Theorem 2

- T -
—uQ(U+5) x7(0+4)
The proofs of Theorems 2 and 3 utilize the following lemma. - . -

) 6 Lot A X andy b _ | B =t QUTX WU +tr QUTX 16
emma 6:Let 4, X, an e symmetric, real, positive- T 177 S
definite matrices and lef) = Y'/24Y1/2, Suppose both\ o ~QT6 )_(1 Urw@s TX _16
and( each have distinct eigenvalues. Denote orthogonal eigen- A QUIXTU 20 QUIXTT6 (65)
decompositions off andQ by X = VxAxV{ andQ = =JU)+2QUTX™1S
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where the approximation (65) results from discarding thdistortionD;. Lemma 6 is then used to show that the transform
O(]|é]|*) term and usingr M = tr M*'. Thus, a critical point that yields minimumD; among transforms with correlation
of J(-)isa transforni’/ that satisfies R, has the desired form (44). Since the performance with any
~ transform can at least be matched with a transform of the form
rQUIX™I8=0 (66) (44), the proof is complete. Each step is now detailed.
for all smallé satisfying (64). Recall thatZ’ is an arbitrary transform. Le®, = TR, 17,
The solutions of (64) are simple; they afe= US, whereS the correlation matrix of the transform coefficients wtEris
is an arbitrary skew-symmetric matrix. Substitutifig= /S, used. Sincg» andys are sent on the same channel, an invertible
the solutions of (66) ar& such thatr QUT X—1US = 0 for transform applied to the two will not chande,. However, if
all skew-symmetricS. Now, by Lemma 7QU7 X ~117 mustbe 2 andys are correlated, the rate can be reduced by applying a
symmetric. Notice the effect of transposing this matrix. Sindéecorrelating transform. Denote a KLT for
() and X are symmetric, the transposeli X ~1UQ; thus,Q (Ry)22 (Ry)os]
andUT X ~1U commute. [ ! !
Diagonalizable matrices commute if and only if they are (By)sz (Fy)z3 ]
simultaneously diagonalizable [57]. Furthermore, for a matriy v;, and let
with distinct eigenvalues, the orthogonal transform that diago- .
nalizes and leaves the diagonal in decreasing order is unique up Vi = { 1 0152 )

to sign choices. On one han@,is diagonalized as O Vi
VQT - Q- Vo = Ag; Then, using; 7" in place of7” does not change the side distor-
) ~ ~ tion Dy, and does not increase the redundancy
diagonalizing transform transposed transform K . X i i
- } After the application ol/;, the correlation can be written in
on the other hand;/* XU is diagonalized as the following form:
-~ -~ -~ -~ 2

viu UT VAT VEU - Utvy ¢ a1 ap

~—— —— S——
diagonalizing transform X1 transposed transform ‘/lTRmTT‘/lT = | a1 §22 0

= A)—(l_ az 0 F

Ignoring sign choices, we may equate the diagonalizing trangdis type of cor_relation structure cannot be produ_ced pyatrans-
forms using a permutation matrig, yielding PV3 = VEU. form of Fhe desired form (44) unleas = 0, so we simplify the
The permutation will be chosen after its effect is made clear. gorrelation structure further. Let

simple sequence of substitutions yields the optimal transform - 1 oytais 03 tassd
Uy _m { —a202 102
Up = XY20YY2 = vy AyPVE v PVE - YY/? and
— VA2 PVEYY2, (67) Vy = [0211 021.
Evaluating./(U/y) gives Then
Iy VaVi TR, TTVIVE
f?ﬁffig 12 2y pTA=V2UT =12 f 72 VoG taig 0
=t Y7V2Qy T2y VQJYD AyTVx VxAYTTP = | o7 /a2 Z T B3 05232 0. (70)
VEYL? (68) 0 0 o3
——

T o (The reason for selecting, with deference tar; is revealed
=tV QVo PTAY P later.) With reference to (41), recall that the redundancy
=tr AgPTAG'P (69) depends only on the product variances of the transform
coefficients. Since the product of the diagonal elements of
W%TRJ,TTVITVQT and V\TR, TTV' are equal, using
1T in place of V;T does not change the redundancy.
thermore, sincél, merely alters the second and third
components in an invertible manndp, is also unchanged.
With V' = W, V;, we have found a transform such tHat” is

We are now prepared to prove the theorem. The overall least as good for MD coding 5 andVT R, T7V7 has a
strategy is as follows: Starting with any transfoffin we can simple form; the first step of the proof is complete.
find a transform” such that”’I” results in identical side distor-  \We now wish to show that fak,, of the form (70), the optimal
tion and at most the same redundancy ag\t the same time, transform has the desired form (44). In light of the uniqueness
VT yields a correlatiorf?,, with a particular, simple form. This of the solution in Lemma 6, this lemma could be used to directly
simple form in turn leads to a simple expression for the sid®mpute the best transform for the givBp. This is not needed

where terms are separated to emphasize substitutions, and
derbraces in (68) mark terms that are subsequently commu
SinceAg andAx are already sorted in the same order, (69) Efjr
minimized by choosing the identity permutatiégh= 1. This
finally yields (59) and (60). O



2222 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 6, SEPTEMBER 2001

to satisfy the statement of the theorem. More importantly, our It remains now to determine the permutatiBrin (72). This
ultimate goal is to minimize the side distortion for a given redepends on how, must be permuted to match the ordering of
dundancy, not a givel,,. Even if two 1,’s yield the same re- Ax. First note thatA\x = X is sorted in decreasing order. It
dundancy, their corresponding minimum distortions may not linot necessary to precisely determine the eigenvaluéstof
the same; after finding the minimum distortion as a function dind the required permutation. The sum of the eigenvalueg of
R, we would have to minimize over alt, with the particular is given by
redundancy. Instead, finding only the form of the optimal trans-

_ 1/2 /2 _
form simplifies the following computations significantly. Q@ =ty EAY trAY

P . 1 —afya 0
To simplify notation, let
plify =tr | —a/m1 1 0| =3
m a 0 0 0 1
Ry=|a v 0 . . .
0 0 o2 From the form of (71) one of the eigenvalueg i$n the generic

case, the eigenvalues are distinct and so the remaining eigen-
Inverting TR, T" = R, givesUT R, 'UU = R,! where, as in values sandwich the eigenvalte To counteract the different
Section IV-B,U = T~1. Wheny; (channel 1) is lostd in (43) sorting of Ax andA¢, the permutation must move the third el-

is given by ement to the middle. With such a permutation, (72) simplifies to
-1 2 - - -1 1\ p 100
0 a a Y2V diag (o7, 03 ) P O
A=m-lo 01“)2 02} {0}:%——- T:{ adie (ot o07) o 01
2 v2 O1x2 1 01 0

When(y2, y3) (channel 2) is lost, the corresponding quantity is .
whereP is a2 x 2 permutation that depends on whethéy is

—1
A, = {72 02} _ [a} e 0]= {72 —n a? 02} . aclockwise or counterclockwise rotation. (The cancellation of
0 o3 0 0 72 o2 NOW retrospectively explains why this standard deviation was
The average side distortion per component when the chanrféigled out.) The final transform is in the form (44) and thus the

are equally likely to be lost is given by proof is complete.
This analysis could be pushed further to determine the op-
Dy = itr AUy, whereAd = [OAl 0114“} . timal transform. However, this would merely be the optimal
2x1 2 transform givenk,,, not the optimal transform for given redun-

Itis now clear that we have an optimization that can be solvel@ncyp. Applying this theorem, an optimal transform with an

with Lemma 6. Identify upper bound op is easy to compute using the results from Sec-
¥ = R;l _ diag(o-f?, 0_2,27 0_3,2) tion 11l (see Section IV-C).
and . B. Proof of Theorem 3
Y=R'= [ Y 02_*;} This theorem is similar to Theorem 2 so an abbreviated proof
Oix2 0y is given. The strategy of the proof is to start with an arbitrary

where we need not specily because we are primarily inter-transform7”. The corresponding correlation matrikR,, 1"
ested in sparsity. Other quantities that appear in Lemma 6 daay be fully dense, but there is a transforfiiwith determinant
easily be compute#. SinceX is already diagonal’y = Iand 1 such thatV TR, 7"V has a simple desired form andr
A)—(l/2 = diag(o1, 02, 03). The sparsity ol gives is no worse thar” for use in the system. An application of
iz g, viz g Lemma 6 then shows that the optimal transform is of the
Xll} A [ 2“} desired form (46). The simplification of the correlation matrix
O1x2 o0y

Q :Yl/QAyl/Q — |:
is detailed below, but the application of Lemma 6 is omitted.

-1
O1x2 o5

L [YYRAYM? 03 1 As in Appendix II-A, components sent over the same channel
- 0, 1 (71) can be made uncorrelated without affecting the side distortion,
2 hil tincreasing the redundancy. Using KLTs to decorrelate
so a diagonalizing transform @} will have the form whiie no 9 Y- 9
v 0 in such a manner gives
® 2x1
Vo = [ Q@ * } . ¢ ann 0 ap
O1x2 1 4 > 0
Now substituting in (67) gives ViTR,TTVE = | ™ % 221
- 0 a a
. V@T 02><1 Y1/2 02><1 21 §3 22
Uy = diag(o1, o2, 03)P 1| a2 0 axn
O1x2 1 O1x2 0, _ N s ~ .
The optimal transform is the inverse of, '1\10;’\' ;\:Ji\r,]v?#:tj like to findW, andWs with det W; = 1,1 =
?_I/QVQ O2s1 ] . 1 1 1 o
T= PTdiag (o1 %, 0,4, 051) . (72) } 1 000
01 %2 o2 B [ Wi 02><2} P with P — 0 01 0
20Arbitrary sign and permutation choices are made in diagonalizing trans- N 022 WQ ’ |01 00
forms; sorting of diagonal elements is handled later. 0 0 0 1
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gives the desired correlation structure. A solution is obtainedWe assert that the distortion is reduced by swappinagand

with
~ « I
Wi = [ 2 2 2 1.2 2 2 2 1 2}
—(a7g + %) Py (@G 4 F5s) asg
- o
Wy = [ 2 2 72 152 2.2, 2 1 2}
—(v365 + 6%ca) t0si  (77sF + 6%au) e

wherec is a root of
2.2 2 2.2 2 2 2 2 2 2 2
o Blszsiaiy +<is3aty — sis5a51 +515503,)
ci(c3ar1a2l + cZarza22)

[32§2
£ =0 (73)
$3

and

63 (aayy + Pagy)
s (avars + Baza)

(74)

The validity of this solution places no constraint énThe

o; (unlesso;» = o Or o = o2 4+ 41, IN Which case, the dis-
tortion is unchanged and we may proceed by looking for larger
i*). The first term in (54) is unaffected by the swap, but the
second term is multiplied by

1/K
(0F — o3k_irq1) (0] — o) "

(0'1‘2* - 01%)(%2' - U%K—i*ﬂ)

When thes’s in question are distinct, this factor is less than one
because of calculations for the two pair case. Since only (75)
and equivalent permutations are not improved by this process,
the theorem is proven.
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With V = V, V4, we have a transform such tHaf is at least problem.

as good a4’ i.e., VT gives the same average side distortion
and at most the same redundancyaé\lso, VT R, TTV7T has

a simple block diagonal form. This block diagonal form permits [1]
an application of Lemma 6 which shows that the optimal trans-
form is of the desired form (46). The application of Lemma 6
parallels its use in Appendix II-A and is thus omitted. This com- [7]

pletes the proof. -
Note that the complicated dependencd®fon the various
parameters hinders extending this method of proof to Conjec-

4
ture 5. y

(5]
C. Proof of Theorem 4 [6]
First note that for higlp, the distortion given by (54) is dom- -

inated by the first term, so thg;’s must be the{ smallest vari-
ances. Since we are interested in the pairing but not the order of]

the pairs, we may assign -
fori=1,2,..., K

without loss of generality. Now it remains to show that
fori=1,2,..., K (75)

minimizes (54). The proof is completed by showing that any[11]
permutation other than (75) can be improved, or is already
equivalent to (75) because of nondistingts. [
Suppose some permutation other than (75) is used aftl let
be the smallest for which (75) is violated. Say»;«—1 = o
(instead ofo;.). Thenj > i* becausg < ¢* would contradict
the definition ofi*. Similarly, if o;. is paired withaoy, thenk <
2K—i*+1, for if not (75) would be violated at=2K—k+1 < i*.
(k=2K —1*+1 has been eliminated because this would imply
that (75) isnot violated ati*.)

G2i = O2K41—1,
[10]

S2i—1 = 04,

[13]

(14]

[15]
2IThe case?a11a21 + sZa12a22 = 0 should be handled separately. In this
situation, one can achieve the desired correlation structurel#ith= 1.
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