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Generalized Multiple Description Coding With
Correlating Transforms

Vivek K Goyal, Member, IEEE,and Jelena Kovǎcević, Senior Member, IEEE

Abstract—Multiple description (MD) coding is source coding in
which several descriptions of the source are produced such that
various reconstruction qualities are obtained from different sub-
sets of the descriptions. Unlike multiresolution or layered source
coding, there is no hierarchy of descriptions; thus, MD coding is
suitable for packet erasure channels or networks without priority
provisions. Generalizing work by Orchard, Wang, Vaishampayan,
and Reibman, a transform-based approach is developed for pro-
ducing descriptions of an -tuple source, . The de-
scriptions are sets of transform coefficients, and the transform co-
efficients of different descriptions are correlated so that missing co-
efficients can be estimated. Several transform optimization results
are presented for memoryless Gaussian sources, including a com-
plete solution of the = 2, = 2 case with arbitrary weighting
of the descriptions. The technique is effective only when indepen-
dent components of the source have differing variances. Numerical
studies show that this method performs well at low redundancies,
as compared to uniform MD scalar quantization.

Index Terms—Erasure channels, integer-to-integer transforms,
packet networks, robust source coding.

I. INTRODUCTION

SOURCE coding researchers are demanding consumers of
communication systems. They ask for every bit they pro-

duce to be reliably delivered. Depending on what is known about
the channel, this may be possible in Shannon’s sense, but at
what cost? At the very least, depending on the acceptable prob-
ability of failure and on how close the rate is to the channel ca-
pacity, large block sizes and complex encoding and decoding
may be needed. Furthermore, compression may greatly increase
the sensitivity to any remaining uncorrected errors.

A simple example is an English language text file. If a handful
of characters are deleted at random, the reader may be dis-
tracted, but the meaning is likely to be fully conveyed. On the
other hand, losing a few random bytes of a Lempel–Ziv com-
pressed version of the story could be catastrophic. If the com-
pression is by a factor of, say, ten, the effect is much more pro-
nounced than the loss of ten times as many bytes. This suggests
that if channel coding cannot make the probability of error zero,
it may be beneficial to leave the data uncompressed.
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To not compress is a rather extreme reaction to the possibility
of a bit error or erasure. A more temperate approach is to ac-
count for the possibility of (uncorrected) channel impairments
in the source coding design. This paper addresses the problem
of multiple description (MD) source coding, which can be cast
as a source coding method for a channel whose end-to-end per-
formance (with channel coding) includes uncorrected erasures.
This channel is encountered in a packet communication system
that has effective error detection but does not have retransmis-
sion of incorrect or lost packets. A transform-based method for
MD source coding is introduced. This is a generalization to more
arbitrary transforms of a technique for two channels (or packets,
or descriptions) introduced by Orchard, Wang, Vaishampayan,
and Reibman [1].

The organization of the paper is as follows. First, MD coding
and its connection to packet communication are described in the
remainder of this section. Then, in Section II, a few theoretical
and practical results in MD coding are reviewed. Prior to the
general analysis and optimization of Section IV, the two-tuple
case is thoroughly developed in Section III. Applications to
image and audio coding are summarized in Section V.

A. The Multiple Description Problem

At the September 1979 Shannon Theory Workshop, the fol-
lowing question was posed by Gersho, Ozarow, Witsenhausen,
Wolf, Wyner, and Ziv [2].1 If an information source is described
by two separate descriptions, what are the concurrent limitations
on qualities of these descriptions taken separately and jointly?
Known at that time in Bell Laboratories as the channel split-
ting problem, this came to be known as themultiple descrip-
tion (MD) problemin the information theory community. The
primary theoretical results in this area were provided in the
1980s by the aforementioned researchers along with Ahlswede,
Berger, Cover, El Gamal, and Zhang.

MD coding refers to the scenario depicted in Fig. 1. An en-
coder is given a sequence of source symbols to com-
municate to three receivers over two noiseless (or error-cor-
rected) channels. One decoder (thecentral decoder) receives
information sent over both channels while the remaining two
decoders (theside decoders) receive information only over their
respective channels. The transmission rate over channelis de-
noted by , ; i.e., signaling over channeluses at most

1We may infer from [3]–[5] and private communications that the problem
originated with Gersho and Witsenhausen. Gersho proposed a scheme (unpub-
lished [6]) that utilized the redundancy in coded speech waveforms to mitigate
the effects of a channel breakdown. Witsenhausen recognized that the achiev-
able distortions are better than one might guess, even for a memoryless source.
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Fig. 1. Scenario for MD source coding with two channels and three receivers.
The general case hasM channels and2 � 1 receivers.

symbols. Denoting by the reconstruction se-
quence produced by decoder, there are three distortions

for

where the ’s are potentially distinct, nonnegative, real-
valued distortion measures.

The central theoretical problem is to determine the set of
achievable values (in the usual Shannon sense) for the quintuple

. Decoder 1 receives bits and hence
cannot have distortion less than , where is the dis-
tortion-rate function of the source. Making similar arguments
for the other two decoders gives the following bounds on the
achievable region:2

(1)

(2)

(3)

Achieving equality simultaneously in (1)–(3) would imply that
an optimal rate description can be partitioned into
optimal rate and rate descriptions. Unfortunately, this
is usually not true because optimal individual descriptions at
rates and are similar to each other and hence redundant
when combined. Making descriptions individually good and yet
sufficiently different is the fundamental tradeoff in this problem.

The MD problem can be generalized to more than two chan-
nels and more than three receivers. The natural extension is to
channels and receivers—one receiver for each nonempty
subset of channels. This generalization was considered by Wit-
senhausen [3] for the restricted case where the source has finite
entropy rate and lossless communication is required when any

, , of the channels are lost. Normalizing the source rate
to one and assuming equal usage of each channel, each channel
must accommodate a rate of . (The rate cannot be
lowered because the sum of the rates of the received channels
must be at least one.) This bound is achieved by using truncated
Reed–Solomon codes. A similar result holds in the more gen-
eral setting of [7]. The situation with three channels and seven
decoders was studied by Zhang and Berger [8].

The MD codes constructed in this paper apply to the general-
ized MD problem. Unfortunately, no tight achievability bounds
are known for generalized MD coding.

2Since the distortion metrics may differ, the use of a single symbolD(�) for
the distortion-rate function of the source is a slight abuse of notation. In this
paper, squared-error per component is used exclusively, so there is no ambiguity.

B. Applicability to Packet Networks

Recently, the problem of transmitting data over heteroge-
neous packet networks has received considerable attention.
A typical scenario might require data to move from a fiber
link to a wireless link, which necessitates dropping packets to
accommodate the lower capacity of the latter. If the network is
able to provide preferential treatment to some packets, then the
use of a multiresolution or layered source coding system is the
obvious solution. But what if the network will not look inside
packets and discriminate? Then packets will be dropped at
random, and it is not clear how the source (or source-channel)
coding should be designed. If packet retransmission is not an
option (e.g., due to a delay constraint or lack of a feedback
channel), one has to devise a way of making the packets that
are received meaningful. The situation is similar if packets are
lost due to transmission errors or congestion.

Drawing an analogy between packets and channels, packet
communication with packets is equivalent to generalized MD
coding with channels. Each of the nonempty subsets
of the packets leads to a potentially distinct reconstruction with
some distortion. The case where no packet is received is ignored
to maintain the analogy with the classical MD problem and be-
cause the source coding in that case is irrelevant. A recent surge
of interest in MD coding seems to be due primarily to this appli-
cation (see [1], [9]–[12]) and yet the present work was among
the first to effectively use more than two packets [13]–[17].

Retransmission of lost packets, when feasible, is an effective
technique for maintaining constant quality despite losses. The
use of a retransmission protocol, such as TCP [18], requires at a
minimum that a feedback channel is available to indicate which
packets have been successfully received. Even if feedback is
available, many factors may preclude the retransmission of lost
or corrupted packets. Retransmission adds delay and necessi-
tates additional buffering for streaming media. Retransmission
is generally not feasible in broadcast environments because of
the so-called feedback implosion problem whereby the loss of
a single packet may spark many retransmission requests.

From an information-theoretic perspective, an idealized
model is to assume that packet losses are independent and
identically distributed (i.i.d.) with a known probability and
that the message sequence is arbitrarily long. Then, assuming
that the packets have fixed payload of one unit, the capacity of
the channel is per channel use. Furthermore, this capacity
can be attained by choosing a sequence of good block
codes with rate , with . Attaining
error-free transmission at a rate arbitrarily close to the channel
capacity is intimately tied to having an arbitrarily long message
sequence. For any finite code length, the probability of failure
is nonzero.

The emphasis in this paper is on situations in which long
block codes cannot be used, which is often the case. For
example, consider a network using Internet Protocol, Version
6 (IPv6) [19]. An IPv6 node is required to handle 576-byte
packets without fragmentation, and it is recommended that
larger packets be accommodated.3 Accounting for packet head-

3Without the “Jumbo Payload” option, the maximum packet size is 65 575
bytes (65 535-byte payload).
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ers, a 576-byte packet may have a payload as large as 536
bytes. With packets of this size, a typical image associated with
a WWW page may be communicated in a handful of packets;
say, eight.4 One cannot use the law of large numbers to analyze
channel codes with only eight output symbols. Another reason
for using short channel codes is to keep buffering requirements
and delay small.

Aside from these issues, we should note that traditional
channel coding approaches aim to completely counteract
all channel impairments; but, for communication subject to
a smooth distortion measure, we may impose a much less
stringent requirement with the hope of achieving satisfactory
performance with less coding overhead. The philosophy of
replacing a traditional source code and channel code with an
MD source code is tomitigatethe effect of erasures even if not
a single erasure can becorrected.

II. SURVEY OF MD CODING

A. Historical Notes

At the previously mentioned September 1979 meeting,
Wyner presented preliminary results on MD coding obtained
with Witsenhausen, Wolf, and Ziv for a binary source and
Hamming distortion. At that very meeting, Cover and El Gamal
determined and reported the achievable rate region later pub-
lished in [2]. Ozarow’s contribution was to show the tightness of
the El Gamal–Cover region for memoryless Gaussian sources
and squared-error distortion [5]. Subsequently, Ahlswede [21]
showed that the El Gamal–Cover region is tight in the “no
excess rate sum” case (where there is equality in (1)), and
Zhang and Berger [8] showed that this region is not tight when
there is excess rate. The complementary situation, where (2)
and (3) hold with equality, is called the “no excess marginal
rate” case and was also studied by Zhang and Berger [22].

MD coding includes as a special case the better knownsuc-
cessive refinementor multiresolutioncoding. The successive re-
finement problem can also be described by Fig. 1, but the in-
terest is only in characterizing achievable .
In other words, no attempt is made to estimate the source from
channel 2 alone; or channel 1 is always present. Successive re-
finement was first studied by Koshelev [23]–[25]. The condi-
tions for perfect successive refinement—where (1) and (2) hold
with equality—are described in [26]. The result follows from
the tightness of the achievable region of [2] for the no excess
rate sum case [21] (see also [27]).

Finally, it should also be noted that there is a substantial litera-
ture on the error sensitivity of compressed data and more gener-
ally on tradeoffs between source and channel coding. The reader
is referred to [28]–[32] for a sampling of the results.

B. Theoretical Bounds for a Memoryless Gaussian Source

The achievable rate-distortion region is completely known
only for a memoryless Gaussian source with mean-squared error

4This is not an arbitrary figure. Based on statistics in [20], the average WWW
image is only 3.9 kbytes; an image of this size would not be fragmented into
more than eight packets. Of course, this depends on the sampling of the WWW
and may change.

(MSE) distortion. This result, obtained by Ozarow [5] is sum-
marized by the following theorem.5

Theorem 1: Let , , be a sequence of i.i.d. unit vari-
ance Gaussian random variables. The achievable set of rates and
MSE distortions is the union of points satisfying

(4)

(5)

where

for and otherwise.

Since Theorem 1 is the key result in coding continuous-
valued sources, the region defined therein warrants a closer
look. The bounds (4) are simply the side-channel rate-distortion
bounds, a repeat of (2) and (3). In the final inequality (5), the
central distortion must exceed the rate-distortion bound by the
factor .

A few examples will clarify the behavior of and the re-
sulting properties of the achievable region. First, suppose that
the descriptions are individually good, yielding
and . Then we may write

A further chain of inequalities gives , so
the joint description is only slightly better than the better of the
two individual descriptions.

On the other hand, suppose the joint description is as good as
possible, so . Then , and thus

(6)

Recall that a distortion value of is obtained with no informa-
tion, simply estimating the source by its mean. For anything but
a very low rate, (6) implies a very poor reconstruction for at least
one of the side decoders.

Intermediate to these two extremes, the region of Theorem 1
is easier to understand in thebalancedcase, where
and . We will take two points of view to improve our
qualitative understanding of the bounds. The first relates expo-
nential decay exponents in the three distortions and the second
bounds the side distortion based on the gap betweenand

.
First, estimate under the assumptions and

. Then

5Ozarow [5] neglects the high side distortion regime where

D +D � 1 + 2 :

In the converse, the developments in [5, p. 1917] require (in Ozarow’s notation)
� � �, but this is not specified.
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Fig. 2. Lower bound (8) on side distortionsD = D when the base rate is
r, i.e., the central distortion isD = 2 . At high redundancies, the curves
merge because the bound is independent ofr.

Substituting in (5) gives ,
so the product of central and side distortions is approximately
lower-bounded by . If with

, the best decay of the central distortion is

This shows that the penalty in the exponential rate of decay of
(the difference from the optimal decay rate, indicated by

being positive) is precisely the increase in the rate of decay of
.

The second way to interpret the tradeoff between central and
side distortion begins with rearranging (5), under the assump-
tion of equal side distortion , to obtain [33]

(7)

Now separate the coding rate into abase rate and aredun-
dancy . The base rate corresponds to the quality of the joint
description and the redundancy is the additional rate added to
make the side distortions low. Mathematically, and

. Substituting in (7) gives

for

for

(8)

The second expression comes into play when the redundancy is
so large that there is no conflict in achieving the central and side
distortions. This bound is plotted in Fig. 2 for several values of
the base rate.

One interesting thing to glean from (8) is the slope of the
low-redundancy versus characteristic

At , the slope is infinite. Consider starting with a system
designed only to minimize central distortion. Assuming that side
distortions are also of interest, the infinite slope means that a
small additional rate will have much more impact if dedicated
to reducing the side distortion than if dedicated to reducing the
central distortion.

The rate-distortion region is not completely known for any
non-Gaussian source. Zamir [34] has found inner and outer
bounds to the achievable rate region for MD coding of any
continuous-valued memoryless source with squared-error
distortion. This is an extension of Shannon’s bounds on
rate-distortion functions (see [35], [60], [36]).

C. Practical Codes

The bounds of the previous section can be approached when a
long sequence of source symbols is coded. In contrast, the focus
in this paper is on simple codes for finite-length source vectors.

1) MD Scalar Quantization (MDSQ):The first method for
MD coding of a memoryless, continuous-valued source was MD
scalar quantization (MDSQ). MDSQ is the use of two sepa-
rate scalar quantizers to give two descriptions of a scalar source
sample, with an additional central decoder that makes use of
both descriptions. This approach was expounded and popular-
ized by Vaishampayan [37], though Reudink introduced very
similar methods in earlier unpublished work [38].

The simplest example is to have scalar quantizers with nested
thresholds, as shown in Fig. 3(a). Each quantizer outputs an
index that can be used by itself to estimate the source sample.
Using : , , to denote the encoding
map of quantizer , the reconstruction knowing
should be the centroid of the cell . The central decoder
has both and and thus reconstructs to
the centroid of the intersection cell . In the
example, the intersection cells are half as big as the individual
quantizer cells, so the central distortion is about a quarter of the
side distortions. Asymptotically, if the side rates are

, then , , and are all . This is optimal decay
for and , but far from optimal for .

Recalling the discussion following Theorem 1, it should be
possible to speed the decay of at the expense of slowing the
decay of and/or . Let denote the number
of cells in quantizer . Let denote the number of intersec-
tions between cells of and that are nonempty. Notice
that in Fig. 3(a), . When ,
the exponential rate of decay of is changed only if grows
faster than linearly with . Accomplishing this requires some-
thing never seen in single-description scalar or vector quanti-
zation: disconnected partition cells. The maximum number of
central decoder partition cells is . This occurs when
each is nonempty, as shown in Fig. 3(b).
Quantizer is individually poor. The asymptotic performance
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Fig. 3. Three MD scalar quantizers. (a) The simplest form of MDSQ, with
nested quantization thresholds. WhenR = R = R, all three distortions,
D , D , andD , areO(2 ). (b) An MDSQ which minimizesD for a
given rate. Asymptotically,D = O(2 ), but at least one ofD andD
must beO(1). (c) An MDSQ based on Vaishampayan’s “modified nested” index
assignment [37]. This construction systematically trades off central and side
distortions while maintaining optimal joint asymptotic decay of distortion with
rate.

of this scheme with is at the opposite extreme of
the previous example; , but at least one of
and is .

Given a desired partitioning for the central encoder,6 the crux
of MDSQ design is the assignment of indexes to the individual
quantizers. Vaishampayan’s main results in [37] are this ob-
servation and an idealized index assignment scheme that gives
the optimal combined exponential decay rates for the central
and side distortions. An MDSQ designed with Vaishampayan’s
“modified nested” index assignment is shown in Fig. 3(c). In
contrast to the MDSQ of Fig. 3(b), the side distortions are ap-
proximately equal and the quantizers “refine each other” in a
symmetric fashion. For a given number of side levels, the
central distortion is smaller—at the cost of higher side distor-
tions—than for an MDSQ as in Fig. 3(a).

The optimal design for fixed-rate MDSQ in [37] was ex-
tended to entropy-constrained MDSQ in [39]. One of the most
satisfying aspects of the theory of MDSQ is that at high rates,
all the decay exponent tradeoffs discussed in Section II-B can
be obtained. Furthermore, the factor by which the distortion
product exceeds the bounds of Theorem 1 is approxi-
mately constant [40]. For and , the
bound for large rates is approximately

(9)

6There is no “central encoder,” butQ andQ effectively implement a quan-
tizer with cells given by the intersections of the cells of the individual quantizers.
An MDSQ could be viewed as a single quantizer that outputs two-tuple indexes.

while the performance of optimal fixed-rate MDSQ is

and the performance of optimal entropy-constrained MDSQ is

(10)

The factors in parentheses are familiar from high-resolution
quantization theory (see, e.g., [41] and the references therein).

These features of high-rate MDSQ, however, tell us very little
about how MDSQ performs at low rates. Later, in Section III-E,
the performance of MD based on correlating transforms will be
compared to the performance of MDSQ at low and intermediate
rates. These numerical comparisons are based on a family of
uniform MDSQs (UMDSQs) described in detail in [33]. The
encoder for a UMDSQ operates as follows. A source sample is
first uniformly quantized by rounding off to the nearest mul-
tiple of a step size ; then the index output by the scalar quan-
tizer is mapped to a pair of indexes using an index assignment
based on [40]; finally, these indexes are entropy coded. In all
of the numerical results presented here, rate is measured by en-
tropy rather than by the average code length of a particular code.
Seven index assignments are used, giving seven operating points
for each value of ; in the notation of [40], the index assign-
ments could be labeled . At the decoder, we
allow either centroid reconstruction with respect to a uniform
source density (which is called midpoint reconstruction, since
it is the natural extension of midpoint reconstruction to MD) or
centroid reconstruction with respect to the actual Gaussian den-
sity.

The performance of UMDSQ is compared to the bounds of
Theorem 1 in Fig. 4. The solid curve in Fig. 4(a) is the side dis-
tortion bound (7) evaluated for central distortion .
The dashed line is the high-rate approximation of MDSQ per-
formance (10) and the dotted line is the high-rate bound (9). Op-
erating points obtained with midpoint and centroid reconstruc-
tion are marked with dots and circles, respectively.

At this low central distortion (high base rate bits), all
seven considered index assignments give reasonably useful op-
erating points and centroid reconstruction does not greatly im-
prove the performance over midpoint reconstruction. Note also
that the performance is well-approximated by high-rate anal-
ysis. However, at low and very high redundancies the perfor-
mance is worse than predicted by (10). The highest redundancy
point is obtained with identical descriptions over the two chan-
nels, which is not very clever.

At lower base rates, the initial quantization is more coarse;
hence, less of the index assignments are useful and it is more
important to have centroid reconstruction. Fig. 4(b) shows per-
formance and bounds for . With midpoint recon-
struction, only the repetition of identical information over each
channel and the simplest nested index assignment of Fig. 3(a)
give side distortion less than 1 (other operating points are not
shown); with centroid reconstruction there are only three useful
operating points. Fig. 4(b) clearly indicates the deficiency of
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(a)

(b)

Fig. 4. Performance of entropy-constrained uniform MDSQ. At low central
distortion or high base rate (part (a)), the high-rate approximate bound (9)
approximates the true bound at low redundancies and the high-resolution
approximate performance (10) is accurate. At higher central distortion or
lower base rate (part (b)), the true bound is considerably more stringent than
the high-rate approximation, and the gap between actual performance and the
high-resolution approximation is larger. Only useful operating points are given,
i.e., those with side distortion less than1 and no operating point with lower
side distortion and lower redundancy. At low base rates, uniform MDSQ gives
few useful operating points. (a) Central distortionD = 2 . (b) Central
distortionD = 2 .

UMDSQ in providing useful operating points for low base rates
and redundancies.

Applications of MDSQ are described in [9], [42], [12].
Joint optimization of an orthogonal transform and MDSQ is
discussed in [43]. For the purposes of this paper, it is sufficient
to note that an identity transform is optimal for a source
vector with independent components. Note that Batllo and
Vaishampayan use the termMD transform coding(MDTC)
to refer to MDSQ applied to coefficients from an orthogonal
transform. The same term could be used to describe the tech-
niques developed here or in [14], [16], [17]; however, to avoid
confusion the termMD correlating transform(MDCT) is used
for the present technique.

2) Pairwise Correlating Transforms:A considerably dif-
ferent approach to MD coding was introduced by Wang,
Orchard, and Reibman [10]. Instead of using MDSQ to produce
two indexes that describe the same quantity, the MD character

is achieved with a linear transform that introduces correlation
between a pair of random variables; quantization is treated as
secondary.

Let and be independent zero-mean Gaussian random
variables with variances . For conventional (single-de-
scription) source coding, there would be no advantage to using
a linear transform prior to quantization. Assuming high-rate en-
tropy-coded uniform quantization, the MSE distortion per com-
ponent at bits per sample would be given by7

This is the best single-description performance that can be ob-
tained with scalar quantization.

Now suppose that the quantized versions ofand are
sent on channels 1 and 2, respectively, in an MD system. Since

and are independent, side decoder 1 cannot estimate,
aside from using its mean. Thus,

and, similarly,

Assume for the moment that each channel is equally likely to
fail. Then, instead of concerning ourselves withand sep-
arately, we will use the average distortion when one channel is
lost

(11)

could be reduced if side decoderhad some information
about , . This can be accomplished by transmitting not

’s, but correlated transform coefficients. The simplest possi-
bility, as proposed in [10], is to transmit quantized versions of

and given by

Since is obtained with an orthonormal transforma-
tion and we are using MSE distortion, the distortion in approxi-
mating the ’s equals the distortion in approximating the’s.
The variances of and are both , so the central
decoder performance is

which is worse than the performance without the transform by
a constant factor of8

Now consider the situation at side decoder 1. The distortion is
approximately equal to the quantization error plus the distortion
in estimating from . Since and are jointly Gaussian,

7Standard high-rate operational rate-distortion estimates will be used
throughout the paper. The reader is referred to [41] for details.

8This factor is like a coding gain, but it is theincreasein distortion from
coding correlated quantities.
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is Gaussian and is a linear function
of . Specifically, has mean

and variance

Thus,

(12)

Comparing (11) and (12), the constant term has been reduced
by the factor , but the exponential term is increased by the
factor . This method thus improves the side distortion while
it degrades the central distortion by a related amount. By
using other orthogonal transforms, intermediate tradeoffs can
be obtained. As demonstrated in Section III, nonorthogonal
transforms allow yet more operating points, including more
extreme tradeoffs. The factor approaches unity as
approaches unity; the pairwise correlation has no effect when
the joint density of and has spherical symmetry. Even
with nonorthogonal transforms, the potential reduction in side
distortion vanishes as .

The high-rate asymptotic behavior of the pairwise correlating
transform method is not interesting because, independent of the
choice of the transform, and .
However, in practice, high rates are not necessarily important
and constant factors can be very important. As a case in point,
this method was introduced in the context of loss-resilient image
coding, where it was shown to be successful [10]. Subsequently,
this method was extended to nonorthogonal transforms [1]. The
contributions of this paper are to generalize this method to com-
municating variables over channels, , where the
channel failures may be dependent and may have unequal prob-
abilities, and to provide new results for the two-channel case.

III. CODING OF TWO-TUPLES

This section takes an in-depth look at the MD coding of two-
tuple source vectors using a discrete correlating transform. The
generalization to arbitrary-length vectors is considered in Sec-
tion IV.

A. Intuitive Development

The limitations of the pairwise correlating transform method
of Section II-C2) led to the work reported in [1]. As in Sec-
tion II-C2), let where and are inde-
pendent zero-mean Gaussian random variables with variances

. Let denote the standard basis of. Any
level curve of the joint probability density function (pdf) of
is an ellipse with principal axis aligned with and secondary
axis aligned with . Using the standard basis corresponds to
representing by (see Fig. 5(a)).

Now imagine that uniform scalar quantized versions of
and are used as descriptions. It was demon-

strated in Section II-C2) that, for a given total rate, the average

Fig. 5. Basis configurations for correlating transforms. (a) The standard
basis gives high side distortion when the component with high variance is
lost. (b) Basis for the original correlating transform of [10]. (c) Generalization
to arbitrary orthogonal bases. (d) When descriptions are lost with equal
probability, the best bases are symmetric with respect to the principal axis of
the source density.

of the side distortions can be decreased in
exchange for an increase in the central distortionby using
the representation

(13)

But this is only a single operating point, whereas one would like
to be able to trade off and in a continuous manner.

Recognizing (13) as , where
is a Givens rotation of angle (see Fig. 5(b)), a natural

extension is to consider all representations of the form

for

This indeed creates a continuous tradeoff betweenand .
However, it has an undesirable asymmetry. For ,
the side distortions are not equal. It is an easy exercise to calcu-
late and , but instead let us look geometrically at why they
are unequal. is the variation of which isnot captured by

, or the variation perpendicular to .9 Similarly,
is the variation perpendicular to . Now since and

are not symmetrically situated with respect to the pdf of
(except for ), and are unequal (see Fig. 5(c)).
This in itself does not imply that the scheme can be improved,

but since we are trying to have two channels of equal impor-
tance10 we might expect equal side distortions. Based on the
geometric observation above, it makes sense to representby

for (14)

9We are neglecting quantization error at this point becauseD andD are
equally affected by quantization.

10“Equal importance” comes from the equal weighting ofD andD inD .
Later the weights will be arbitrary.
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Furthermore, in order to be capturing most of the principal com-
ponent of the source, the basis should be skewed toward, so

should be between and some maximum value
(see Fig. 5(d)). This yields , but introduces a new
problem.

The representation of by (14) is (for ) a nonorthog-
onal basis expansion. The uniform scalar quantization of such a
representation produces nonsquare partition cells.11 These par-
tition cells have higher normalized second moments than square
cells, and are thus undesirable [44]. The insight attributed to
Vaishampayan is that a correlating transform can be applied
after quantization has been performed in an orthogonal basis
representation. This ensures that the partition cells are square,
regardless of the transform, so the transform affects only the
rate and side distortions. The advantage of this approach over
the original pairwise correlating method was shown in [1]. The
geometric view of Fig. 5 also helps us understand the signifi-
cance of the ratio . When this ratio approaches unity, the
level curves become circles. It then does not matter—as far as
the side distortion is concerned—what the basis is: the variation
perpendicular to either basis vector is invariant to the basis. This
fact holds equally well for orthogonal and nonorthogonal bases.

If we do not want the two descriptions to be equally impor-
tant, for example, if they are sent over links with different failure
probabilities, then we expect the optimal representation to be
different from (14). Recalling , we would expect the
description over the more reliable link to be closer to thedi-
rection, as this captures most of the energy of the source. This
intuition is vindicated by the detailed analysis that follows. The
detailed analysis does not use this parameterization of the basis;
it turns out to be more convenient to have determinant-trans-
forms than to have normalized basis vectors.

B. Detailed Analysis

Now consider in detail sending a two-tuple source over two
channels. The scenario is shown in Fig. 6, whererepresents
quantizing to the nearest multiple of .12 Recall that the
transform is after the quantization so that square partition cells
are maintained. The source has independent,
zero-mean Gaussian components with variancesand ,
respectively. Without loss of generality, we assume .
The transform produces descriptions and through

, where is a discrete version of the
continuous transform

with

The derivation of from is by first factoring into a product
of upper- and lower-triangular matrices, e.g.,

11In higher dimensions, nonhypercubic cells.
12The use of equal quantization step sizes for each component is justified by

high-resolution analysis. As long as the rate allocated to the lower variance com-
ponent is at least about 1 bit/sample, an optimal rate allocation only negligibly
reduces the distortion [45].

Fig. 6. Correlating transform structure for MD coding of a two-tuple source.

and then computing the transform with intermediate roundings

(15)

The properties of are described in Appendix I. Though not
shown explicitly, it is assumed that and are entropy coded.

The coding structure presented here is a generalization of
the method proposed by Orchard, Wang, Vaishampayan, and
Reibman [1]. They considered coding of two-tuples with the
transform

(16)

approximated by

(17)

The mysterious form of (16) provided the initial motivation for
this work. When both side distortions are equally weighted, (16)
is in the set of optimal transforms; otherwise, it is not. In either
case, (15) gives an additional degree of freedom that may be
exploited.

1) Relationship Between Continuous Transformand Dis-
crete Transform : The discrete transform produces the de-
scriptions, but the analysis and optimizations are based on the
continuous transform , so it is important to understand the re-
lationship between the two. is a one-to-one and onto map-
ping . relabels the quantized source vector
with another value in the lattice in a manner that gives

. An error bound for the approximation is
given in Appendix I.

Since has only a handful of reflective and rotational sym-
metries, there are only a few one-to-one and onto linear map-
pings . The transforms used here are not linear, but
they approximate linear transforms. As an example, consider

(18)

and the associated discrete transform (see Appendix I)

(19)

The behavior of is shown in Fig. 7. In this plot each
position is labeled with ,
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Fig. 7. Example of the index relabeling by the discrete transformT̂ , given by
(19). The solid curves connect the grid points in the inverse images of they and
y axes. Though the curves are somewhat erratic, they follow the corresponding
curves for the continuous transformT , shown with dashed lines.

where . The solid curves connect the pairs
on the grid that map to or ; they are like inverse
images of the axes. These curves are somewhat erratic, but they
approximate the straight lines

and (20)

which are the points with at least one component ofequal
to zero. The lines (20) are shown in Fig. 7 as dashed lines. This
shows how is a relabeling of the points , but at the same
time approximates a linear transform.

The reason to bother with the discrete transform is that it al-
lows the use of a nonorthogonal transform without enhancing
the quantization error. Fig. 8 shows the partitioning induced by
using the continuous transform directly as . When the
source probability density is approximately uniform over each
partition cell—as is the case when the density is smooth and
is small—the quantization error is proportional to the normal-
ized second moment of the lattice cell. Thus, nonsquare parti-
tion cells are suboptimal. In this particular case, the enhance-
ment of quantization error due to nonsquare cells is by a factor
of . This means that the representa-
tion has about times as much distortion as ;
the latter representation is used in this work.

2) Computation of Side Rates and Distortions:If is small,
the difference between and is also small. For this
reason, a valid high-rate analysis of the actual system, which
uses , can be based on the properties of. The choice of
determines both the rate, through the entropies ofand ,
and the distortion when reconstructing from or alone.
To reiterate, using in place of is to reduce the

Fig. 8. Example of partitioning induced by a continuous, nonorthogonal
transform followed by scalar quantization. The transformT is given by (18).
Each cell is labeled by(y =�; y =�), wherey = [Tx] . The nonsquare
partition cells increase the quantization error by a factor of about2:604.

central distortion by a constant factor; but, for the sake of esti-
mating rates and correlations, the difference between
and is vanishingly small.

The distortion when both and are received is indepen-
dent of because, in this case, the initial quantization is the
only source of distortion. Under the fine-quantization assump-
tion used throughout

(21)

Let us first look at the rates associated withand . The
continuous transform gives

(22)

(23)

These are Gaussian random variables with variances
and , respectively. Since , ,

we may estimate the entropy ofas the entropy of a quantized
Gaussian random variable. A Gaussian random variable with
variance quantized with a bin width has entropy given
approximately by [46, Ch. 9]

where (24)

Thus, we have rate estimates

(25)

(26)

All logarithms are base-two and all rates are in bits.
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Now we turn to a computation of the side distortions. We have
assumed that the effect of a lost component makes the quantiza-
tion error negligible; therefore, is approximately the distor-
tion in estimating from .

Suppose only is received. To minimize the MSE distortion,
the reconstruction at the first side decoder is .
Since and are jointly Gaussian, the conditional variable

is also Gaussian and computations of and are
simple. Noting that is a linear function of ,

(27)

where

The error in , , is a zero-mean Gaussian random
variable with variance

(28)

The error in the estimate of can now be written in terms of
and as

(29)

By combining (28) and (29), we can complete the computation
of , the distortion per component in reconstructing from

A similar computation yields

C. Transform Optimization

Using the rate and distortion expressions from Section III-
B2), we can now identify the best transforms for MDCT coding.
Define four system states by whether or not each description is
received and denote the probabilities of these states as in Table I.
A transform is considered optimal if for fixed average rate

the average distortion is minimized.
From (25) and (26), it appears that the rates can be made

arbitrarily small by making , , , and small. However,
the constraint prevents this; it is straightforward to
show that the minimum average rate is .
As in [1], we refer to as theredundancy. Using
(25) and (26)

(30)

Our optimization will be to minimize the average distortion for
fixed, nonnegative redundancy.

In a single-description situation, there would be no reason to
have a rate higher than . Thus, is the rate added to improve

TABLE I
PROBABILITIES OF SYSTEM STATES IN TRANSFORMOPTIMIZATION FOR MDCT

CODING OF TWO VARIABLES OVER TWO CHANNELS

the reconstruction from one description. Thisis redundancy
relative to optimal transform coding with scalar quantization; it
differs from the absolute excess rate
of Section II by the redundancy of uniform scalar quantization,
approximately 0.255 bits. Though is analogous
to an increase in rate from channel coding, it is a fixed increase,
not proportional to the base source-coding rate.

1) General Solution:In the most general situation, channel
outages may have unequal probabilities and may be dependent.
Using the probabilities of the system states, the overall average
distortion is

(31)

The first pair of terms in (31) does not depend on the transform;
we can consider only the second bracketed term in the optimiza-
tion

First note that if the source pdf is circularly symmetric, i.e.,
, then , independent of . In this

case, the side distortions cannot be reduced with the addition of
redundancy, so the MDCT technique is useless. Henceforth we
assume .

For a given value of , the admissible transforms are simul-
taneous solutions of

(32)

(33)

Here (32) is a rearrangement of (30) and (33) is .
There are several branches of solutions.13 First suppose .
In this case, the transforms are of the form and substi-
tuting in (22) and (23) gives

Since channel 1 carries only , the side distortion at decoder 1
is . This is equal to the larger of the two side dis-
tortions obtained without any transform; hence, it is poor per-

13The multiplicity of solutions is not present in conventional transform coding
with orthogonal linear transforms, where for minimum rate(� = 0) the optimal
transform is unique up to reflections and permutations of coordinates. Uses for
the extra design freedom in using discrete transforms are discussed in [47], [48].
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formance. It can be shown that transforms of this form are in
the optimal set only when or . Another special
case is where . This gives transforms of the form ,
which, by analogous reasoning, are not useful.14

Now, assuming and , we may substitute
into (32) and rearrange to get

Solving this quadratic in and choosing signs appropriately
gives15

(34)

When this value of is used, depends only on the product
, not on the individual values ofand . The value of that

minimizes is

(35)

independent of .
To summarize, an optimal transform for a given redundancy
can be found through the following steps. First, choose any

nonzero . The corresponding value of is determined from
(35). Then, substituting in (34) gives. Finally, is chosen to
make : . The performance, measured
by the tradeoff betweenand , does not depend on the choice
of . This degree of freedom can be used to control the split of
the total rate between and or to simplify by
making or . Other uses are described in [47], [48].

It is easy to check that ranges from to as
ranges from to . The limiting behavior can be

explained as follows. Suppose , i.e., channel 1 is
much more reliable than channel 2. Since approaches
, must approach, and hence one optimally sends (the

larger variance component) over channel 1 (the more reliable
channel), andvice versa. This is the intuitive, layered solution.
The MD approach is most useful when the channel failure
probabilities are comparable, but this demonstrates that the MD
framework subsumes layered coding.

2) Equal Channel Failure Probabilities:Suppose the chan-
nels are equally likely to fail, so . Then

14The only useful transforms in these two branches of solutions of (32) and
(33) are those that add no redundancy, e.g.,T = I .

15In the solution fora , one of the two branches of the quadratic is valid.
Then, in the square root of this expression we arbitrarily choosea � 0 since
the sign ofa does not affect� or D .

Fig. 9. OptimalR-D -D tradeoffs for� = 1, � = 0:5. (a) Relationship
between redundancy� andD . (b) Relationship betweenD andD for various
rates.

, independent of . The optimal set of transforms is de-
scribed by

(36)

and using a transform from this set gives

(37)

This relationship is plotted in Fig. 9(a). Notice that, as expected,
starts at a maximum value of and asymptoti-

cally approaches a minimum value of . By combining the
rate expressions (25) and (26) and theexpression (21) with
(37), one can find the relationship between, , and . For
various values of , the tradeoff between and is plotted
in Fig. 9(b).

The solution for the optimal set of transforms (36) has an
extra degree of freedom which does not affect theversus
performance. Fixing gives the transforms suggested in [1]
and allows to be implemented with two lifting steps instead
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Fig. 10. Geometric interpretations. (a) When� > � , the optimality
condition (ad = 1=2, bc = �1=2) is equivalent to� = � < � =
arctan(� =� ). (b) If in addition to the optimality condition we require
the output streams to have equal rate, the analysis vectors are symmetrically
situated to capture the dimension with greatest variation. At� = 0,
� = � = � ; as� !1, ' and' close on thex -axis.

of three. This degree of freedom can also be used to control the
partitioning of the rate between channels.

3) Geometric Interpretation:When the channels are equally
likely to fail, minimizing the average distortion automatically
makes the two side distortions, and , equal. Since the
channel rates are additive in the constraint, this is an expected
result; with a Lagrangian approach, matching the slopes also
matches the distortions. This has a clear geometric interpretation
also.

Neglecting quantization, the transmitted representation of
is given by and , where
and . For optimality with equal channel failure
probabilities, and . One can then show
that and form the same (absolute) angles with the positive

-axis. For convenience, suppose and ; then
and , as shown in Fig. 10(a). Let and be the

angles by which and are below and above the positive
-axis, respectively. Then . If

we assume , then the maximum angle (for ) is
and the minimum angle (for ) is zero.

This means that for the analysis basis has vectors at
angles from the -axis; as is increased, the
analysis basis closes in on the-axis. Thus, as the redundancy
is increased, is emphasized over because it has higher
variance (see Fig. 10(b)).

4) Optimal Transforms that Give Balanced Rates:The
transforms of [1] give descriptions with unequal rates. In
practice, this can be remedied through time-multiplexing. An
alternative is to use the “extra” degree of freedom to make

. Doing this is equivalent to requiring and
, and yields

and

These balanced-rate transforms will be used frequently in the
sequel, so we introduce a notation for them. For any nonzero,
let

(38)

When there are no erasures, the reconstruction uses

Evaluating (27) shows that the optimal linear estimates from
and , neglecting quantization noise, are

and

respectively.
In the optimizations leading to (36), we have used amean

squared error measure for the side distortion; no distinction is
made between transforms that yield the same MSE but different
distributionsof squared error. Additional robustness is implied
by a low variance of squared error or, equivalently, low ex-
pected fourth power of the Euclidean norm of the error. The
balanced-rate transforms (38) give this desirable property [49].
Another benefit of the balanced-rate transforms is that the de-
scriptions are identically distributed; the same entropy code can
be applied to each, reducing memory requirements [48].

D. Modifications for Centroid Reconstruction

The analyses in this paper are focused on the case in which
distortion due to quantization is small and linear estimation is
used in the decoder. However, because the quantization is in co-
ordinates in which the components are independent, it is not too
difficult to compute true (nonlinear) minimum MSE reconstruc-
tions.

Without loss of generality, consider the case that decoder
1 has received description . The initial quantization of the
source vector followed by an invertible transform indicates
that lies in a particular union of square cells (see, e.g., Fig. 7)

where

(Read as the set that maps to and as the
set that maps toth component equal to.) The estimate that
minimizes MSE is the conditional expectation ofgiven

. This is not too difficult because each in makes
independent contributions to the estimates of each coordinate.

Written in a general form, the optimal estimate is given by

where is the joint pdf of the source vector. This computation
is simplified first by decomposing and then by the fact that
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the integral of over each is separable. Let be the
probability of . Then

where . Similarly simple integrals
give the contribution of a cell to each first moment

The optimal estimate is then given elementwise by

Since the Gaussian pdf has light tails, the infinite sums can be
truncated to a small number of terms.

In an application in which is fixed, a table of optimal re-
constructions could be precomputed for each side decoder. (A
similar precomputation would be needed for MDSQ with cen-
troid reconstruction.) To allow to be varied easily, one could
precompute each appreciable cell probability and cell moment.
These can then be easily combined to form the optimal estimate.
In this way, one can take advantage of the smoothly varying
redundancy–distortion tradeoff provided by correlating trans-
forms.

E. Numerical Results and Comparisons

To conclude this section on coding two-tuples, we create a set
of numerical calculations to compare systems with correlating
transforms against those with MDSQs. These computed perfor-
mances are also compared to estimated performance (37) and a
bound derived from Theorem 1. MATLAB code to generate these
results is available on-line in conjunction with [33].

The numerical results given in Fig. 11 consider two sources
and two base coding rates, for a total of four comparisons. The
sources have independent components with and

. The base rates are 2 and 3 bits/component. Robust-
ness is measured by an equally weighted average of side distor-
tions , so the transforms (38) are among the op-
timal transforms; these are used in the computations. Operating
points for MDCT are obtained by a fine sampling of.

The operating points for MDSQ are obtained by trying
each of seven possible UMDSQ index assignments (see
Section II-C1)) on each of the two components, giving 49
operatings points. Only the “useful” ones are shown; those with
average side distortion per component more than
are discarded, as are those strictly worse than any other oper-
ating point. This strategy is essentially prescribed by the theory
since using no transform is optimal according to [43].

Theorem 1 does not directly give us performance bounds for
the sources that we consider. However, it does give bounds to
apply separately to each component. The approximate bounds
shown in Fig. 11 are obtained by fixing the central distortion for
each component to match that of the other systems and then op-
timally allocating redundancy across the pair. This redundancy
allocation is straightforward because of the monotonicity of the
bound (8).

An initial observation from the graphs is that the analytical
performance curves for MDCT follow the actual performance
with midpoint reconstruction. The gap is due to neglecting quan-
tization error, and diminishes as the base rate is increased. We
may also observe a general similarity in shape between the ap-
proximate bound and the performance curves.

In the examples shown, the comparison between MDCT and
MDSQ is summarized as follows:The correlating transform
method is better at low redundancies and MDSQ is better at
high redundancies.The near-continuum of operating points is
another potential advantage of MDCT. A more nuanced view
recognizes that the method of choice depends also on the base
rate and the ratio .

First, the base rate. Increasing the base rate improves the per-
formance of MDSQ, but has little effect on the performance of
MDCT; thus, MDSQ becomes more suitable as the base rate is
increased. Considering MDSQ, as the base rate is increased the
number of useful index assignments increases (see Fig. 4). Also,
the central distortion decreases and, since the side distortion ap-
proaches the central distortion, the side distortion drops more
quickly as a function of . On the other hand, as shown in (37),
the performance of MDCT is largely independent of the base
rate.

Second, the ratio . It is clear from (37) and the perfor-
mance plots that the usefulness of MDCT increases as the ratio

increases. However, at the same time the performance
of MDSQ improves and the approximate bound decreases. In
both cases, this is because redundancy can be allocated to the
component with larger variance. When , MDCT is
certainly useless, but large does not imply that MDCT is
better than MDSQ.

Another observation from Fig. 11 is that there is a limit to
how much redundancy can be added. Though obscured by the
analysis that neglects quantization, this is quite clear: There is an
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Fig. 11. Comparison between MDCT and MDSQ with estimated performance (37) (dashed) and an approximate bound (bold) also shown. In each graph, the
upper and lower MDCT curves are for midpoint and centroid reconstruction, respectively. In all cases, the source has independent components with� = 1. The
two rows have� = 1=2 and1=4. The two columns have base rates 2 and 3 bits/sample. The vertical dotted lines indicate the redundancy, labeled� , due
simply to the use of scalar quantization. This portion of the redundancy is approximately 0.255 bit. The comparisons show that correlating transforms are good at
low redundancies.

initial representation and the redundancy can be no greater
than to repeat this representation over each channel. Whenis
large enough, each of the cells with appreciable probability is
uniquely identified separately by and . The MDCT perfor-
mance, with centroid reconstruction, becomes the same as the
repetition code incarnation of MDSQ.

Finally, the reconstruction method—midpoint or centroid—
makes a big difference for low-rate MDSQ. This suggests high
sensitivity to the source density; care should be taken with non-
Gaussian sources.

IV. CODING LARGER VECTORS

We now turn to the communication of vectors with more
than two components. This section describes a method for
MD coding based on using transform coefficients or sets of
transform coefficients as descriptions. The reconstruction from
a proper subset of the descriptions exploits a statistical correla-
tion between transform coefficients. Thus, this technique may
be dubbed statistical channel coding for an erasure channel.
A square transform is used, so for coding an-dimensional
source at most descriptions are produced. The method
is a generalization of the pairwise correlating transforms of

Orchard, Wang, Vaishampayan, and Reibman [1] and of our
work of the previous section to .

It is not difficult to extend the calculations in Section III to
find optimization criteria for the general case; this is done in
Section IV-B. It is considerably more difficult to find the op-
timal transforms, so we are only able to do this in certain cases.

A. Design

Let be an i.i.d. sequence of zero-mean jointly Gaussian
vectors in with a known distribution.16 Because we could
use a Karhunen–Loève transform (KLT) at the encoder, we may
assume without loss of generality that the components ofare
independent with variances .

In correlating transform-based MD coding, each source
vector is processed as follows.

1) is quantized with an unbounded uniform scalar quan-
tizer with step size ; i.e., , where de-
notes rounding to the nearest multiple of.

2) The vector is transformed with
an invertible, discrete transform: ,

16Note that it is the vectors, not the scalar components of the vectors, that are
i.i.d.
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. is within a certain quasilinear class described
below.

3) The components ofare placed into sets (in ana priori
fixed manner). These sets form the descriptions.

4) The sets of coefficients, i.e., the descriptions, are en-
tropy coded independently from each other. This stage
may use block codingwithin one descriptionto improve
efficiency.

The transform is a discrete transform derived from a linear
transform , with . In extending (15) to more than
two components, first is factored into matrices with unit di-
agonals and nonzero off-diagonal elements only in one row or
column: The discrete transform is then given
by

This construction of the transform ensures thatis invertible
on . See Appendix I for details.

The analysis and optimization are again based on high-rate
(or fine-quantization, small ) approximations. These approxi-
mations facilitate the analytical treatment of the design of, or
at least the generation of an optimization criterion.

When all the components of are received, the reconstruc-
tion process is to (exactly) invert the transformto get .
If some components of are lost, they are estimated from the
received components using the correlation introduced by the
transform .

Recall that the variances of the components ofare , ,
, and denote the correlation matrix ofby

With fine quantization, the correlation matrix of is
. By renumbering the variables if necessary, assume

that , , , are received and , , are
lost. Partition into “received” and “not received” portions as

where

and

The minimum MSE estimate of given is , which
has a simple closed form becauseis a jointly Gaussian vector.
Using the linearity of the expectation operator gives the fol-
lowing sequence of calculations:

(39)

If the correlation matrix of is partitioned compatibly with the
partitioning of as

then is a Gaussian random variable with mean
and correlation matrix . Thus

and the reconstruction is

(40)

B. General Optimization Criteria

As before, the choice of the transformdetermines the per-
formance of the system. This section develops the relationships
between the transform, rates, and distortions necessary to de-
sign .

Estimating the rate is straightforward. Since the quantiza-
tion is fine, is approximately the same as , i.e., a
uniformly quantized Gaussian random variable. With

, the variance of is . Thus, using (24),
the rate per component is

The minimum rate occurs when

and at this rate the components ofare uncorrelated. As in the
two-tuple case, is not the only transform which achieves
the minimum rate. In fact, an arbitrary split of the total rate
among the different components ofis possible [48]. This is
a justification for using a total rate constraint in our following
analyses. The excess over the minimum rate is the redundancy

(41)

When all the transform coefficients are received, the distor-
tion is due only to the initial quantization; as in the two-tuple
case, (21) holds. The distortion when reconstructing from a
proper subset of the descriptions is more complicated.

With more than two descriptions, our earlier notation be-
comes inadequate. With descriptions, there are
nontrivial reconstructions, each with a potentially distinct
distortion. Assign to each channel a state to denote
whether the channel is received () or not received (). For
any system state , the distortion will be
denoted .

The optimization cost function is a weighted average distor-
tion

(42)

where
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In the simplest case, could be the probability of
state . In this case, is the overall average
MSE. Other meaningful choices are available. For example, if a
certain minimum quality is required whenof channels are
received, then the states with can be assigned

equal weights of , with the remaining states having no
weight. In this case, the optimization will make the distortion
equal in each of the states withchannels received and this
distortion will be an upper bound for the distortion when more
than channels are received.

We now compute a generic distortion factor .
This computation was almost completed in the development of
(40). Renumbering the variables if necessary, assume the last

components of are lost and partition the received vector as
before. Let be the error in predicting from ,

, which is a Gaussian random variable with zero mean
and correlation matrix . Substituting
for in (39) gives

so

where is comprised of the lastcolumns of . Finally,

(43)

The problem is to minimize subject to a constraint on.
The expressions given in this section can be used to numerically
determine transforms to realize this goal. Analytical solutions
are possible in certain special cases. Some of these are outlined
in the following sections.

C. Techniques for Two Channels

The simplest generalization of sending two variables over two
channels is to keep the number of channels the same, but to in-
crease the number of variables. The significance of having
two channels is that the transform coefficients must be placed
in two sets. The distortion expression (42) has just
terms—not terms—because each set is either received in full
or lost in full.

The general solution for sending two variables over two chan-
nels can be used to derive methods for sending more variables
over two channels. These methods use at most trans-
forms of size in parallel and thus have complexity that
is only linear in the number of variables. For simplicity, it is as-
sumed that the channels are equally likely to fail.

1) Three Variables:The natural first step is to consider the
transmission of three variables. Supposeis transmitted on
channel 1 and is transmitted on channel 2. We could
start as before, designing a transform with determinant
to minimize the distortion given by (42) and (43). The eight free
parameters make this a difficult optimization. A much easier
way to determine the optimal performance is to first reduce the
number of parameters without risking a loss in performance. It
turns out that it is sufficient to send one of the original variables

as and to use an optimal transform to produce and
. This assertion is formalized by the following theorem.

Theorem 2: Consider MD transform coding where is sent
on channel 1 and is sent on channel 2. To minimize the
average side distortion with an upper bound on redundancy
, it is sufficient to optimize over transforms of the form

(44)

with , , and a permutation matrix.
Proof: See Appendix II-A.

Theorem 2 reduces the number of design parameters from
eight to three and makes the design of an optimal transform a
simple application of the results of Section III. A transform of
the form (44) shuffles the input variables and then correlates the
first two. Since the order of the elements in a correlated pair
does not matter, the permutation can be limited to one of the
following three:

and

Let us consider a generic choice among the three permutations
by assuming that the outputs of the permutation have variances

, , and ; i.e., applying the permutation represented by
to gives . Recall the original ordering
of the variances ( ) and notice that the three
permutations under consideration preserve the ordering of the
first two components: .

The component with variance is sent over channel 2
without any channel protection. (It is uncorrelated with the
other components.) Since channel 2 is lost half of the time and
the distortion is measured per component, this component con-
tributes to , independent of . Now the optimization
of in (44) is precisely the problem of the previous section.
Thus, can be chosen in the form of (38) and

(45)

The second and third terms of (45) come from evaluating (37)
and rescaling the redundancy and distortion to account for the
change from two to three components.

Now we can choose the best permutation; i.e., the permuta-
tion yielding the lowest side distortion. The three permutations
give the following average side distortions, respectively:

The best permutation is because
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and

To summarize, transforms of the form

attain the optimal performance

This performance is matched by many other transforms, but not
surpassed.

2) Four Variables: We now move on to communicating four
variables over two channels. The problem is similar to the one
we just solved if one channel carries and the other carries

. In this case, a result analogous to Theorem 2 holds,
revealing that it is sufficient to consider transforms of the form

where is a correlating transform and is one of six
permutations.

The best choice of permutation causes the correlating
transform to be applied to the components with the largest and
smallest variances. The result is a transform of the form

and optimal performance is given by

Let us now consider the case where each channel carries two
coefficients; for concreteness, one carries the odd-numbered co-
efficients and the other carries the even-numbered coefficients.

The transmission over two channels and the allocation of the
coefficients to channels does not place any limitation on the
transform. However, we can again place a simplifying limita-
tion on the transform without loss of optimality. It is sufficient
to consider pairing the input coefficients, applying a cor-
relating transform to each pair, and sending one output of each

subtransform over each channel. This is justified by the
following theorem.

Theorem 3: Consider MD transform coding where
is sent on channel 1 and is sent on channel 2. To mini-
mize the average side distortion with an upper bound on,
it is sufficient to optimize over transforms of the form

(46)

with , , , and a permutation
matrix.

Proof: See Appendix II-B.

Since the canonical building blocks defined in (38) solve the
problem of designing , , we may write the transform
as

We only have to select the pairing and two transform parameters.
The ordering of a pair does not affect the possible perfor-

mance, so there are three permutations of interest

and

Let us consider a generic choice among the three by assuming
that the inputs to transform have variances and ,

; and the inputs to transform have variances and ,
. Denote the redundancies associated with the pairs

and , respectively. The redundancy and distortion are both
additive between the pairs, so the problem is to minimize

(47)

subject to the constraint17

(48)

where and are the side distortions contributed by the first
and second pair, respectively. According to (37)

Since and are strictly decreasing functions of and ,
respectively, (48) can be replaced by an equality. The optimal
split occurs when both pairs operate at the same distortion-re-
dundancy slope. However, since is complicated, there
is no simple closed form for operating at the same slope.18

Let

For large , the in the denominator becomes negligible, so

(49)

The error made in approximation (48) is shown in Fig. 12.

17The factor of1=2 is present as normalization because redundancy is mea-
sured per component. This applies also to the1=2 in (47). Note also thatd ’s
arepartial side distortions; hence, the use of a new symbol.

18Matching the slopes gives

� =

 (16� & � & ) + 
 (16� & � & ) + 64� & &

32� &

where


 =
& & (& � & )

& & (& � & )
:

This exact relationship is used in generating Fig. 13, but is too complicated to
use in drawing general conclusions about best pairings.
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Fig. 12. Illustration of the accuracy of the approximation ofc(�) given by
(49).

Using (49) it becomes feasible to optimally allocate re-
dundancies analytically. Operating at equal slopes means that

yielding, together with (48), two linear
equations with two unknowns:

Solving for the optimal split of redundancies gives

(50)

(51)

Substituting (50) and (51) into (47), using the approximation
(49), gives

To minimize for large , we can immediately conclude that
and should be the smallest of the’s. This eliminates

permutation . The following manipulation shows that
is the ideal sorting, i.e., the largest variance

and smallest variance components should be paired;

In other words, is the best permutation. We will see shortly
that this “nested” pairing method generalizes topairs as well.

3) Paired Variables: Let us now consider transmission
of variables over the two channels with the odd and even
indexed coefficients sent over channels 1 and 2, respectively.
The extension of Theorem 3 to pairs of variables would seem
to naturally hold, but no proof of this has been found. Consider
transforms of the following form, though we have not proven
that this restriction is innocuous:

...

Fig. 13. Numerical calculations using the exact redundancy allocation solution
(without approximation (49)) confirm that the nested pairing is optimal for all
rates. (a) A random instance with two pairs. (b) A random instance with three
pairs.

where is a permutation matrix. Again let de-
note the variances of the components after the permutation, with

for . Denote the redundancy asso-
ciated with by . We then have a similar problem as before.
Minimize

(52)

with

for

subject to the constraint

(53)

Using the approximation (49) for large and imposing the
equal-slope conditions gives a system of linear equations
with unknowns ( equations coming from equal-slope
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conditions and an additional one from (53)). The solution of
this system is the optimal redundancy allocation of

for

The resulting average distortion with half the coefficients lost is

(54)

This distortion is minimized by the “nested” pairing under the
conditions of the following theorem.

Theorem 4 (Optimal Pairing):Consider the minimization
problem in (52) and (53), where in addition to choosing the

’s one can choose the pairing by permuting’s. The ’s are
a permutation of . At high redundancies,
the minimum distortion is achieved with the nested pairing

, , .
Proof: See Appendix III-C.

Applying the nested pairing of Theorem 4, (54) becomes

Whereas using (49) helped us derive the optimal pairing and
the optimal redundancy allocation, there are two problems with
using this approximation. First, (49) is not a good approximation
when is small (see Fig. 12). Second, the Lagrangian redun-
dancy allocation solution (50) and (51) may ask for a negative
redundancy, which is impossible. However, numerical calcula-
tions (see Fig. 13) verify that the nested pairing is best over all
redundancies.

4) Other Allocations of Coefficients to Channels:Theorems
2 and 3 are suggestive of the following more general result.

Conjecture 5 (Generality of Pairing):Consider an MD trans-
form coding system with variables sent over two channels.
Suppose the transform coefficients are assigned to channels with

, , sent on channel 1 and the re-
maining coefficients sent on channel 2. Then, for any redun-
dancy , a transform that minimizes the average side distortion

can be found in the form

...

where each is of the form (38) and is a permutation ma-
trix. The permutation maps to

Fig. 14. Numerical results for sending a three-dimensional source with
(� ; � ; � ) = (1; 0:7; 0:4) over three channels. Transforms were optimized
at several redundancies� (in bits per component), yielding the solid curves.
The marked points are obtained with transforms given by (55), indicating
nearly minimum distortion with one lost description. The axes cross at
(0:4 + 0:7 )=3 and 0:4 =3, the minimum possible distortions (requiring
high redundancies) with one and two losses, respectively.

In attempting to prove this conjecture using the techniques
of Appendices II-A and II-B, one is faced with the following
problem. Let

be a positive-definite matrix with block dimensions as marked
and , , and positive diagonal matrices. The problem
is to find and , each with
determinant , such that

with , , , and all diagonal matrices.
Choosing and , each with determinant, gives

degrees of freedom. The number of independent
constraints is .19 For all and , the
number of variables is greater than the number of constraints.
This suggests that a solution can be found, but does not guar-
antee it. The proofs of the earlier theorems use explicit deter-
minations of suitable and ; unfortunately, these depend on

in a nonlinear fashion, so they cannot be generalized in any
obvious way.

D. Techniques for More than Two Channels

The extension of MDCT coding to more than two channels
is hindered by design complexity. Applying the results of Sec-
tion IV-B to the design of transforms is considerably

19“Independent” is used loosely here to indicate constraints that are not ob-
viously identical due to the symmetry of the productV R V .
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more complicated than what has been presented thus far be-
cause there are eight degrees of freedom remaining after fixing

. Even in the case of equally weighted channel fail-
ures, a closed-form solution would be more complicated that
(36).

Assume and, furthermore, that the loss prob-
abilities are small. Then one loss occurs much more frequently
than two losses. Motivated by maintaining symmetry with the
coordinate axes and skewing the analysis basis toward the two
components with largest variance, while keeping the rates and
importances of the descriptions equal, leads to transforms de-
scribed by

(55)

for arbitrary Fig. 14 compares the performance of transforms
chosen from this set to arbitrary numerically optimized trans-
forms for a source with when each
description is equally likely to be lost. At any particular redun-
dancy, the distortion with one loss and the distortion with two
losses can be traded off. At the computed redundancies, trans-
forms given by (55) are nearly optimal when the distortion with
one lost description is more heavily weighted than the distortion
with two lost descriptions.

A simple heuristic for designing systems with more than two
channels is to cascade small transforms. Just as the parallel use
of two-by-two transforms gave a method for sending vari-
ables over two channels, a cascade combination of these trans-
forms gives a method for sending variables over chan-
nels. The cascade structure simplifies the encoding, decoding,
and design when compared to using a general trans-
form.

The simplest instance of the cascade structure is shown in
Fig. 15, where four variables are sent over four channels. This
is equivalent to the use of a transform of the form

(56)

Though in (56) has only three degrees of freedom—in place of
15 in a general determinant-transform of this size—empirical
evidence suggests that this class of transforms is sufficiently rich
to give optimal performance for one lost description and nearly
optimal performance for two lost descriptions.

For a numerical example, consider redundancy
bits/component added to a source is described by

to mitigate erasure effects. Assume each description is equally
likely to be lost. Limiting attention to two parallel trans-
forms as in (46) gives a relatively simple optimization over two
variables, but gives the worst performance (see Fig. 16). With a
cascade transform (56), the optimization is somewhat more dif-

Fig. 15. Cascade structure for MDCT coding of four variables to be
transmitted over four channels. The cascade structure simplifies the design
procedure by reducing 15 free parameters to three. The use of
 in both
second-stage blocks is because each first-stage block produces streams of equal
rate and equal importance.

ficult, but distortion can be reduced simultaneously for one and
two erasures (three-erasure performance is also improved, but
not shown). Allowing a general transform makes optimiza-
tion considerably more difficult, and does not further reduce the
distortion with one erasure.

V. APPLICATIONS

In practice, it is unusual to see a Gaussian source with a
known distribution. Nevertheless, transform coding techniques
are prevalent in audio, image, and video coding. This section
briefly describes applications of correlating transform-based
MDs to image and audio coding. Details appear elsewhere in
the literature.

A. Application to Image Coding

On the Internet, images are usually communicated with pro-
gressive source coding and retransmission of lost packets. When
there are no packet losses, the receiver can reconstruct the image
as the packets arrive; but when there is a packet loss, there is a
large period of latency while the transmitter determines that the
packet must be retransmitted and then retransmits the packet.
The latency is due to the fact that the application at the re-
ceiving end uses the packets only after they have been put in
the proper sequence. To combat this latency problem, it is de-
sirable to have a communication system that is robust to arbi-
trarily placed packet erasures and that can reconstruct an image
progressively from packets received in any order. The MDCT
method of this paper seems suitable for this task.

It is precisely in the context of image communication that
Wang, Orchard, and Reibman introduced correlating trans-
forms for MD coding; their image coding results appear in
[10]. (No image coding results appear in their later papers [1],
[11].) Image coding results using the generalized framework
presented here appear in [15]. These experiments indicate the
expected behavior: at the expense of a slight increase in bit
rate, image representations can be made more robust to packet
losses. Conventional channel codes adding such a small amount
of redundancy are not as effective.

B. Application to Audio Coding

To provide the MD feature for packetized compressed audio,
correlating transforms were introduced in a well-known existing
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Fig. 16. Comparison between the cascade transform (56), pairing, and a
general4 � 4 transform for sending four variables over four channels. The
source has(� ; � ; � ; � ) = (1; 0:8; 0:6; 0:4), and in all three cases
redundancy� = 0.125 bit/component. With the zero-erasure performance held
equal, the cascade transform can simultaneously give better performance than
pairing with one or two components lost. Removing restrictions further by
allowing a general4 � 4 transform allows a further decrease in two-erasure
distortion.

coder: Bell Labs’Perceptual Audio Coder (PAC)[50]. Experi-
ments confirm that the new MD audio coder is robust and grace-
fully degrades as the number of lost packets increases. The im-
plementation and results are described in [51]. Since the re-
sults cannot be adequately conveyed numerically or visually, the
reader is invited to hear them. Audio files are provided on-line in
aiff, wave,andnextformats at http: //cm.bell-labs.com/who/je-
lena/Interests/MD/AudioDemo/DemoList.html

VI. CONCLUSION

This paper has introduced a method for generalized MD
coding using correlating transforms. The framework is a
generalization of the method proposed by Orchard, Wang,
Vaishampayan, and Reibman [1]. In addition to extending the
technique to more than two descriptions, we have provided a
complete analysis and optimization of the two-description case,
allowing an arbitrary pdf on the system state.

This method is very effective in increasing robustness with
a small amount of redundancy. In contrast to transform coding
systems designed purely for compression, not robustness, it pro-
duces correlated transform coefficients. As “proofs of concept,”
applications of this method to image and audio coding were
briefly described.

The MD scenario provides a good analogy to communica-
tion over a lossy packet network. For this reason, “description,”
“channel,” and “packet” have been used interchangeably. How-
ever, this is not the only communication environment in which
MD coding may be useful. Effros and Goldsmith [52] have
studied the various notions of capacity for general time-varying
channels. One of their results is that more information can be
reliably received than can be reliably transmitted. With some
thought, this is an intuitive result: it is less demanding to ask for
every bit that gets across the channel to be correct than to ask for
every bit that is transmitted to correctly get across the channel.
For such a general channel it may be useful to use an MD source

code since all the received information will be useful, but the
loss of some of the transmitted information is not catastrophic.

APPENDIX I
PSEUDOLINEAR DISCRETETRANSFORMS

Invertible discrete-domain to discrete-domain transforms are
alternatively described as reversible, integer-to-integer, or in-
vertible in finite precision [53]–[55]. These transforms are based
on factorizations of matrices which make information flow in a
simple, regular way. Inversion can then be achieved by reversing
the information flow.

For example, one can factor any matrix with determi-
nant into three lower- and upper-triangular matrices with unit
diagonals as

or

Since the inverse of a block

or

is simply

or

respectively, the inverse ofcan be found by reversing the order
of the factors and changing the signs of the off-diagonal ele-
ments.

The more profound fact is that the simplicity of inversion
remains if the off-diagonal elements represent nonlinear func-
tions. Let represent rounding to the nearest multiple of
and let

If , then

Thus, is an identity operator except for a nonlinear func-
tion of being added to . Direct computation shows thaton
the domain , is the inverse operator. A cascade of
such operations is invertible in the same manner, so a factor-
ization yields an invertible discrete transform:

“derived from ” through

(57)
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The discrete transform depends not only , but the factor-
ization of . Among the possible factorizations, one can mini-
mize a bound on . Let

and

For , the computation (57) involves three rounding
operations. Using ’s to denote the roundoff errors gives

Expanding and using , one can compute

This shows that approximates in a precise sense; in partic-
ular, when is small.

For matrices, the process is similar. is factored
into a product of matrices with unit diagonals and nonzero off-
diagonal elements only in one row or column: .
The discrete version of the transform is then given by

(58)

The lifting structure ensures that the inverse ofcan be imple-
mented by reversing the calculations in (58)

The existence of such a factorization follows from the fact
that any nonsingular matrix can be reduced to an identity ma-
trix by multiplication with elementary matrices [56]. Since our
original matrix has determinant, it can be represented as the
product of the following three types of elementary matrices:

• , to subtract a multiple of row from row ;

• , to exchange rowsand ;

• , to multiply row by and row by .

is already in the desired form. The remaining two can be
factored as desired using the factorization of matrices
above. Thus, any matrix with determinantcan be factored as
required.

APPENDIX II
PROOFS

A. Proof of Theorem 2

The proofs of Theorems 2 and 3 utilize the following lemma.

Lemma 6: Let , , and be symmetric, real, positive-
definite matrices and let . Suppose both
and each have distinct eigenvalues. Denote orthogonal eigen-
decompositions of and by and

, respectively, where and have decreasing di-
agonals. Then the optimization problem

minimize subject to

is solved by

(59)

yielding

(60)

This solution for is unique up to the sign choices in defining
and .

In the proof of Lemma 6, the following elementary fact is
used.

Lemma 7: Suppose for all skew-symmetric ma-
trices . Then is symmetric.

Proof (Lemma 7):For any , let be the matrix with
in the position, in the position, and the re-

maining elements equal to zero. Since ,
.

Proof (Lemma 6):First convert the constraint
to a simpler form. Left and right multiplying by and

splitting gives

With the definition , we have the constraint
.

The objective function is now

(61)

(62)

(63)

where (62) uses the fact that cyclic permutation of factors does
not affect the trace. We are left with minimizing (63) over or-
thogonal transforms .

A differential analysis will reveal a single critical point, up to
sign choices. Since is positive definite, this critical point must
be a minimum. Consider a small change to, . To
obey the orthogonality constraint, we must have . Ex-
panding and neglecting the term gives the constraint

(64)

The perturbation has the following affect on the objective func-
tion:

(65)
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where the approximation (65) results from discarding the
term and using . Thus, a critical point

of is a transform that satisfies

(66)

for all small satisfying (64).
The solutions of (64) are simple; they are , where

is an arbitrary skew-symmetric matrix. Substituting ,
the solutions of (66) are such that for
all skew-symmetric . Now, by Lemma 7, must be
symmetric. Notice the effect of transposing this matrix. Since

and are symmetric, the transpose is ; thus,
and commute.

Diagonalizable matrices commute if and only if they are
simultaneously diagonalizable [57]. Furthermore, for a matrix
with distinct eigenvalues, the orthogonal transform that diago-
nalizes and leaves the diagonal in decreasing order is unique up
to sign choices. On one hand,is diagonalized as

on the other hand, is diagonalized as

Ignoring sign choices, we may equate the diagonalizing trans-
forms using a permutation matrix, yielding .
The permutation will be chosen after its effect is made clear. A
simple sequence of substitutions yields the optimal transform

(67)

Evaluating gives

(68)

(69)

where terms are separated to emphasize substitutions, and un-
derbraces in (68) mark terms that are subsequently commuted.
Since and are already sorted in the same order, (69) is
minimized by choosing the identity permutation . This
finally yields (59) and (60).

We are now prepared to prove the theorem. The overall
strategy is as follows: Starting with any transform, we can
find a transform such that results in identical side distor-
tion and at most the same redundancy as. At the same time,

yields a correlation with a particular, simple form. This
simple form in turn leads to a simple expression for the side

distortion . Lemma 6 is then used to show that the transform
that yields minimum among transforms with correlation

has the desired form (44). Since the performance with any
transform can at least be matched with a transform of the form
(44), the proof is complete. Each step is now detailed.

Recall that is an arbitrary transform. Let ,
the correlation matrix of the transform coefficients whenis
used. Since and are sent on the same channel, an invertible
transform applied to the two will not change . However, if

and are correlated, the rate can be reduced by applying a
decorrelating transform. Denote a KLT for

by , and let

Then, using in place of does not change the side distor-
tion , and does not increase the redundancy.

After the application of , the correlation can be written in
the following form:

This type of correlation structure cannot be produced by a trans-
form of the desired form (44) unless , so we simplify the
correlation structure further. Let

and

Then

(70)

(The reason for selecting with deference to is revealed
later.) With reference to (41), recall that the redundancy
depends only on the product variances of the transform
coefficients. Since the product of the diagonal elements of

and are equal, using
in place of does not change the redundancy.

Furthermore, since merely alters the second and third
components in an invertible manner, is also unchanged.
With , we have found a transform such that is
at least as good for MD coding as, and has a
simple form; the first step of the proof is complete.

We now wish to show that for of the form (70), the optimal
transform has the desired form (44). In light of the uniqueness
of the solution in Lemma 6, this lemma could be used to directly
compute the best transform for the given. This is not needed
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to satisfy the statement of the theorem. More importantly, our
ultimate goal is to minimize the side distortion for a given re-
dundancy, not a given . Even if two ’s yield the same re-
dundancy, their corresponding minimum distortions may not be
the same; after finding the minimum distortion as a function of

we would have to minimize over all with the particular
redundancy. Instead, finding only the form of the optimal trans-
form simplifies the following computations significantly.

To simplify notation, let

Inverting gives where, as in
Section IV-B, . When (channel 1) is lost, in (43)
is given by

When (channel 2) is lost, the corresponding quantity is

The average side distortion per component when the channels
are equally likely to be lost is given by

where

It is now clear that we have an optimization that can be solved
with Lemma 6. Identify

and

where we need not specify because we are primarily inter-
ested in sparsity. Other quantities that appear in Lemma 6 can
easily be computed.20 Since is already diagonal, and

. The sparsity of gives

(71)

so a diagonalizing transform of will have the form

Now substituting in (67) gives

The optimal transform is the inverse of

(72)

20Arbitrary sign and permutation choices are made in diagonalizing trans-
forms; sorting of diagonal elements is handled later.

It remains now to determine the permutationin (72). This
depends on how must be permuted to match the ordering of

. First note that is sorted in decreasing order. It
is not necessary to precisely determine the eigenvalues ofto
find the required permutation. The sum of the eigenvalues of
is given by

From the form of (71) one of the eigenvalues is. In the generic
case, the eigenvalues are distinct and so the remaining eigen-
values sandwich the eigenvalue. To counteract the different
sorting of and , the permutation must move the third el-
ement to the middle. With such a permutation, (72) simplifies to

where is a permutation that depends on whether is
a clockwise or counterclockwise rotation. (The cancellation of

now retrospectively explains why this standard deviation was
singled out.) The final transform is in the form (44) and thus the
proof is complete.

This analysis could be pushed further to determine the op-
timal transform. However, this would merely be the optimal
transform given , not the optimal transform for given redun-
dancy . Applying this theorem, an optimal transform with an
upper bound on is easy to compute using the results from Sec-
tion III (see Section IV-C).

B. Proof of Theorem 3

This theorem is similar to Theorem 2 so an abbreviated proof
is given. The strategy of the proof is to start with an arbitrary
transform . The corresponding correlation matrix
may be fully dense, but there is a transformwith determinant

such that has a simple desired form and
is no worse than for use in the system. An application of
Lemma 6 then shows that the optimal transform is of the
desired form (46). The simplification of the correlation matrix
is detailed below, but the application of Lemma 6 is omitted.

As in Appendix II-A, components sent over the same channel
can be made uncorrelated without affecting the side distortion,
while not increasing the redundancy. Using KLTs to decorrelate
in such a manner gives

Now we would like to find and with ,
, such that

with



GOYAL AND KOVA ČEVIĆ: GENERALIZED MULTIPLE DESCRIPTION CODING WITH CORRELATING TRANSFORMS 2223

gives the desired correlation structure. A solution is obtained
with

where is a root of

(73)

and

(74)

The validity of this solution places no constraint on. The
choice of should ensure that (73) has real roots and (74) does
not involve a division by zero. These requirements are easily
satisfied by choosing to have the same sign as

and eliminating a few isolated
points.21

With , we have a transform such that is at least
as good as ; i.e., gives the same average side distortion
and at most the same redundancy as. Also, has
a simple block diagonal form. This block diagonal form permits
an application of Lemma 6 which shows that the optimal trans-
form is of the desired form (46). The application of Lemma 6
parallels its use in Appendix II-A and is thus omitted. This com-
pletes the proof.

Note that the complicated dependence ofon the various
parameters hinders extending this method of proof to Conjec-
ture 5.

C. Proof of Theorem 4

First note that for high , the distortion given by (54) is dom-
inated by the first term, so the ’s must be the smallest vari-
ances. Since we are interested in the pairing but not the order of
the pairs, we may assign

for

without loss of generality. Now it remains to show that

for (75)

minimizes (54). The proof is completed by showing that any
permutation other than (75) can be improved, or is already
equivalent to (75) because of nondistinct’s.

Suppose some permutation other than (75) is used and let
be the smallest for which (75) is violated. Say
(instead of ). Then because would contradict
the definition of . Similarly, if is paired with , then

, for if not (75) would be violated at .
( has been eliminated because this would imply
that (75) isnot violated at .)

21The case& a a + & a a = 0 should be handled separately. In this
situation, one can achieve the desired correlation structure with~W = I .

We assert that the distortion is reduced by swappingand
(unless or , in which case, the dis-

tortion is unchanged and we may proceed by looking for larger
). The first term in (54) is unaffected by the swap, but the

second term is multiplied by

When the ’s in question are distinct, this factor is less than one
because of calculations for the two pair case. Since only (75)
and equivalent permutations are not improved by this process,
the theorem is proven.
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[17] V. K. Goyal, J. Kovǎcević, and J. A. Kelner, “Quantized frame expan-
sions with erasures,”Appl. Comput. Harm. Anal., vol. 10, no. 3, pp.
203–233, May 2001.

[18] J. Walrand,Communication Networks: A First Course, 2nd ed. Boston,
MA: McGraw-Hill, 1998.

[19] S. Deering and R. Hinden. (1995, Dec.) Internet Protocol, version 6
(IPv6) specification. Network Working Group Request for Comments
1883. [Online]. Available: ftp://ftp.isi.edu/in-notes/rfc1883.txt

[20] R. Han, P. Bhagwat, R. LaMaire, T. Mummert, V. Perret, and J. Rubas,
“Dynamic adaptation in an image transcoding proxy for mobile web
browsing,”IEEE Pers. Commun. Mag., vol. 5, pp. 8–17, Dec. 1998.

[21] R. Ahlswede, “The rate distortion region for multiple descriptions
without excess rate,”IEEE Trans. Inform. Theory, vol. IT-31, pp.
721–726, Nov. 1985.

[22] Z. Zhang and T. Berger, “Multiple description source coding with no
excess marginal rate,”IEEE Trans. Inform. Theory, vol. 41, pp. 349–357,
Mar. 1995.

[23] V. Koshelev, “Multilevel source coding and data-transmission the-
orem,” in Proc. VII All-Union Conf. Theory of Coding and Data
Transm. Vilnius, USSR, 1978, pt. 1, pp. 85–92.

[24] , “Hierarchical coding of discrete sources,”Probl. Pered. Inform.,
vol. 16, no. 3, pp. 31–49, 1980.

[25] , “An evaluation of the average distortion for discrete scheme of se-
quential approximation,”Probl. Pered. Inform., vol. 17, no. 3, pp. 20–33,
1981.

[26] W. H. R. Equitz and T. M. Cover, “Successive refinement of informa-
tion,” IEEE Trans. Inform. Theory, vol. 37, pp. 269–275, Mar. 1991.
See also [58].

[27] B. Rimoldi, “Successive refinement of information: Characterization of
the achievable rates,”IEEE Trans. Inform. Theory, vol. 40, pp. 253–259,
Jan. 1994.

[28] P. G. Neumann, “Efficient error-limiting variable-length codes,”IEEE
Trans. Inform. Theory, vol. IT-8, pp. 292–304, July 1962.

[29] T. J. Ferguson and J. H. Rabinowitz, “Self-synchronizing Huffman
codes,” IEEE Trans. Inform. Theory, vol. IT-30, pp. 687–693, July
1984.

[30] N. Farvardin, “A study of vector quantization for noisy channels,”IEEE
Trans. Inform. Theory, vol. 36, pp. 799–809, July 1990.

[31] G Buch, F. Burkert, J. Hagenauer, and B. Kukla, “To compress or not
to compress?,” inProc. IEEE GLOBECOM, London, U.K., Nov. 1996,
pp. 196–203.

[32] B. Hochwald and K. Zeger, “Tradeoff between source and channel
coding,” IEEE Trans. Inform. Theory, vol. 43, pp. 1412–1424, Sept.
1997.

[33] V. K. Goyal, Single and Multiple Description Transform Coding with
Bases and Frames. Philadelphia, PA: Soc. Industr. Appl. Math., 2001.

[34] R. Zamir, “Gaussian codes and Shannon bounds for multiple descrip-
tions,” IEEE Trans. Inform. Theory, vol. 45, pp. 2629–2635, Nov. 1999.
See [59] for generalizations to locally quadratic distortion measures.

[35] C. E. Shannon, “Coding theorems for a discrete source with a fidelity
criterion,” IRE Int. Conv. Rec., pt. 4, vol. 7, pp. 142–163, 1959.

[36] T. Berger,Rate Distortion Theory. Englewood Cliffs, NJ: Prentice-
Hall, 1971.

[37] V. A. Vaishampayan, “Design of multiple description scalar quantizers,”
IEEE Trans. Inform. Theory, vol. 39, pp. 821–834, May 1993.

[38] D. O. Reudink, “The channel splitting problem with interpolative
coders,” Bell Labs., Tech. Rep. TM80-134-1, Oct. 1980.

[39] V. A. Vaishampayan and J. Domaszewicz, “Design of entropy-con-
strained multiple-description scalar quantizers,”IEEE Trans. Inform.
Theory, vol. 40, pp. 245–250, Jan. 1994.

[40] V. A. Vaishampayan and J.-C. Batllo, “Asymptotic analysis of multiple
description quantizers,”IEEE Trans. Inform. Theory, vol. 44, pp.
278–284, Jan. 1998.

[41] R. M. Gray and D. L. Neuhoff, “Quantization,”IEEE Trans. Inform.
Theory, vol. 44, pp. 2325–2383, Oct. 1998.

[42] S.-M. Yang and V. A. Vaishampayan, “Low-delay communication for
Rayleigh fading channels: An application of the multiple description
quantizer,”IEEE Trans. Commun., vol. 43, no. 11, pp. 2771–2783, Nov.
1995.

[43] J.-C. Batllo and V. A. Vaishampayan, “Asymptotic performance of mul-
tiple description transform codes,”IEEE Trans. Inform. Theory, vol. 43,
pp. 703–707, Mar. 1997.

[44] J. H. Conway and N. J. A. Sloane,Sphere Packings, Lattices and
Groups. New York: Springer-Verlag, 1988, vol. 290, Grundlehren der
mathematischen Wissenschaften.

[45] V. K. Goyal, J. Zhuang, and M. Vetterli, “Transform coding with
backward adaptive updates,”IEEE Trans. Inform. Theory, vol. 46, pp.
1623–1633, July 2000.

[46] T. M. Cover and J. A. Thomas,Elements of Information Theory. New
York: Wiley, 1991.

[47] V. K. Goyal and M. Vetterli, “Manipulating rates, complexity, and error-
resilience with discrete transforms,” inConf. Rec. 32nd Asilomar Conf.
Signals, Systems, and Computers, vol. 1, Pacific Grove, CA, Nov. 1998,
pp. 457–461.

[48] V. K. Goyal, “Transform coding with integer-to-integer transforms,”
IEEE Trans. Inform. Theory, vol. 46, pp. 465–473, Mar. 2000.

[49] , “Beyond traditional transform coding,” Ph.D. dissertation, Univ.
Calif., Berkeley, 1998. Published as Univ. California, Berkeley, Elec-
tron. Res. Lab. Memo. UCB/ERL M99/2, Jan. 1999.

[50] D. Sinha, J. D. Johnston, S. Dorward, and S. Quackenbush, “The per-
ceptual audio coder (PAC),” inThe Digital Signal Processing Hand-
book. Piscataway, NJ: IEEE Press, 1998, ch. 42, pp. 42.1–42.18.
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